四川大学自动装置实验报告

四川大学自动装置实验报告
四川大学自动装置实验报告

自动装置实验报告实验项目同步发电机并车实验

同步发电机励磁控制实验学院电气信息学院

任课老师肖先勇

班级103

姓名

学号

同步发电机并车实验

一、实验目的

1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;

2.掌握微机准同期控制器及模拟式综合整步表的使用方法;

3.熟悉同步发电机准同期并列过程;

4.观察、分析有关波形。

二、原理与说明

将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。

正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。

手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。

三、实验项目和方法

(一)机组启动与建压

1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)

和功率角(右)。调速器上“并网”灯和“微机故障”灯均为熄灭状态,“输出零”灯亮;3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮;

4.励磁调节器选择它励、恒UF运行方式,合上励磁开关;

5.把实验台上“同期方式”开关置“断开”位置;

6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V;

7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速;

8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。(二)观察与分析

1.操作调速器上的增速或减速按钮调整机组转速,记录微机准同期控制器显示的发电机和系统频率。观察并记录旋转灯光整步表上灯光旋转方向及旋转速度与频差方向及频差大小的对应关系;观察并记录不同频差方向,不同频差大小时的模拟式整步表的指针旋转方向及旋转速度、频率平衡表指针的偏转方向及偏转角度的大小的对应关系;

2.操作励磁调节器上的增磁或减磁按钮调节发电机端电压,观察并记录不同电压差方向、不同电压差大小时的模拟式电压平衡表指针的偏转方向和偏转角度的大小的对应关系;

3.调节转速和电压,观察并记录微机准同期控制器的频差闭锁、压差闭锁、相差闭锁灯亮熄规律;

4.将示波器跨接在“发电机电压”测孔与“系统电压”测孔间,观察正弦整步电压(即脉动电压)波形,观察并记录整步表旋转速度与正弦整步电压的周期的关系;观察并记录电压幅值差大小与正弦整步电压最小幅值间的关系;观察并记录正弦整步电压幅值达到最小值得时刻所对应的整步表指针位置和灯光位置;

5.用示波器跨接到“三角波”测孔与“参考地”测孔之间,观察线性整步电压(即三角波)的波形,观察并记录整步表旋转速度与线性整步电压的周期的关系;观察并记录电压幅值差大小与线性整步电压最小幅值间的关系;观察并记录线性整步电压幅值达到最小值得时刻所对应的整步表指针位置和灯光位置。

(三)全自动准同期

将“同期方式”转换开关置“全自动”位置;按下准同期控制器的“同期”按钮,同期命令指示灯亮,微机正常灯闪烁加快,此时,微机准同期控制器将自动进行均压、均频控制并检测合闸条件,一旦合闸条件满足即发出合闸命令。

在全自动过程中,观察当“升速”或“降速”命令指示灯亮时,调速器上有什么反应;

当“升压”或“降压”命令指示灯亮时,微机励磁调节器上有什么反应。当一次合闸过程完毕,控制器会自动解除合闸命令,避免二次合闸;此时同期命令指示灯熄,微机正常灯恢复正常闪烁。

实验波形图

1.正弦整步电压(即脉动电压)波形

2.线性整步电压(即三角波)的波

3.脉冲电压波形

(四)停机

当同步发电机与系统解列之后,按调速器的“停机/开机”按钮使“停机”灯亮,即可自动停机,当机组转速降到85%以下时,微机励磁调节器自动逆变灭磁。待机组停稳后断开原动机开关,跳开励磁开关以及线路和无穷大电源开关。

切断操作电源开关。

四、分析

1.分析合闸冲击电流的大小与哪些因素有关?

合闸冲击电流产生的根本原因是由于合闸时并列点两侧的电压的瞬时值不等。因此影响合闸冲击电流大小的因素有:①并列点两侧电压幅值;②合闸时并列点两侧打压的电压差;

③合闸点两侧电压频率差。

2.分析正弦整步电压波形的变化规律?

正弦整步电压是并列点两侧电压差按滑差角频率周期性变化的正弦包络线。其幅值是并

列点两侧电压幅值之和,角频率是两侧电压角频率之差。

五、思考题

1.相序不对(如系统侧相序为A、B、C、为发电机侧相序为A、C、B),能否并列?为什么?

答:不能并列,因为相序不对时,并列点三相中至多只有一相保证相位相同,而其余两相存在着较大的相位差,并列时会产生较大的冲击电流。

2.电压互感器的极性如果有一侧(系统侧或发电机侧)接反,会有何结果?

