带电粒子在复合场中的运动典型例题汇编

带电粒子在复合场中的运动典型例题汇编
带电粒子在复合场中的运动典型例题汇编

专题八带电粒子在复合场中的运动

考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题

1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中

未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,

此空间同时存在由A指向B的匀强磁场,则下列说法正确的是

() A.小球一定带正电图1

B.小球可能做匀速直线运动

C.带电小球一定做匀加速直线运动

D.运动过程中,小球的机械能增大

答案CD

解析由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D正确.

2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面

向里,则下列说法正确的是()

A.小球一定带正电图2 B.小球一定带负电

C.小球的绕行方向为顺时针

D.改变小球的速度大小,小球将不做圆周运动

答案BC

解析小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C正确,D错误.

考点梳理

一、复合场

1.复合场的分类

(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.

(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.

二、带电粒子在复合场中的运动形式 1. 静止或匀速直线运动

当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2. 匀速圆周运动

当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动. 3. 较复杂的曲线运动

当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 4. 分阶段运动

带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.

3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒

子被加速电场加速后,进入速度选择器.速度选择器内相互正交的 匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过 的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为 B 0的匀强磁场.下列表述正确的是 ( )

A .质谱仪是分析同位素的重要工具 图3

B .速度选择器中的磁场方向垂直纸面向外

C .能通过狭缝P 的带电粒子的速率等于E /B

D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小 答案 ABC

解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向

外,选项B 正确;由Eq =Bq v 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到

狭缝的距离即为其做匀速圆周运动的直径D =2m v

Bq ,可见D 越小,则粒子的比荷越大,

D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.

4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作

原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两 盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的 匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处 粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的

是 ( ) 图4 A .质子被加速后的最大速度不可能超过2πRf

B .质子离开回旋加速器时的最大动能与加速电压U 成正比

C .质子第2次和第1次经过两

D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变 答案 AC

解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR

T

=2πRf ,故A 正

确;粒子离开回旋加速器的最大动能E km =12m v 2=1

2

m ×4π2R 2f 2=2m π2R 2f 2,与加速电压

U 无关,B 错误;根据R =m v Bq ,Uq =12m v 21,2Uq =12m v 2

2,得质子第2次和第1次经

过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误. 规律总结

带电粒子在复合场中运动的应用实例 1. 质谱仪

(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.

图5

(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =1

2

m v 2.

粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B

=m v 2r .

由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2

.

2. 回旋加速器

(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处

接交流电源,D 形盒处于匀强磁场中.

(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周

运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一

次地反向,粒子就会被一次一次地加速.由q v B =m v 2

r

,得

E km =q 2B 2r 2

2m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6

半径r 决定,与加速电压无关.

特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.

3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相

垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度 选择器.

(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,

即v =E

B . 图7

4. 磁流体发电机

(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.

(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的

磁感应强度为B ,则由qE =q U

L =q v B 得两极板间能达到的最大电势 图8

差U =BL v .

5. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材

料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电

场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就 图9

保持稳定,即:q v B =qE =q U d ,所以v =U

Bd

,因此液体流量Q =S v =

πd 2

4·U Bd =πdU 4B

.

考点一 带电粒子在叠加场中的运动

1. 带电粒子在叠加场中无约束情况下的运动情况分类

(1)磁场力、重力并存

①若重力和洛伦兹力平衡,则带电体做匀速直线运动.

②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.

(2)电场力、磁场力并存(不计重力的微观粒子)

①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.

②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.

③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题. 2. 带电粒子在叠加场中有约束情况下的运动

带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.

例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为

B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,

则经t 0

2

时间打到极板上.

图10

(1)求两极板间电压U ;

(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?

解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动

L ∶(L -2R )=t 0∶t 0

2

,解得L =4R

粒子在电场中做类平抛运动:L -2R =v 0·t 0

2

a =qE m

R =12a (t 02

)2

在复合场中做匀速运动:q U

2R

=q v 0B

联立各式解得v 0=4R t 0,U =8R 2B

t 0

(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R

因为R =12qE m (t 02)2

所以qE m =q v 0B m =8R t

20

根据牛顿第二定律有q v B =m v 2

r ,

解得v =2(2-1)R

t 0

所以,粒子在两板左侧间飞出的条件为0

t 0

答案 (1)8R 2

B

t 0 (2)0

技巧点拨

带电粒子(带电体)在叠加场中运动的分析方法

1.弄清叠加场的组成. 2.进行受力分析.

3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.

(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.

(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;

(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.

突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,

磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强 度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场 力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴 b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一

体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已 图11 知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静 电力忽略不计.

(1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .

答案 (1)E B (2)2E 2

3gB 2

解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②

由①、②两式,可得相撞后速度v =E

B

(2)对b ,从开始运动至与a 相撞之前,由动能定理有

W E +W G =ΔE k ,即(2qE +mg )h =12

m v 2

0 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E

B

再代入③式得h =m v 204qE +2mg =v 20

6g =2E 23gB 2

考点二 带电粒子在组合场中的运动

1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场

相邻,或是两个或多个磁场相邻.

2. 解题时要弄清楚场的性质、场的方向、强弱、范围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.

例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场

区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极 板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均 为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,

粒子在电场力的作用下向右运动,在t =T 0

2时刻通过S 2垂直于边界进入右侧磁场区.(不

计粒子重力,不考虑极板外的电场)

图12

(1)求粒子到达S 2时的速度大小v 和极板间距d .

(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.

(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?

2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?

