工业品检测实验室常用仪器基本知识

工业品检测实验室常用仪器基本知识
工业品检测实验室常用仪器基本知识

常用分析仪器知识

一、绪论

1.与我们制程产品相关,所使用的相对复杂一些的仪器包括以下:

1)原子吸收分光光度仪(AAS)

2)紫外-可见分光光度仪(UV-VIS)

3)循环伏安分析仪(CVS)

4)X射线能量色散光谱仪(EDX)

5)扫描电子显微镜(SEM)

6)X射线测厚仪(XRF测厚)

2.常用仪器综述

1)按仪器的通常分类,AAS、XRF测厚、EDX(其实也是属于XRF的一种)和UV都是属于光谱仪;CVS属于电化学仪器;SEM属于电镜仪器。

2)SEM通常可与XRF测厚和EDX联合使用,有些EDX机器也同时兼具XRF测厚功能,从相关常见的分析报告可同时看到样品的SEM图和分析

测量的结果图表。

3)AAS、UV、XRF测厚、EDX和CVS都是使用分析比较技术,要求进入仪器测试的标准样品和未知样品具有相似性和重现性,简而言之,样品测试

前需要作校正和样品处理。

二、AAS

1.AAS定量分析原理和仪器结构组成

1)分析原理:原子吸收的过程是当基态原子吸收某些特定波长的能量由基态到激发态。根据Lambert-Beer 定律,吸收值与浓度成正比关系,从标准溶液作出校正曲线后,再读出未知溶液的浓度。原子吸收分光光度仪即是利用原子化器将样品原子蒸气化后,吸收某一特定波长光,此光来自空心阴极灯管,再经过光学系统分光经由单光器过滤仅有要测的波长光进入侦测器。

2)仪器组成:A.放射光源(空心阴极管或EDL灯管);B.样品导入装置-简易雾化器;C.火焰式原子化器;D.分光仪(Echell 分光系统);E.侦测器(固态半导体)

2.优缺点

1)优点:A.可做多种金属元素的定量分析(约70多个).

B.可用间接法测定非金属元素和有机化合物.

C.热机时间较短(约5分钟)

2)缺点:A.一次只能分析一个元素,分析速度慢

B.每种元素需要更换专用的灯管

3.基本功能和仪器用途

1)主要用于金属元素测定,可测定70余种元素。利用间接法亦可测定非金属元素和有机化合物.

2)制程产品需要用到AAS的有:化银线银子、铜离子杂质离子的测定,PTH 线部分槽液杂质离子的测定等

三、UV-VIS

1.UV-VIS定量分析原理和仪器结构组成

1)分析原理:当特定强度的入射光束(Incident beam) 通过装有均匀待测物的介质时,该光束将被部分吸收,未被吸收的光将透过(Emergent)待测物溶液以及通过散射(Scattering)、反射(Reflection),包括在液面和容器表面的反射)而损失,这种损失有时可达10%,在样品测量时必须同时采用参比池和参比溶液扣除这些影响。当入射光波长一定时,待测溶液的吸光度A与其浓度和液层厚度成正比(Lambert-Beer 定律)

2)仪器结构组成:由光源、单色器、吸收池和检测器四部分组成

2.优缺点

1)优点:A.可做多种化合物的定量分析

B.可做多种化合物的定性分析,尤其是有机物结构研究

C.可测定多组分试样

2)缺点:A.需做每种组分的吸收曲线

B.干扰因素比较多,如:光源稳定性、入射光非单色性、显色团

C.测量高浓度溶液,出现偏离

3.基本功能和仪器用途

1)可做多种化合物的定量分析,也可做多种化合物的定性分析,尤其是有机物结构研究

2)制程产品需要用到AAS的有:PTH线活化钯、除胶渣槽Mn7+和副产物Mn6+测定等

四、CVS

1.CVS定量分析工作原理和仪器结构组成

循环伏安法示意图

1)分析工作原理

电极电位先从正往负扫,在铂圆盘电极上沉积一层铜,然后再从负往正扫,将铜氧化,此时得到一个峰,大小与沉积的铜的量成比例.电镀添加剂会影响到铜在铂电极上的沉积,通过沉积峰的变化可以测定添加剂含量,简而言之,添加剂的定量分析是通过其对槽液主成份沉积的影响而进行间接测定。

2)仪器结构组成见循环伏安示意图,类似组成。

2.优缺点

1)优点:

A. CVS是电镀中广泛应用的方法,许多镀层技术,特别电路板制造业,是生产

控制的重要组成部分,被行业广泛接受。

B.操作连续,准确性较好.