答:在使用自动准同期并列装置时,如果电压互感器的极性如果有一侧接反,根据自动准同期装置要在变压器二次侧电压差不多同相位时才会合闸,此时并列点两侧电压的实际相位差是接近180°,故在并列时会产生很大的冲击电流而使发电机损坏。

3.准同期并列与自同期并列,在本质上有何差别?如果在这套机组上实验自同期并列,应如何操作?

答:准同期与自同期并列的本质差别是准同期需要检测同期条件,而自同期不需要。

首先要将励磁开关关掉,将发电机转速调至同步转速附近,然后将发电机与电网并列,最后给发电机加励磁。

4.合闸冲击电流的大小与哪些因素有关?频率差变化或电压差变化时,正弦整步电压的变化规律如何?

答:合闸冲击电流的大小和并列点两侧电压差、并列点两侧频率差以及并列点两侧相位差有关。频率差变化时,正弦整步电压的滑差频率将变化。电压差变化时,正弦整步电压的幅值变化。

5.当两侧频率几乎相等,电压差也在允许范围内,但合闸命令迟迟不能发出,这是一种什么现象?应采取什么措施解决?

答:这是存在合闸相角差的现象,其原因是由于滑差角频率很小,滑差周期时间很大,两侧电压的相角差到达允许范围用时较长。可以通过对发电机频率进行微调,稍微加大滑差角频率来解决。

实验心得:

首先感谢老师的悉心指导,我们才能顺利的完成本次实验。本实验加深了我对同步发电机准同期并列原理的理解,让我初步掌握了准同期并列条件和微机准同期控制器及模拟式综合整步表的使用方法,使我熟悉了同步发电机准同期并列过程。通过实验,我的实践能力得到了很大的提升,加深了我对同步发电机并车的认识,使我对所学知识有了更深的理解,对我以后的进一步学习有很大帮助。

同步发电机励磁控制实验

一、实验目的

1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;

2.了解自并励励磁方式和它励励磁方式的特点;

3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;

4.了解微机励磁调节器的基本控制方式;

5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;

6.了解几种常用励磁限制器的作用;

7.掌握励磁调节器的基本使用方法。

二、原理与说明

同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。

图1 励磁控制系统示意图

实验用的励磁控制系统示意图如图1所示。可供选择的励磁方式有两种:自并励和它励。当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。

电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。

三、实验项目和方法

1.不同α角(控制角)对应的励磁电压波形观测

(1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;

(2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器面板“它励”指示灯亮;

(3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面板上的“恒α”指示灯亮;

(4)合上励磁开关,合上原动机开关;

(5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。

注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需要调节,则松开按钮,重新按下。

实验时,调节励磁电流为表1规定的若干值,记下对应的α角(调节器对应的显示参数为“CC”),同时通过接在Ud+、Ud-之间的示波器观测全控桥输出电压波形,并由电压波形估算出α角,另外利用数字万用表测出电压Ufd和U AC,将以上数据记入下表,通过Ufd,U AC和数学公式也可计算出一个α角来;完成此表后,比较三种途径得出的α角有无不同,分析其原因。

表1 励磁电流Ifd

0.0A 0.5A 1.5A

2.5A 显示控制角α(°)

90 84.7 75.6 64.3 励磁电压Ufd (V )

0 9.5 27 43 交流输入电压U AC

(V )

420 420 420 420

由公式计算的α

(°)

90 85.1 76.0 65.2 示波器读出的α

(°) 90 84.5 75.4 63.8

实验波形图

α=64.3°

α=75.6°

α=84.7°

α=90°

2.停机灭磁

发电机解列后,直接控制调速器停机,励磁调节器在转速下降到43HZ以下时自动进行逆变灭磁。待机组停稳,断开原动机开关,跳开励磁和线路等开关,切除操作电源总开关。

四、分析

1.分析比较各种励磁方式和各种控制方式对电力系统安全运行的影响;

答:自并励:

(1)运行可靠性高。自并励励磁系统为静态励磁,与励磁机系统相比,由于没有旋转部件,运行可靠性高。国内外统计资料表明,自并励励磁系统造成发电机强迫停机率低于励磁机励磁系统。

(2)能改善汽轮发电机机组的轴系稳定性。自并励励磁系统可缩短发电机组的轴系长度,减少轴承数量。如300MW及以上的汽轮发电机的轴系长度可减少大约3米,因而,可提高轴系的稳定性,改善轴系振动,从而提高了机组的安全运行水平。

(3)可提高电力系统稳定水平。在小干扰方面,自并励励磁系统配置PSS后,小干扰稳定水平较励磁机励磁系统有明显提高;在大干扰稳定方面,电力系统计算表明,自并励励

磁系统的暂态稳定水平与交流励磁机系统相近或略有提高。

(4)复合电压过流保护必须采用电流记忆;不易增加完全独立的手动励磁系统,不便于故障处理,非常重要。当靠近机端附近发生短路时机端电压明显下降从而影响强励的动作效果。