解析 (1)粒子由S 1至S 2的过程,根据动能定理得

qU 0=1

2

m v 2 ①

由①式得v = 2qU 0

m

设粒子的加速度大小为a ,由牛顿第二定律得q U 0

d

=ma ③

由运动学公式得d =12a (T 0

2)2 ④

联立③④式得d =T 04 2qU 0

m ⑤

(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2

R

要使粒子在磁场中运动时不与极板相撞,需满足2R >L

2

联立②⑥⑦式得B <4L 2mU 0

q

(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 0

4 ⑨

若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的

时间为t 2,根据运动学公式得d =v

2

t 2 ⑩

联立⑧⑨⑩式得t 2=T 0

2 ?

设粒子在磁场中运动的时间为t

t =3T 0-T 0

2

-t 1-t 2 ?

联立⑨??式得t =7T 0

4

?

设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm

qB

?

由题意可知T =t ?

联立???式得B =8πm

7qT 0

.

答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0

q

(3)7T 04 8πm 7qT 0

方法点拨

解决带电粒子在组合场中运动问题的思路方法

突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向

上和水平向右的匀强电场,电场强度分别为E 和E

2

;区域Ⅱ

内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为 m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正 上方的M 点以速度v 0水平射入电场,经水平分界线OP 上

的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界 图13 CD 进入Ⅲ区域的匀强电场中.求:

(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;

(3)粒子从M 点出发到第二次通过CD 边界所经历的时间.

答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm

3qB

审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.

3.注意进入磁场时的速度的大小与方向.

解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过

A 点时速度为v ,由类平抛运动规律知v =v 0

cos 60°

粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得

Bq v =m v 2R ,所以R =2m v 0

qB

(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=

3m v 0

qE

O 、M 两点间的距离为L =12at 21=3m v 0

2

2qE

(3)设粒子在Ⅱ区域磁场中运动时间为t 2

则由几何关系知t 2=T 16=πm

3qB

设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q

E 2m =qE

2m

则t 3=2×2v 0a ′=8m v 0

qE

粒子从M 点出发到第二次通过CD 边界所用时间为 t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm

3qB

42.带电粒子在交变电场和交变磁场中的运动模型问题的分析

解析 (1)粒子在磁场中运动时q v B =m v 2

R

(2分)

T =2πR

v (1分)

解得T =2πm

qB =4×10-3 s (1分)

(2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)

竖直位移y =1

2a (3T )2 (1分)

Eq =ma (1分) 解得y =3.6×10-2 m

故t =20×10-3 s 时粒子的位置坐标为:

(9.6×10-2 m ,-3.6×10-2 m) (1分) (3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为

α (1分) 则v =

v 20+v 2y (1分)

v y =3aT (1分) tan α=v y

v 0 (1分)

解得v =10 m/s (1分)

与x 轴正向夹角α为37°(或arctan 3

4)斜向右下方 (1分)

答案 (1)4×10-

3 s (2)(9.6×10-

2 m ,-3.6×10-

2 m) (3)10 m/s 方向与x 轴正向夹角

α为37°(或arctan 3

4

)

突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强

大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-

2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度

向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)

图15

(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);

(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);

(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).

答案 (1)3πm 2qB 0 (2)L v 0+m

qB 0 (3)2πm v 0qL 6L v 0

解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运

动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0

(2)PF -PD =R ,即: 甲 v 0t 1-L =R q v 0B 0=m v 2

0/R

所以v 0t 1-L =m v 0qB 0,t 1=L v 0+m

qB 0

(3)小球运动的速率始终不变,当R 变大时,T

0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:

DQ =2R =L π=2m v 0

qB 0

B 0=2πm v 0qL ,T 0=2πR v 0=L v 0 乙

由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6L

v 0

,小球运动轨迹如图乙所示.

高考题组

1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面

(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、 电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b

点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为3

5

R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样 图16 速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计 重力,求电场强度的大小.

答案 14qRB 2

5m

解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律

和洛伦兹力公式得q v B =m v 2

r ①

式中v 为粒子在a 点的速度.

过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系

知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此 ac =bc =r ②

设cd =x ,由几何关系得ac =4

5

R +x ③

bc =3

5

R +R 2-x 2 ④

联立②③④式得r =7

5R ⑤

再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得

qE =ma ⑥

粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =1

2at 2 ⑦

r =v t ⑧

式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得

E =14qRB 25m .

2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d 的长

金属板接在电压可调的电源上.两板之间的右侧区域存在方向 垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表

面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷 图17 量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入 电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;

(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?

答案 (1)负电荷 mgd

U (2)v 0U gd 2 (3)4v 0U 5gd 2

解析 (1)墨滴在电场区域做匀速直线运动,有

q U

d

=mg ① 由①式得:q =mgd

U ②

由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.

(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有

q v 0B =m v 02

R ③

考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径

R =d ④

由②③④式得B =v 0U

gd 2

(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有

q v 0B ′=m v 02

R ′ ⑤

由图可得:

R ′2=d 2+(R ′-d

2)2 ⑥

由⑥式得:R ′=5

4d ⑦

联立②⑤⑦式可得:

B ′=4v 0U 5gd 2

.

3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率

分选装置,其原理如图18所示,两带电金属板间有

匀强电场,方向竖直向上,其中PQNM 矩形区域内 还有方向垂直纸面向外的匀强磁场.一束比荷(电荷

量与质量之比)均为1

k

的带正电颗粒,以不同的速率

沿着磁场区域的水平中心线O ′O 进入两金属板之间, 图18

其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加 速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小;

(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 答案 见解析

解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1

k 代入,得 E =kg .

(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的

向心力,则有q v 0B =m v 2

0R ①

而由几何知识有

R 2=(3d )2+(R -d )2 ②

联立①②解得

B =k v 0

5d . ③

(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线

运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有

qλv 0B =m (λv 0)2

R 1

将q m =1

k 及③式代入④式,得 R 1=5d λ tan θ=

221)

3(3d R d -

y 1=R 1-)3(2

2

1d R - y 2=l tan θ

则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2 解得y =d (5λ-25λ2-9)+

3l

25λ2

-9

.

模拟题组

4. 如图19所示,

坐标平面第Ⅰ象限内存在大小为E

=4×105 N/C 、

方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向

里的匀强磁场.质荷比为m q =4×10-

10 N/C 的带正电粒子从x

轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =

0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;

(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)

答案 (1)0.4 m (2)B ≥(22+2)×10-

2 T

解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,

则:s OA =1

2at 2

a =F m E =F q

y =v 0t

联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s

粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s 与y 轴正方向的夹角为θ,θ=arctan

v x

v 0

=45°

要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则: R +

2

2R ≤y q v B =m v 2

R

联立解得B ≥(22+2)×10-2 T.

5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,

一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强

大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πm

qt 0,已知小球的质量为

m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:

图20

(1)t 0末小球速度的大小;

(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;

(3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图; (4)30t 0内小球距x 轴的最大距离. 答案 (1)10gt 0 (2)2t 0 13gt 0 (3)见解析图

(4)? ????92+3+32πgt 20 解析 (1)由题图乙知,0~t 0内,小球只受重力作用,做平抛运动,在t 0末:

v =v 0x 2+v 0y 2=

(3gt 0)2+(gt 0)2=10gt 0

(2)当同时加上电场和磁场时,电场力F 1=qE 0=mg ,方向向上

因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有q v B 0=m v 2r

运动周期T =2πr

v ,联立解得T =2t 0

由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的5倍,即在 这10t 0内,小球恰好做了5个完整的匀速圆周运动.所以小球在t 1=12t 0时刻的速度相 当于小球做平抛运动t =2t 0时的末速度. v y 1=g ·2t 0=2gt 0,v x 1=v 0x =3gt 0 所以12t 0末v 1=v x 12+v y 12=13gt 0

(3)24t 0内运动轨迹的示意图如图所示.

(4)分析可知,小球在30t 0时与24t 0时的位置相同,在24t 0内小球相当于做了t 2=3t 0的平 抛运动和半个圆周运动.23t 0末小球平抛运动的竖直分位移大小为

y 2=12g (3t 0)2=92gt 20

竖直分速度v y 2=3gt 0=v 0,

所以小球与竖直方向的夹角为θ=45°,速度大小为 v 2=32gt 0

此后小球做匀速圆周运动的半径r 2=m v 2qB 0=32gt 20π

30t 0内小球距x 轴的最大距离:y 3=y 2+(1+cos 45°)r 2=? ??

??92+3+32πgt 2

专题突破练 带电粒子在复合场中的运动

(限时:60分钟)

?题组1 对带电粒子在叠加场中运动的考查

1. 如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖

直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m , 电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦 因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中

( )

A .小球的加速度一直减小

B .小球的机械能和电势能的总和保持不变 图1

C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg

2μqB

D .下滑加速度为最大加速度一半时的速度可能是v =2μq

E +mg

2μqB

答案 CD

解析 对小球受力分析如图所示,则mg -μ(Eq -q v B )=ma ,随着v 的增加,小球加速度先增加,当Eq =q v B 时加速度达到最大值a max =g ,继续运动,mg -μ(q v B -Eq )=ma ,随着v 的增加,a 逐渐减 小,所以A 错误.因为有摩擦力做功,机械能与电势能总和在减 小,B 错误.若在前半段达到最大加速度的一半,则mg -μ(Eq -

q v B )=m g

2,得v =2μqE -mg 2μqB ,若在后半段达到最大加速度的一半,则mg -μ(q v B -Eq )

=m g

2,得v =2μqE +mg 2μqB

,故C 、D 正确.

2. 如图2所示,已知一带电小球在光滑绝缘的水平面上从静止开始

经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周

运动,则 ( ) 图2 A .小球可能带正电

B .小球做匀速圆周运动的半径为r =1B 2UE g

C .小球做匀速圆周运动的周期为T =2πE

Bg

D .若电压U 增大,则小球做匀速圆周运动的周期增加 答案 BC

解析 小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,则小球带负电,A 错误;因为小球做圆周运动的向心力为洛伦兹力,由牛顿第二定律和动

能定理可得:Bq v =m v 2r ,Uq =1

2

m v 2,联立两式可得:小球做匀速圆周运动的半径r =

1B 2UE g ,由T =2πr v 可以得出T =2πE Bg ,与电压U 无关,所以B 、C 正确,D 错误. 3. 如图3所示,空间的某个复合场区域内存在着方向相互垂直的匀强

电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于 复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的 动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同 一复合场后的动能E k ′的大小是 ( )

A .E k ′=E k 图3

B .E k ′>E k

C .E k ′

D .条件不足,难以确定 答案 B

解析 设质子的质量为m ,则氘核的质量为2m .在加速电场里,由动能定理可得:eU = 12m v 2,在复合场里有:Bq v =qE ?v =E

B ,同理对于氘核由动能定理可得其离开加速电场 的速度比质子的速度小,所以当它进入复合场时所受的洛伦兹力小于电场力,将往电场 力方向偏转,电场力做正功,故动能增大,B 选项正确.