它励:

它励式励磁系统的优点是:系统容量可以做得很大,励磁机是交流发电机没有换向问题而且不受电网运行状态的影响。缺点是:接线复杂,有旋转的主励磁机和副励磁机,启动时还需要另外的直流电源向副励磁机供给励磁电流。

它励励磁系统是在发电站出口附近发生短路故障时,强励能力强,有利于提高系统的暂态稳定水平。

2.比较各项的实验数据,分析其产生的原因。

答:实验获得数据以及波形和理论值存在一定的误差,原因在于首先并网时的电压差、频率差以及相角差只是满足一定范围就会合闸,并不是完全一致,其次存在干扰的问题,以及仪器的精度,再者操作时存在一定的误操作。

五、思考题

1.三相可控桥对触发脉冲有什么要求?

答:六个晶闸管按顺序依次相隔60度触发,共阴极或共阳极的晶闸管依次相隔120度触发,同一相两极相隔180度触发。

2.为什么在恒α方式下,必须手动“增磁”才能起励建压?

答:选择恒α方式运行方式表示调节器开环运行,只有在它励方式下有效,因此只有通过手动增磁才能起励建压。

3.为什么在并网时不需要伏赫限制?

答:伏赫限制:时机组在解列运行时,确保伏赫比不超过规定的安全数值之外。机组在解列时,其端电压上升,频率下降。如果出现机端电压与频率的比值过高,磁通也随之边的过大,从而导致发电机与相连接的主变压器的铁心出现饱和,使空载励磁电流加大,损耗增加,造成铁心过热。无功功率过剩限制:无功功率过剩限制:也称为定子过流限制。发电机超出容量极限运行时,会使定子绕组过流而过度发热。无功功率过剩限制在并网时投入,解列时退出,延时动作,瞬时复归。主要是避开电力系统短路时的强励时间,以保证强励的正常运行。在并网时只需满足电压相等、频率相等、相位相同就可以了。

实验心得:

首先感谢老师的悉心指导,我们才能顺利的完成本次实验。本实验加强了我的实践能力,丰富了我的理论知识,使我对同步发电机励磁控制系统有了初步的认识。通过实验,我更深刻地理解了同步发电机励磁调节原理和励磁控制系统的基本任务,也了解了自并励励磁方式和它励励磁方式的特点和微机励磁调节器的基本控制方式以及电力系统稳定器的作用和几种常用励磁限制器的作用,还初步掌握了励磁调节器的基本使用方法。这次实验让我们把理论和实践结合起来,加深了我对所学理论知识的理解,让我能更好地将理论知识应用于实践当中,为我今后的学习和工作奠定了基础。

液面自动控制装置

液位自动控制装置 摘要 本系统采用分布式微机控制系统,通过测量传感器的信号频率来获取液面高度。系统采用主从式结构,主站和从站都采用以“8051系列单片机+电容式液面高度传感器”模式。并通过电磁阀来调整液面高度,构成了一个闭环控制系统。可通过键盘设定所需液面高度,范围为0~25cm,误差不超过±0.3 cm。并可实时显示当前液位高度和瓶内液体重量以及阀门状态。当液面超过25cm或液位低于2cm时,可进行声光报警。 主从站之间通过RS232C总线构成串行通讯星型网络。主站可对8个从站进行定点或巡回监测,查询各从站的实时状态,并可显示其从站传输过来的从站号和液位讯息,并可控制从站液位。并且在巡回检测时,主站能任意设定要查询的从站数量、从站号和各从站的液位讯息。当收到从站发来的报警信号后,能声光报警并显示相应的从站号,可自动调整从站液位为20cm。从站能够输出从站号、液位讯息和报警信号,并且能对主站设定的液位控制信息相应。 该系统布局合理,运行平稳,控制精度较高,完全达到了题目基本部分的要求,并基本实现了发挥部分要求。 一、总体方案的设计 1、主站的整体设计: 以单片机为控制核心,通过液位传感器实时获取储液瓶B的液面高度,并通过显示器实时显示液面高度、重量。当键盘有输入时,单片机根据键盘输入的功能要求,单片机通过控制电磁阀1、2来提升或降低液面高度达到设定值,根据题意整体规划主站的系统如图(1) 图(1) 2、主站和从站整体设计 主从站之间通过RS232C总线构成串行通讯网络,主站定期查询液面信息,并对液面信息进行控制。