?题组2 对带电粒子在组合场中运动的考查

4. 如图4所示,两块平行金属极板MN 水平放置,板长L =1 m .间距d =

3

3

m ,两金属板间电压U MN =1×104 V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2.已知A 、F 、G 处于同一直线上,B 、C 、H

也处于同一直线上.AF 两点的距离为2

3 m .现从平行金属板MN 左端沿中心轴线方向入

射一个重力不计的带电粒子,粒子质量m =3×10-10

kg ,带电荷量q =+1×10-

4 C ,初

速度v 0=1×105 m/s.

图4

(1)求带电粒子从电场中射出时的速度v 的大小和方向;

(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1; (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的 条件.

答案 (1)23

3

×105 m/s 与水平方向夹角为30°

(2)33

10 T (3)大于2+35

T

解析 (1)设带电粒子在电场中做类平抛运动时间为t ,加速度为a ,qU MN d

=ma

故a =qU MN dm =33×1010 m/s 2

t =L

v 0

=1×10-5 s 竖直方向的速度为v y =at =3

3

×105 m/s

射出电场时的速度为v =v 02+v y 2=23

3×105 m/s

速度v 与水平方向夹角为θ,tan θ=v y v 0=3

3

,故θ=30°,即垂直于AB 方向射出

(2)带电粒子出电场时竖直方向偏转的位移y =12at 2=36 m =d

2

,即粒子由P 点垂直AB 边

射入磁场,由几何关系知在磁场ABC 区域内做圆周运动的半径为R 1=d cos 30°=2

3

m

由B 1q v =m v 2R 1知B 1=m v qR 1=33

10 T

(3)分析知当运动轨迹与边界GH 相切时,对应磁感应强度B 2最小,运动轨迹如图所示:

由几何关系可知R 2+R 2

sin 60°=1

故半径R 2=(23-3) m

又B 2q v =m v 2

R 2,

故B 2=2+3

5

T

所以B 2应满足的条件为大于

2+3

5

T.

5. 如图5所示,一个质量为m 、电荷量为q 的正离子,在D 处

沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场 中,磁场方向垂直纸面向里.结果离子正好从距A 点为d 的 小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC

平行且向上,最后离子打在G 处,而G 处距A 点2d (AG ⊥AC ). 图5 不计离子重力,离子运动轨迹在纸面内.求: (1)此离子在磁场中做圆周运动的半径r ; (2)离子从D 处运动到G 处所需时间; (3)离子到达G 处时的动能.

答案 (1)23d (2)(9+2π)m 3Bq (3)4B 2q 2d 2

9m

解析 (1)正离子轨迹如图所示.

圆周运动半径r 满足: d =r +r cos 60° 解得r =2

3

d

(2)设离子在磁场中的运动速度为v 0,则有:q v 0B =m v 02

r

T =2πr v 0=2πm qB

由图知离子在磁场中做圆周运动的时间为:t 1=13T =2πm

3Bq

离子在电场中做类平抛运动,从C 到G 的时间为:t 2=2d v 0=3m

Bq

离子从D →C →G 的总时间为:t =t 1+t 2=(9+2π)m

3Bq

(3)设电场强度为E ,则有: qE =ma d =12

at 22 由动能定理得:qEd =E k G -12

m v 2

解得E k G =4B 2q 2d

29m

?题组3 对带电粒子在交变的电场或磁场中运动的考查

6. 如图6甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷q

m

106 C/kg 的正电荷置于电场中的O 点由静止释放,经过π15

×10-

5 s 后,电荷以v 0=1.5×

104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t =0时刻).求:

乙 图6

(1)匀强电场的电场强度E ;

(2)图乙中t =4π5

×10-

5 s 时刻电荷与O 点的水平距离;

(3)如果在O 点右方d =68 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运 动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80) 答案 (1)7.2×103 N/C (2)4 cm (3)3.86×10-

4 s

解析 (1)电荷在电场中做匀加速直线运动,设其在电场中运动的时间为t 1,有:v 0=at 1,Eq =ma

解得:E =m v 0qt 1

=7.2×103 N/C

(2)当磁场垂直纸面向外时,电荷运动的半径:

r 1=m v 0B 1q

=5 cm

汇编语言程序设计练习题

汇编语言程序设计练习题 一、字符与串处理类 1.逆序输出字符串“BASED ADDRESSING”。 2.试编写一段程序,要求对键盘输入的小写字母用大写字母显示出来。 3.编写程序,从键盘接收一个小写字母,然后找出它的前导字符和后续字符,再按顺序显示这三个字符。 4.从键盘上输入一系列以$为结束符的字符串,然后对其中的非数字字符计数,并显示计数结果。 5.从键盘上输入一串字符(用回车键结束,使用0A号功能调用。)放在STRING中,试编制一个程序测试字符串中是否存在数字。如有,则把CL的第5位置1,否则将该位置置0。 6.从键盘上输入一串字符(用回车键结束,使用0A号功能调用。),将其中的小写英文字母变换为大写英文字母,其他字符保持不变。然后将变换后的字符串显示出来。 7.试编制一个程序:从键盘输入一行字符,要求第一个键入的字符必须是空格符,如不是,则退出程序;如是,则开始接收键入的字符并顺序存放在首地址为buffer的缓冲区中(空格符不存入),直到接收到第二个空格符时退出程序。 8.试编写一段程序,要求比较两个字符串string1和string2所含字符是否相等,如相等则显示“MATCH”, 若不相同则显示“NO MATCH”。 9.试编写一段程序,要求输入两个字符串,如两个字符串相等则显示“MATCH”, 否则显示“NO MATCH”。 10.试编写一段程序,要求在长度为100H字节的数组中,找出大于61H的无符号数的个数并存入字节单元UP中,找出小于2FH的无符号数的个数并存入字节单元DOWN中。 11.在内存区域0B800:0000-0B800:0FFFF(都是16进制数)内查找首地址为SOURCE的串(SOURCE的首字节为串长度),如果找到,则把AL的第0位置0,否则将该位置置1。 12.已知数组A包含15个互不相等的整数,数组B包含20个互不相等的整数。试编制一个程序,把既在A中又在B中出现的整数存放于数组C中。 13.在附加段中,有一个首地址为LIST和未经排序的字数组。在数组的第一个字中,存放着该数组的长度,数组的首地址已存放在DI寄存器中,AX寄存器中存放着一个数。要求编制一个程序:在数组中查找该数,如果找到此数,则把它从数组中删除。 二、数字输入输出类 1. 试编制一个程序,把BX寄存器内的二进制数以十六进制数的形式在屏幕上显示出来。 2. 试编制一个程序,把BX寄存器内的二进制数以八进制数的形式在屏幕上显示出来。 3. 试编制一个程序,把BX寄存器内的二进制数以十进制数的形式在屏幕上显示出来。 4.从键盘上输入2个一位数,求出它们的和(假设和不超过1位)。 5.试编写一段程序,从键盘接收一个四位的十六进制数,并在终端上显示与它等值的二进制数。 6.试编写一段程序,从键盘接收一个0-65535间的十进制无符号数,并在终端上显示与它等值的二进制数。 7.试编写一段程序,从键盘接收一个-32768-32767间的十进制有符号数,并在终端上显示与它等值的二进制数。 8.编写一个程序,从键盘输入一个0~65535之间的10进制无符号数,然后以16进制