图(2) 二、系统模块的确定和设计 分析题目要求,系统为一个主从式测控系统。由通讯网络把主站和多个从站连成一个系统。通讯网络可采用RS232C 等接口组成。液位监测与控制装置的功能可有多种方案实现,但一般都都由控制单元、执行机构和检测单元单元三部分组成。 下面具体论述一下液位监测与控制装置的各个部分模块的方案确定和设计。 1、检测元件的选择 (1)传感器的选择 检测液面高度有多种元件可选,如超声波传感器和电容传感器等。 方案—:使用超声波传感器。超声波具有不受被测液体的浓度和导电性能影响的特性,因此精度比较高,但价格比较贵。 方案二:使用电容式传感器。电容式传感器在测量高频信号时,精度较高。但要求液位 变化速度较为缓慢,而且距离不能太远,本题采用的进出水管较细,进出水速度合适,由于只要求测量范围最大为0~25cm ,距离较小,此传感器正好符合条件,而且该传感器比较经济,考虑到液体流速和测量范围、精度以及价格,故从实用性和经济性角度考虑选择电容式传感器。 我们选择第二种方案,由于采用了电容式传感器,所以我们需要对电容信号进行采集。 (2)电容信号采集方案的选择和设计 方案—:将电容信号转换为电压信号。由于输出电压信号比较微弱,采用该方案时,采集信号的灵敏度不高,误差一般较大,难以控制,而且电压信号要通过A/D 转换后才能被单片机处理,比较复杂。原理图如图(3)所示: 图(3) 方案二:将电容信号转换为频率信号。压感电容传感器对由液面高度变化引起的水压变化的检测灵敏比较高,对由于液位高度的变化而引起的水压的微小变化,通过传感器中的压控电容的变化,得到的输出的信号的频率变化非常明显。我们通过采集信号的频率就能得出对应的液位的高度,从而通过控制单片机,来进行设置所对应的液面的频率就能对所要求的高度进行任意控制,这样的系统能满足题目所要求的基本要求。 综合考虑我们选择第二个方案,接着我们需要考虑如何将电容信号转换为频率信号。 (3)电容信号处理方案

自动控制原理实验报告 线性系统串联校正

武汉工程大学实验报告 专业自动化班号 组别指导教师陈艳菲姓名同组者

三、实验结果分析 1.开环传递函数为) 1(4 )(+= s s s G 的系统的分析及其串联超前校正: (1)取K=20,绘制原系统的Bode 图: 源程序代码及Bode 图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; 运行结果: ans = Inf 12.7580 Inf 4.4165 分析: 由结果可知,原系统相角裕度r=12.75800,c ω=4.4165rad/s ,不满足指标要求, 系统的Bode 图如上图所示。考虑采用串联超前校正装置,以增加系统的相角裕度。 确定串联装置所需要增加的超前相位角及求得的校正装置参数。 ),5,,45(0000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ m m ??αsin 1sin 1-+= 将校正装置的最大超前角处的频率 作为校正后系统的剪切频率 。则有: α ωωω1)(0)()(lg 2000=?=c c c c j G j G j G 即原系统幅频特性幅值等于 时的频率,选为c ω。 根据m ω=c ω ,求出校正装置的参数T 。即α ωc T 1 = 。 (2)系统的串联超前校正:

源程序代码及Bode图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; e=5; r=50; r0=pm1; phic=(r-r0+e)*pi/180; alpha=(1+sin(phic))/(1-sin(phic)); [il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:'); printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0']); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)'); title(['校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0']); 运行结果: ans = Inf 12.7580 Inf 4.4165 num/den = 0.31815 s + 1

网络管理实验报告

实验1:W i n d o w2003S N M P服务配置 1.掌握简单网络管理协议的操作知识 (SNMP网络管理模型,抽象语法表示(ASN.1),管理信息结构(SMI),常用的管理信息(MIB)。SNMP协议数据格式与工作模式,网络管理系统) 2.收集在网络上实现SNMP所必需信息 (1)一个典型的网络管理系统包括四个要素:管理员、管理代理、管理信息数据库、代理服务设备。一般说来,前三个要素是必需的,第四个只是可选项。 (2)网络管理软件的重要功能之一,就是协助网络管理员完成管理整个网络的工作。网络管理软件要求管理代理定期收集重要的设备信息,收集到的信息将用于确定独立的网络设备、部分网络、或整个网络运行的状态是否正常。管理员应该定期查询管理代理收集到的有关主机运转状态、配置及性能等的信息。? 网络管理代理是驻留在网络设备中的软件模块,这里的设备可以是UNIX工作站、网络打印机,也可以是其它的网络设备。管理代理软件可以获得本地设备的运转状态、设备特性、系统配置等相关信息。管理代理软件就象是每个被管理设备的信息经纪人,它们完成网络管理员布置的采集信息的任务。管理代理软件所起的作用是,充当管理系统与管理代理软件驻留设备之间的中介,通过控制设备的管理信息数据库(MIB)中的信息来管理该设备。管理代理软件可以把网络管理员发出的命令按照标准的网络格式进行转化,收集所需的信息,之后返回正确的响应。在某些情况下,管理员也可以通过设置某个MIB对象来命令系统进行某种操作。 路由器、交换器、集线器等许多网络设备的管理代理软件一般是由原网络设备制造商提供的,它可以作为底层系统的一部分、也可以作为可选的升级模块。设备厂商决定他们的管 理代理软件可以控制哪些MIB对象,哪些对象可以反映管理代理软件开发者感兴趣的问题。 (3)管理信息数据库(MIB)定义了一种数据对象,它可以被网络管理系统控制。MIB是一个信息存储库,这里包括了数千个数据对象,网络管理员可以通过直接控制这些数据对象去控制、配置或监控网络设备。网络管理系统可以通过网络管理代理软件来控制MIB数据对象。不管到底有多少个MIB

自动控制系统组成

自动控制系统的组成及功能实现 自动控制系统作为目前工业领域控制的核心,已经为大家所熟悉。自动控制系统是指在无人直接参与下可使生产过程或其他过程按期望规律或预定程序进行的控制系统。自动控制系统是实现自动化的主要手段,其组建了整个系统的大脑及神经网络。自动控制系统的组成一般包括控制器,被控对象,执行机构和变送器四个环节组成。 一、自动控制系统的分类 自动控制系统按控制原理主要分为开环控制系统和闭环控制系统。 (一)开环控制系统 在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。 (二)闭环控制系统 闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。闭环控制系统又称反馈控制系统。 自动控制系统按给定信号分类,可分为恒值控制系统、随动控制系统和程序控制系统。(三)恒值控制系统 给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。如生产过程中的温度、压力、流量、液位高度、电动机转速等自动控制系统属于恒值系统。 (四)随动控制系统 给定值按未知时间函数变化,要求输出跟随给定值的变化。如跟随卫星的雷达天线系统。(五)程序控制系统 给定值按一定时间函数变化。如程控机床。 在我们的工业领域中,因控制的工艺流程复杂、生产数多、对产品质量控制严格,所以一般控制系统均为闭环控制系统。 二、控制系统各部分的功能 (一)控制器 目前控制系统的控制器主要包括PLC、DCS、FCS等主控制系统。在底层应用最多的就是PLC控制系统,一般大中型控制系统中要求分散控制、集中管理的场合就会采用DCS 控制系统,FCS系统主要应用在大型系统中,它也是21世纪最具发展潜力的现场总线控制系

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

四川大学电分实验报告

四川大学电气信息学院 实验报告书课程名称:电力系统分析 实验项目:单机—无穷大系统稳态运行实验与电力系统暂态稳定实验专业班级:电气工程及其自动化专业09303015 班级实验时间:2011年12月12日星期一 评阅老师: 成绩评定: 报告撰写人:张骏安学号:0943031056 电气信息学院专业中心实验室

单机—无穷大系统稳态运行实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验电路图 四、实验项目和方法 (1)单回路稳态对称运行实验 ①合上EAL-02 上的状态开关QF2、QF6、QF4、QFS,使系统运行在单回路状态下; ②按照实验十进行启机、建压、并网; ③通过调速器中的“加速”“减速”按钮改变原动机功率,通过励磁调节器中“增磁”、

软件工程实验报告

软件工程实验报告 姓名:冯巧 学号 实验题目:实验室设备管理系统 1、系统简介: 每天对实验室设备使用情况进行统计,对于已彻底损坏的作报废处理,同时详细记录有关信息。对于有严重问题(故障)的要即时修理,并记录修理日期、设备名、修理厂家、修理费用、责任人等。对于急需但又缺少的设备需以“申请表”的形式送交上级领导请求批准购买。新设备购入后立即对新设备登记(包括类别、设备名、型号、规格、单价、数量、购置日期、生产厂家、购买人等),同时更新申请表的内容。 2、技术要求及限定条件: 采用C#语言设计桌面应用程序,同时与数据库MySql进行交互。系统对硬件的要求低,不需要网络支持,在单机环境下也能运行,在局域网环境下也能使用。方案实施相对容易,成本低,工期短。 一:可行性分析 1、技术可行性分析 计算机硬件设备,数据库,实验室设备管理软件与实验室设备管理系统的操作人员组成,能够实现实验室设备管理的信息化,提高工作效率,实现现代化的实验室设备管理。系统需要满足实验室设备管理(包括对实验设备的报废、维修和新设备的购买)、实验室设备信息查询(包括按类别进行查询和按时间进行查询)、实验室设备信息统计报表(包括对已报废设备的统计、申请新设备购买的统计和现有设备的统计)。这些功能框图如下图所示: 2、经济可行性分析 依据用户的现实需求、技术现状、经济条件、工期以及其他局限性因素等等因素,考虑到工期的长短、技术的成熟可靠、操作方便等因素,本方案具备经济可行性。