曲线运动典型例题

一、选择题 1、一石英钟的分针和时针的长度之比为3:2,均可看作是匀速转动,则() A.分针和时针转一圈的时间之比为1:60 B.分针和时针的针尖转动的线速度之比为40:1 C.分针和时针转动的角速度之比为12:1 D.分针和时针转动的周期之比为1:6 2、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大 C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大 3、 A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球的轨道半径的2倍,A的转速为30 r/min,B 的转速为r/min,则两球的向心加速度之比为:() A.1:1 B.6:1 C.4:1 D.2:1 4、两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示,则a、b两小球具有相同的 A.角速度B.线速度C.向心力D.向心加速度 5、关于平抛运动和匀速圆周运动,下列说法中正确的是() A.平抛运动是匀变速曲线运动B.平抛运动速度随时间的变化是不均匀的 C.匀速圆周运动是线速度不变的圆周运动D.做匀速圆周运动的物体所受外力的合力做功不为零 6、在水平面上转弯的摩托车,如图所示,提供向心力是 A.重力和支持力的合力B.静摩擦力C.滑动摩擦力D.重力、支持力、牵引力的合力 7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则() A.物块始终受到三个力作用 B.只有在a、b、c、d四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先减小后增大 D.从b到a,物块处于失重状态

单片机习题集(含答案)经典

单片机原理及应用习题 第一章绪论 1-1单项选择 1、计算机中最常用的字符信息编码是()。 (A)ASCII (B)BCD码(C)余3码(D)循环码 2、-31D的二进制补码为.( )。 (A)1110000B (B)11100001B (C)01100000B (D)01100001B 3、十进制29的二进制表示为原码()。 (A)11100010B (B) 10101111B (C)00011101B (D)00001111B 4、十进制0.625转换成二进制数是()。 (A)0.101 (B) 0.111 (C)0.110 (D)0.100 5、十六进制数7的ASCII码是()。 (A) 37 (B) 7 (C) 07 (D) 47 6、十六进制数B的ASCII码是()。 (A) 38 (B) 42 (C) 11 (D) 1011 7、通常所说的主机是指() (A)运算器和控制器(B)CPU和磁盘存储器(C)CPU和主存储器(D)硬件和软件 8、使用单片机实现在线控制的好处不包括( ) (A)精确度高(B)速度快(C)成本低(D)能与数据处理结合 1-2填空 1、计算机中常作的码制有、和。 2、十进制29的二进制表示为。 3、十进制数-29的8位补码表示为。 4、是计算机与外部世界交换信息的载体。 5、十进制数-47用8位二进制补码表示为。 6、-49D的二进制补码为。 7、计算机中的数称为,它的实际值叫。 8、单片机的存储器结构形式有普林斯顿结构(又称冯.依诺曼结构)与哈佛结构,MCS-51存储器采用的是结构。

1-3 问答题 1、何谓单片机?单片机与一般微型计算机相比,具有哪些特点? 2、单片机主要应用在哪些领域? 3、为什么80C51系列单片机能成为8位单片机应用主流? 4、举例说明单片机的主要应用领域。 5、二进制数、十进制数、十六进制数各用什么字母尾缀作为标识符?无标识符时表示什么进制数? 6、试比较MCS-51,MSP430,EM78,PIC,M6800及AVP等系列单片机的特点。 第二章 MCS-51单片机的硬件结构与工作原理 2-1 单项选择 1、要MCS-51系统中,若晶振频率屡6MHz,一个机器周期等于( ) μs A 1 B 2 C 3 D 0.5 2、以下不是构成的控制器部件(): A 程序计数器、 B指令寄存器、 C指令译码器、 D存储器 3、以下不是构成单片机的部件() A 微处理器(CPU)、B存储器 C接口适配器(I\O接口电路) D 打印机 4、下列不是单片机总线是() A 地址总线 B 控制总线 C 数据总线 D 输出总线 5、PSW=18H时,则当前工作寄存器是() (A)0组(B)1组(C)2组(D)3组 6、P1口的每一位能驱动() (A)2个TTL低电平负载有(B)4个TTL低电平负载 (C)8个TTL低电平负载有(D)10个TTL低电平负载 7、MCS-51的中断允许触发器内容为82H,CPU将响应的中断请求是( ) (A) T0, (B)T1 (C)串行接口 (D) INT0 8、外部中断0的中断入口地址为() (A)0003H (B)000BH (C)0013H (D)001BH 9、内部定时/计数器T0的中断入口地址为() (A)0003H (B)000BH (C)0013H (D)001BH 10、在中断服务程序中,至少应有一条( )