3、系统可选择的开发方案 ①方案A用C#开发系统的特点是:开发工具与数据库集成一体,可视化,开发速度较快,但数据库能够管理的数据规模相对较小。系统对硬件的要求低,不需要网络支持,在单机环境下也能运行,在局域网环境下也能使用。方案的实施相对容易,成本低,工期短。 ②方案B:以小型数据库管理系统为后台数据库,该前台操作与数据库分离,也能够实现多层应用系统。系统对硬件的要求居中,特别适合在网络环境下使用,操作方便。但系统得实现最复杂,成本最高,工期也较长。 二:软件需求分析 1.软件系统需求基本描述: 实验室设备管理系统是现代企业资源管理中的一个重要内容,也是资源开发利用的基础性工作。实验室设备在信息化之前,在用户系统管理、设备维修管理、设备的增删改查管理等方面存在诸多不利于管理的地方,不适应现代的企业管理形势和资源的开发利用。 2.软件系统数据流图(由加工、数据流、文件、源点和终点四种元素组成): 1)顶层数据流图 2)二层流程图 3)总数据流图

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

实验室设备管理系统实验报告1讲解

本科实验报告 课程名称:软件工程导论 实验项目:实验室设备管理系统 实验地点:实验楼210 专业班级:软件1319 学号:2013005655 学生姓名:张卫东 指导教师:王会青 2015年05 月21 日

一、实验目的和要求 1.系统简介 某大学每学年都需要对实验室设备使用情况进行统计、更新。 其中: (1)对于已彻底损坏的实验设备做报废处理,同时详细记录有关信息。 (2)对于有严重问题(故障)的需要及时修理,并记录修理日期、设备名、编号、修理厂家、修理费用、责任人等。 (3)对于急需使用但实验室目前又缺乏的设备,需以“申请表”的形式送交上级领导请求批准购买。新设备购入后要立即进行设备登记(包括类别、设备名、编号、 型号、规格、单价、数量、购置日期、生产厂家、保质期和经办人等信息),同 时更新申请表的内容。 (4)随时对现有设备及其修理、报废情况进行统计、查询,要求能够按类别和时间段等条件进行查询。 2.技术要求及限制条件 (1)所有工作由专门人员负责完成,其他人不得任意使用。 (2)每件设备在做入库登记时均由系统按类别加自动顺序号编号,形成设备号;设备报废时要及时修改相应的设备记录,且有领导认可。 (3)本系统的数据存储至少包括:设备记录、修理记录、报废记录、申请购买记录。 (4)本系统的输入项至少包括:新设备信息、修理信息、申请购买信息、具体查询统计要求。 (5)本系统的输出项至少包括:设备购买申请表、修理/报废设备资金统计表。 二、实验内容和原理 可行性分析报告 可行性研究主要是初步确定项目的规模和目标,确定项目的约束和限制。对于项目的功能和性能方面的要求进行简要的概述。详见组长田彦博的实验报告。 需求规格说明书 需求规格说明书主要是进一步定制实验室设备管理系统软件开发的细节问题,便于用户与开发商协调工作。在此主要绘制了系统的数据流图、相应的数据字典、E-R图、以及系统的功能图,对于各个方面的需求进行了详细的阐述。详见组长田彦博的实验报告。 概要设计说明书 概要设计说明书是为了说明整个实验室设备管理系统的体系架构,以及需求用例的各个功能点在架构中的体现。在此主要绘制了系统流程图、总体结构和模块的外部设计,而且对于数据库中逻辑结构方面也进行了详细的设计。详见组长田彦博的实验报告。

通信原理实验大全(完整版)

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验???????? 1 实验二FM调制与解调实验??????????? 5 实验三ASK调制与解调实验????????? 8 实验四FSK调制与解调实验?????????11 实验五时分复用数字基带传输?????? 14 实验六光纤传输实验??????????? 19 实验七模拟锁相环与载波同步???????? 27 实验八数字锁相环与位同步???????? 32

实验一AM 调制与解调实验 一、实验目的 理解 AM 调制方法与解调方法。 二、实验原理 本实验中 AM 调制方法:原始调制信号为 1.5V 直流+ 1KHZ 正弦交流信号,载波为20KHZ 正弦交流信号,两者通过相乘器实现调制过程。 本实验中 AM 解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面各图中。 4.结合上述实验结果深入理解 AM 调制方法与解调方法。