万有引力与航天 典型例题

万有引力与航天--例题 考点一 天体质量与密度的计算 1.解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度). 2.天体质量与密度的计算 (1)利用天体表面的重力加速度g 与天体半径R 、 由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43 πR 3=3g 4πGR 、 (2)通过观察卫星绕天体做匀速圆周运动的周期T 与轨道半径r 、 ①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3 GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43 πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密 度ρ=3πGT 2、可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.

例 1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2、您能计算出( ) A.地球的质量m 地=gR 2G B.太阳的质量m 太=4π2L 32GT 22 C.月球的质量m 月=4π2L 31GT 21 D.可求月球、地球及太阳的密度 1.[天体质量的估算]“嫦娥一号”就是我国首次发射的探月卫星,它在距月球表面高度为200

汇编程序习题

汇编程序习题 1.试分析以下程序段完成什么功能? MOV CL,4 SHL DX,CL SHL AX,CL SHR BL,CL INT 3 2.写出执行以下计算的指令序列: 1)Z←W+(Z-X)2)Z←W-(X+6)-(R+10) 3)Z←(W*X)/(R+6)4)Z←((W-X)/5*Y)*2 3.求两个数56H和67H进行ADD,并求出标志OF,CF,SF,ZF的值。4.阅读程序段,回答下述问题: 1)MOV AX,4000H 2)MOV AX,5678H 3)MOV AX,1234H OV DS,AX MOV BX,99AAH MOV CX,8912H MOV BX,1238H PUSH BX CMP AX,CX MOV〔BX〕,2244H PUSH AX INT 3 MOV AL,〔BX〕 POP DX SF=?OF=?JA成立否? INT 3 POP CX AL=?存储器的物理地址=?DX=?CX=? 5.下列程序能完成什么功能? DATY1 DB 300DUP(?) DATY2 DB 100DUP(?) …… MOV CX,100 MOV BX,200 MOV SI,0 MOV DI,0 NEXT:MOV AL,DATY1〔BX〕〔SI〕 MOV DATY2〔DI〕,AL

INC SI INC DI LOOP NEXT 6.下列指令哪些是错误的?并简述之。 1)MOV 15,BX 2)CMP OP1,OP2(假定OP1,OP2是用DB定义的变量) 3)CMP AX,OP1 4)CMP OP1,25H 5)MOV DS,CS 7.下列程序段执行后,BX的值是什么? MOV CL,3 MOV BX,0B8H ROL BX,1 ROR BX,CL 8.编写一个程序段,将内存200H单元开始的256个单元的内容,取绝对值后传送到400H开始的256个单元中。 9.求出下列各数与62A0H之和,并根据结果确定SF,ZF,CF,OF的值。 1)1234H 2)4321H 3)CFA0H 4)9D60H 10.求出下列各数与4AE0H之差,并根据结果确定SF,ZF,CF,OF的值。 1)1234H 2)5D80H 3)9090H 4)EA04H

2019高考物理练习(曲线运动)经典例题(带解析)

2019高考物理练习(曲线运动)经典例题(带解析) 1、关于曲线运动,以下说法中正确的选项是〔AC〕 A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动可能是匀变速运动 D.变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,那么可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,假设突然撤去F1,而保持F2、F3不变,那么质点〔A〕 A、一定做匀变速运动 B、一定做直线运动 C、一定做非匀变速运动 D、一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,那么撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,那么撤去F1后,质点可能做直线运动〔条件是F1的方向和速度方向在一条直线上〕,也可能做曲线运动〔条件是F1的方向和速度方向不在一条直线上〕。 3、关于运动的合成,以下说法中正确的选项是〔C〕 A.合运动的速度一定比分运动的速度大 B.两个匀速直线运动的合运动不一定是匀速直线运动 C.两个匀变速直线运动的合运动不一定是匀变速直线运动 D.合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定那么可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如下图, 求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x轴上的分运 动是匀加速直线运动,在y轴上的分运动是匀速直线运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。那么物体所受的合力F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为v x0=0,v y0=4m/s,故物体的初速度

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

51汇编程序练习题1

单片机汇编程序设计练习 一、存储器之间的数据传送 1、编程实现将单片机内部RAM60H开始的连续32个单元置为FFH。 2、编程实现将内部RAM30H开始的连续16个数传送到内部RAM50H开始的连续单元中。 3、编程实现将单片机外部RAM2000H为首地址的数据块传送到单片机内部RAM30H开始的单元中,数据块的长度为32个字节。 4、编程实现将单片机内部RAM30H为首地址的数据块传送到外部RAM2000H 开始的单元中,数据块的长度存放于内部RAM的20H单元。 5、编程实现将单片机外部RAM2000H为首地址的数据块传送到单片机内部RAM30H开始的单元中,直到数据内容为0DH时停止传送。 6、编程实现将ROM1000H地址的内容传送到内部RAM的25H单元。 7、编程实现将ROM2000H开始的连续10个地址的内容传送到内部RAM的25H 开始的单元。 8、编程实现将ROM1000H开始的连续100个地址的内容传送到外部RAM2000H 开始的连续单元中。 二、查表程序设计 1、编写查表程序,要查表的数据存放在R7中,其范围为0~9。编程查其平方值,并存放于40H。 2、编写查表程序,要查表的数据存放在R7中,其范围为0~9。编程查其立方值,并存放于R6。 3、单片机外部ROM TAB1地址开始存放一组ASCII码表,试用查表方法,将R2的内容(范围为0~F)转换为与其对应 的ASCII码,并从P1口输出。 4、使用8051的P1口作为段控驱动共阳 LED数码管,硬件连接如图。 编程实现将8051 R7单元内容(在 00H-09H之间)显示在数码管上。00H-09H 的共阳字形代码如下表所示。 04H 05H 06H 07H 08H 09H

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

微机原理 典型例题

[问题] 在MOV WORD PTR [0074H],55BBH指令的机器代码中,最后一个字节是 (难度系数:3) [选择答案] A. 00H B. 74H C. 55H D. BBH [正确答案] C [问题] 由于CPU内部的操作速度较快,而CPU访问一次主存所花的时间较长,因此机器周期通常用_____来规定 (难度系数:3) [选择答案] A. 主存中读取一个指令字的最短时间 B. 主存中读取一个数据字的最长时间 C. 主存中写入一个数据字的平均时间 D. 主存中取一个数据字的平均时间 [正确答案] A [问题] 程序控制类指令的功能是_____

(难度系数:3) [选择答案] A. 进行算术运算和逻辑运算 B. 进行主存与CPU之间的数据传送 C. 进行CPU和I/O设备之间的数据传送 D. 改变程序执行的顺序 [正确答案] D [问题] 虚拟存贮器的主要目的是_____ (难度系数:3) [选择答案] A. 提高主存贮器的存取速度 B. 扩大主存贮器的存贮空间,并能进行自动管理和调度 C. 提高外存贮器的存取速度 D. 扩大外存贮器的存贮空间 [正确答案] B [问题] 位操作类指令的功能是______ (难度系数:3) [选择答案] A. 对CPU内部通用寄存器或主存某一单元任一位进行状态检测(0或1) B. 对CPU内部通用寄存器或主存某一单元任一位进行状态强置(0或1)

C. 对CPU内部通用寄存器或主存某一单元任一位进行状态检测或强置 D. 进行移位操作 [正确答案] C [问题] 在微型机系统中,外围设备通过____与主板的系统总线相连接(难度系数:3) [选择答案] A. 适配器 B. 设备控制器 C. 计数器 D. 寄存器 [正确答案] A [问题] 系统总线中地址线的功能是______ (难度系数:3) [选择答案] A. 选择主存单元地址 B. 选择进行信息传输的设备 C. 选择外存地址 D. 指定主存和I/O设备接口电路的地址 [正确答案]

高中天体运动必备基础知识及例题讲解

授课主题 万有引力与重力的关系 教学目的 理解万有引力与重力之间的关系及会运用知识解此类问题 授课日期及时段 2013.04.06 ;3课时 教学内容 一, 本周错题讲解 二, 知识归纳 .考点梳理 (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2).估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2 3 24Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题

表面重力加速度g 0,由02GMm mg R = 得:02GM g R = 轨道重力加速度g ,由 2()GMm mg R h =+ 得:2 2 0()()GM R g g R h R h ==++ (4)卫星的绕行速度、角速度、周期与半径的关系 (1)由Gr v m r Mm 22=得:v=r GM . 即轨道半径越大,绕行速度越小 (2)由G 2 r Mm =mω2 r得:ω=3r GM 即轨道半径越大,绕行角速度越小 (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G 2 224()Mm m R h T π=+(R+h) 得: 2 3 2 4h R GMT π=-=3.6×104km=5.6R R表示地球半径 三.热身训练 1.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比 C .火星和地球到太阳的距离之比 D .火星和地球绕太阳运动速度之比 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <

汇编语言程序例题0001

【例】试编写一程序计算以下表达式的值。 w = (v- (x * y + z -540 )) /x 式中x、y、z、v均为有符号字数据。 设x、y、z、v的值存放在字变量X、Y、Z、V中,结果存放在双字变量W之中,程序的流程图如图所示。 DATA SEGMENT X DW 200 Y DW 100 Z DW 3000 V DW 10000 W DW 2 DUP (?) DATA ENDS STACK SEGMENT STACK DB 200 DUP (0) STACK ENDS CODESEGMENT ASSUME DS DATA CS: CODE SS: STACK START MOV AX DATA MOV DS AX ; DATA>AX MOV AX X IMUL Y ; (X) * (DX AX MOV CX AX

MOV BX,DX ;(DX AX) T BX : CX ) MOV AX,Z CWD ; (Z)符号扩展 ADD CX,AX ADC BX,DX ; ( BX: CX)+( DX:AX)BX: CX) SUB CX,540 SBB BX,0 ;( BX:CX) - 5 40~BX : CX) MOV AX,V CWD ; (V)符号扩展 SUB AX,CX SBB DX, BX ;( DX: AX)-((BX CX DX: AX) IDIV X ;( DX:AX)/X MOV W,AX ;商5 MOV W+2 DX ;余数D?W+2 MOV AH,4CH INT 21H CODEENDS ;退出DOS 状态 END START 【例】已知某班学生的英语成绩按学号(从 1 开始)从小到大的顺序排列在要查的学 生的学号放在变量NO中,查表结果放在变量ENGLISH中。编写程序如下: STACK SEGMENT STACK DB 200 DUP(0) STACK ENDS DATA SEGMENT TAB DB 80 ,85,86,71,79,96 DB 83 ,56,32,66,78,84 NO DB 10 ENGLIST DB ? DATA ENDS CODE SEGMENT ASSUME DS: DATA,SS: STACK,CS: CODE BEGIN: MOV AX,DATA MOV DS,AX LEA BX,TAB MOV AL,NO DEL AL XLAT TAB MOV ENGLIS,H AL MOV AH,4CH INT 21H CODEENDS TAB表中,