实验一参考结果

实验二FM 调制与解调实验 一、实验目的 理解 FM 调制方法与解调方法。 二、实验原理 本实验中 FM 调制方法:原始调制信号为 2KHZ 正弦交流信号,让其通过 V/F (电压 /频率转换,即 VCO 压控振荡器)实现调制过程。 本实验中 FM 解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面各图中。 4.结合上述实验结果深入理解 FM 调制方法与解调方法。

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

四川大学化工原理实验报告

竭诚为您提供优质文档/双击可除四川大学化工原理实验报告 篇一:xxxx学院化工原理实验报告 贵州理工学院化工原理实验报告 学院:化学工程学院专业:化工职教班级:化职131 篇二:化工原理实验报告张 资源与环境工程学院 精馏分离实训报告 姓名:张x 学号:xxxxxxxxx 专业:应用化工 班级:xxx 指导教师:张xx 20XX年12月 日24 目录 1.精馏实验 1.1精馏的原理

1.1.1精馏的分类 1.1.2精馏的计算方法 1.1. 2.1概述 1.1.3理论塔板数的计算方法 1.1.3.1图算法 1.1.3.2捷算法 1.1.3.3严格计算法 1.2实验目的 1.3实验原理 1.4实验材料 1.5实验过程 1.6实验结果 2.总结 1.精馏实验 精馏是一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。 1.1精馏的原理双组分混合液的分离是最简单的精馏操作。典型的精馏设备是连续精馏装置,包括精馏塔、再沸器、冷凝器等。精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔底,其余馏出液是塔顶产品。位于塔底的再沸器使液体部分

汽化,蒸气沿塔上升,余下的液体作为塔底产品。进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。当使n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。 精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。 1.1.1精馏的分类精馏操作按不同方法进行分类。根据操作方式,可分为连续精馏和间歇精馏;根据混合物的组分数,可分为二元精馏和多元精馏;根据是否在混合物中加入

数据库设备管理系统

郑州轻工业学院本科 数据库课程设计总结报告 设计题目:设备管理系统 学生姓名:xx 、xx 系别:计算机与通信工程学院 专业:计算机科学与技术 班级:计算机科学与技术10~01 学号:xx 指导教师:张保威金松河 2012 年12月30 日

郑州轻工业学院 课程设计任务书 题目设备管理系统 专业、班级计算机科学与技术10-1 学号 xx 姓名 xx 学号 xx 姓名 xx 主要内容: 了解设备管理的基本流程,根据构思活出E---R图。根据所化E---R图,对相应的试题和关系建立表格,实现数据的初始化。用SQL建立数据库表,然后再用其他软件建立界面(如此设备管理系统用的是C#实现界面),将建立好的界面同数据库进行链接,实现对数据库的简单的增删改查。 E-R图思路: 部门向设备处申请所需设备的数量及类型,设备处产生采购清单递交给采购员。 采购员从供应商获得设备存放在设备存放处,设备管理员将设备分配到需要设备的各个部门,部门将设备分给员工进行使用。 在使用设备的过程中,如果设备在保修期限内出现质量问题部门向设备处申请,设备退回供应商;如果设备损坏,由部门向维修人员报修;若无维修价值,则申请报废。 基本要求: 立足于科技日益发达,自动化组不占据主要市场,要求学生根据自己所学的数据库知识,建立简单的数据库实现对设备管理的机械化,自动化。 1:能够数量掌握SQL; 2:能够运用其他辅助工具做图形界面。 3:能够实现对C#和数据库的链接。 4:作出的系统能够对数据库进行简单的增删改查。 5:通过机械化,自动化工具的使用,提高工作效率、准确率。 主要参考资料等: 《数据库系统概论》作者:王珊萨师煊出版社:高等教育出版社 《数据库系统概论》课堂课件。 完成期限:两周 指导教师签名: 课程负责人签名: 2012年 12月 30 日

电力系统自动控制装置(平时作业)

电力系统自动控制装置 白太:刘万炮 1.AAT装置有哪两部分组成?各有什么作用? 答:AAT装置由低压起动和自动合闸两部分组成。低压起动部分的作用是:当母线因各种原因失去电压时,断开工作电源。自动合闸部分的作用是:在工作电源断路器断开后,将备用电源断路器投入。 2、简述AAT装置明备用和暗备用的含义。(掌握明备用和暗备用的典型一次接线图) 答:明备用是指两路电源变压器其中一台工作运行,而另一台备用。两台变压器的容量都是按计算负荷100%确定的。暗备用是指两台变压器都工作,两路电源变压器容量都是按计算负荷一、二级负荷确定,在供电系统中变压器容量占全部计算负荷的70%,而工业则是40%。 简而言之就是:系统正常运行时,备用电源不工作,称为明备用;系统正常运行时,备用电源同时投入运行的,称为暗备用,暗备用实际上是两个工作电源的互为备用。 备用电源自动投入装置:当线路或用电设备发生故障时,能够自动迅速、准确的把备用电源投入用电设备中或把设备切换到备用电源上,不至于让用户断电的一种装置,简称APD。 3、什么是重合闸前加速保护?什么是重合闸后加速保护?各具有什么优点?