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

汇编语言程序设计练习题

汇编语言程序设计练习题 阅读程序并完成填空: 1.1.MOV BL,85H MOV AL,17H ADD AL,BL AL=?,BL=?,CF=? 2.2.MOV AX,BX NOT AX ADD AX,BX INC AX AX=?,CF=? 3.3.MOV AX,0FF60H STC MOV DX,96 XOR DH,0FFH SBB AX,DX AX=?,CF=? 4.4.MOV BX,0FFFEH MOV CL,2 SAR BX,CL 5.5.MOV BX,0FFH AND BX,0FFFH OR BX,0F0FH XOR BX,00FFH 上述程序段运行后,BX=?,CF=? 6.6.CMP AX,BX JGE NEXT XCHG AX,BX NEXT:CMP AX,CX JGE DONE XCHG AX,CX DONE:。。。。。 试回答: (1)(1)上述程序段执行后,原有AX、BX、CX中最大数存放在哪个寄存器中? (2)(2)这3个数是带符号数还是无符号数?

7.7.在数据段ADDR1地址处有200个字节,要传送到数据段ADDR2处。 MOV AX,SEG ADDR1 MOV DS,AX MOV ES,------- MOV SI,------- MOV DI,OFFSET ADDR2 MOV-----,200 CLD REP--------- 8.8.ADDR1开始的单元中连续存放两个双字数据,将其求和存放在ADDR2开始的单元。 MOV CX,2 XOR BX,BX CLC NEXT:MOV AX,[ADDR1+BX] ADC AX,------- MOV[ADDR2+BX],AX ADD--------,2 ---------NEXT 9.9.设初值AX=1234H,BX=5678H,DX=0ABCDH,则执行下面一段程序后AX=------,BX=----,DX=--------。 MOV CL,4 SHL DX,CL MOV BL,AH SHL AX,CL SHR BL,CL OR DL,BL 10.10.设有一个首地址为ARRAY有N个字数据的数组,要求求出该数组之和,并把结果存入TOTAL地址中,有关程序如下:MOV CX,------ MOV AX,0 MOV SI,0 START:ADD AX,-----

高一物理曲线运动重难点解析及典型例题

第五章 曲线运动 第五节 圆周运动 第六节 向心加速度 二. 知识要点: 1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。理解匀速圆周运动是变速运动。 2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。能够运用向心加速度公式求解有关问题。 3. 运用极限法理解线速度的瞬时性。掌握运用圆周运动的特点如何去分析有关问题。体会有了线速度后。为什么还要引入角速度。运用数学知识推导角速度的单位。 三. 重难点解析: 1. 线速度 (1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。它描述质点沿圆周运动的快慢。 (2)大小: t l v ??= 单位:m/s (3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。 2. 匀速圆周运动 (1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。 (2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。 3. 角速度 (1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。描述质点转过圆心角的快慢。匀速圆周运动是角速度不变的圆周运动。 (2)大小: t ??= θω,单位:rad /s 4. 周期T 、频率f 和转速n 定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。 做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。1 Hz=11 -S 。 做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。用n 表示,单位为转每秒(r /s ),或转每分(r /min )。 周期频率和转速都是描述物体做圆周运动快慢的物理量。 5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。 v= rω。 (2)线速度与周期的关系。 T r v π2= 。 (3)角速度与周期的关系。

汇编语言例子

实验三: 1)题目:在内存中从ARRAY开始的连续三个字节单元存放着30H,40H,50H。编制程序将这三个连续的数据传送到内存TABLE开始的单元。 DATA SEGMENT ARRAY DB 30H,40H,50H 定义数据段 TABLE DB 3 DUP (?) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV ES,AX LEA SI,ARRAY LEA DI,TABLE MOV CX,3 REP MOVSB JMP $ CODE ENDS END START (2)题目:把内存2000H和3000H字单元的内容相加,结果存入4000H单元。(不考虑溢出) DATA SEGMENT ORG 2000H DW 1234H ORG 3000H DW 5678H ORG 4000H DW ? DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV AX,[2000H] ADD AX,[3000H] MOV [4000H],AX JMP $ CODE ENDS END START 实验四 1、数据传送指令和算术运算指令完成NUM1和NUM2相加,结果放入SUM中。

DATA SEGMENT NUM1 DW 0012H,0030H,0FC21H ; 数1 NUM2 DW 3E81H,44E9H,6D70H ; 数2 SUM D W 3 DUP(?) ; 结果单元 DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START: MOV AX, DATA MOV DS, AX MOV CX,3 LEA SI,NUM1 LEA DI,NUM2 LEA AX,SUM HE: MOV BX,[SI] ADD BX,[DI] MOV [AX],BX INC SI INC DI INC AX LOOP HE MOV AH, 4CH ; 返回DOS INT 21H CODE ENDS END START 2、内存中自TABLE开始的七个单元连续存放着自然数0至6的立方值(称作立方表)。;任给一数X(0≤X≤6)在XX单元,查表求X的立方值,并把结果存入YY单元中。;提示用XLAT指令 DATA SEGMENT TABLE DB 0H,1H,2H,3H,4H,5H,6H XX DB 1 DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX LEA BX,TABLE MOV AL,[XX] XLAT MOV DL,AL MOV AH,02H INT 21H JMP $

相关文档
最新文档