答:(1).重合闸前加速:重合闸前加速保护方式一般用于具有几段串联的辐射形线路中,重合闸装置仅装在靠近电源的一段线路上。当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作于跳闸,而后再靠重合闸来纠正这种非选择性动作。前加速的优点就是能快速切除故障,提高重合成功率,使用设备少,只需装设一套重合闸装置,经济性好。缺点是重合于永久性故障时切除时间可能过长,断路器动作次数较多,工作条件恶劣。主要适合35kV及以下线路。(2).重合闸后加速:重合闸后加速是检定同期重合闸是当线路一侧专无压重合后,另一侧在两端的频率不超过属一定允许值的情况下才进行重合的。 4、双电源线路上采用自动重合闸装置时,需要考虑哪些特殊问题?为什么? 答:(1)需要考虑故障点的断电时间问题。因为当线路发生故障时,线路两侧的继电保护可能以不同的时限跳开两侧断路器,这两种情况下只有两侧的断路器都跳开后,故障点才完全断电,所以重合闸应加较长的延时。 (2)同步问题。因为当线路发生故障,两侧断路器跳闸后,线路两侧电源之前电动势夹角摆开,甚至有可能失去同步,所以,后重合侧重合时应考虑是否允许非同步合闸和进行同步检定的问题。 5、什么是综合重合闸?综合重合闸装置能实现哪几种重合

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

四川大学电力系统自动装置实验报告

电力系统自动装置实验报告 学院: 电气信息学院 专业: 电气工程及其自动化 班级: 102班 学号: 1143031233 姓名: 杨宁 老师:肖先勇

同步发电机并车实验 一、实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、熟悉同步发电机准同期并列过程; 3、观察、分析有关波形。 二、原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。 三、实验项目、方法及过程 (一)机组启动与建压 1、检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0 位置; 2、合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯 熄。调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在 并网后显示控制量(左)和功率角(右)。调速器上“并网”灯和“微机故障” 灯均为熄灭状态,“输出零”灯亮;

用友ERP生产管理系统实验报告

用友ERP生产管理系统实验报告 本课程共分14单,以用友ERP-U8.72为实验平台,以一个企业的生产经营业务贯穿始终,分别介绍了ERP生产管理系统中物料清单、主生产计划、产能管理、需求规划、生产订单、车间管理、工程变更、设备管理的生产制造模块,以及与生产管理活动有关的销售管理、采购管理、委外管理、库存管理、应收款管理及应付款管理等模块的相关功能。 用友ERP生产管理系统是ERP-U8企业管理软件的重要组成部分,是企业信息化管理核心的和有效的方法和工具。它面向离散型和半离散型的制造企业资源管理的需求,遵循以客户为中心的经营战略,以销售订单及市场预测需求为导向,以计划为主轴,覆盖了面向订单采购、订单生产、订单装配和库存生产四种制造业生产类型,并广泛应用于机械、电子、食品、制药等行业。 本实验报告要针对的实验项目有客户订货、排程业务、产能管理、采购业务、委外业务、生产业务、车间管理、销售发货业务、应收款和应付款系统的制单业务、期末处理、物料清单维护、工程变更管理和设备管理。 实验一客户订货 一、实验目的 1.理解销售报价的作用,掌握销售报价的操作。 2.理解销售订货管理的主要功能,掌握相关的基本操作。 二、实验内容 1.输入销售报价单。 2.审核销售报价单。 3.输入销售预订单。 4.输入销售订单。 5.审核销售订单。 6.修改已审核销售订单。 三、实验步骤 1.输入报价单。 2.审核报价单。 3.根据报价单生成销售订单。 4.审核销售订单。 5.修改已审核销售订单。 6.手工输入新的销售订单。 7.审核手工输入的销售订单。

四、实验成果 实验二排程业务 一、实验目的 理解主生产计划和物料需求计划的作用,掌握产销排程和物料需求计划的操作。 二、实验内容 1.MPS累计提前天数推算和库存异常状况查询。 2.MPS计划参数维护。 3.MPS计划生成。 4.MPS计划作业的供需资料查询。 5.MRP累计提前天数推算和库存异常状况查询。 6.MRP计划参数维护。 7.MRP计划生成。 8.MRP供需资料查询。 三、实验步骤 1.MPS累计提前天数推算和库存异常状况查询。 2.MPS计划参数维护。 3.MPS计划生成。

相关文档
最新文档