2)缺点:如果槽液中有多种能抑制铜沉积的添加剂,CVS是无法将各自的含量求出来的,测定的是一个综合的效果。

3.仪器用途

1)C VS是电镀行业中广泛应用的方法

2)与我们制程产品相关的有:电镀铜(9241)

五、EDX

1.分析原理和仪器结构组成

1)分析原理:X射线能量色散仪的基本原理是以高能X射线(一次X射线)轰击样品,将待测元素原子内壳层的电子逐出,使原子处于受激状态,

10-12~10-15秒后,原子内的原子重新配位,内层电子的空位由较外层的

电子补充,同时放射出特征X射线(二次X射线)。特征X射线波长和

原子序数有一定关系,测定这些特征谱线的波长或能量可作定性分析;测

量谱线的强度,可求得该元素的含量。

2)仪器结构组成:由多色光源(X射线管)、试样架、半导体检测器和不同的用于能量选择的电子元件。

2.优缺点

1)优点:A.能快速的提供样品包含的各种元素的定性分析及质量百分比浓度

B.样品制作简单,对固体可直接分析,且不损样品

2)缺点:A.只能做元素定性和半定量分析,不能分析元素以何种形式存在

B.对于有害的非金属物质不能作为裁决性分析

C.不能分析原子序数小于5的元素

D.对标准样很严格

E. XRF使用射线,对人体有害。因此所有产生射线的仪器必须根据制造厂商

提供的安全指导以及当地的法规来操作。

3.基本功能和仪器用途

1)该仪器对分析样品要求低,固体块状,粉状,金属等都可直接分析,而不需要溶样、分析速度快。不损坏样品;故广泛用于新型材料,钢铁冶金、有色金属、化工、环境、电子等部门。

2)与我们制程产品相关的有:所有制程若怀疑因出现异物造成异常情形时,EDX都可作为辅助检测方法。

六、SEM

1.工作原理

1)扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是

最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交

叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束

流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一

定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二

次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变

化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像

管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形

貌的二次电子像。

2)仪器结构组成,见工作原理示意图

2.优缺点

1)优点:

A.与光学显微镜相比,电子显微镜为电子束为介质,由于电子束波长远

较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放

大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。

B.扫描电子显微镜有一重要特色是具有超大的景深(depth of field),

约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观

察表面起伏程度较大的试片。

C.可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时

进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极

荧光图像和进行阴极荧光光谱分析等。

D.可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条

件下的相变及形态变化等。

2)缺点:大部分电子扫描显微镜的抗污染能力低,必须提供真空系统和电源稳压系统。

3.基本功能和仪器用途

1)二次电子象,背散射电子象,图象处理及分析,能做各种固体材料样品表面形貌及组织结构的分析。

2)与我们制程产品相关的有:Desmear后蜂窝状结构的确定,各制程后的表面状况等。

七、XRF测厚

1.X射线测厚原理:

对于平滑均匀的无限厚试样,分析线强度是分析元素浓度的函数;对于平滑均匀厚度小于临界值(X射线所能穿透的最大厚度,即饱和厚度)的试样,分析线强度则是分析元素浓度和样品厚度的函数。如果样品是纯元素或其组成不变,则分析线强度仅仅是样品厚度的函数。

2.优缺点

1)优点:A.快速测量镀层厚度

B.操作简便,不损样品。

2)缺点:A.每种样品测量需校正

B.对标准样很严格

3.基本功能和仪器用途

1)广泛应用各行业厚度测量

2)与我们制程产品相关的有:化银,电镀铜

自动化仪表基础知识

第十二章自动化仪表基础知识 第一节测量误差知识 一、测量误差的基本概念 冶金生产过程大多具有规模大、流程长、连续化、自动化的特点,为了有效地进行工艺操作和生产控制,需要用各种类型的仪表去测量生产过程中各种变量的具体量值。虽然进行测量时所用的仪表和测量方法不同,但测量过程的机理是相同的,即都是将被测变量与其同种类单位的量值进行比较的过程。各种测量仪表就是实现这种比较的技术工具。对于在生产装置上使用的各种测量仪表,总是希望它们测量的结果准确无误。但是在实际测量过程中,往往由于测量仪表本身性能、安装使用环境、测量方法及操作人员疏忽等主客观因素的影响,使得测量结果与被测量的真实值之间存在一些偏差,这个偏差就称为测量误差。 二、测量仪表的误差。 误差的分类方法多种多样,如按误差出现的规律来分,可分为系统误差、偶然误差和疏失误差;按仪表使用的条件来分,有基本误差、辅加误差;按被测变量随时间变化的关系来分,有静态误差、动态误差;按与被测变量的关系来分,有定值误差、累计误差。测量仪表常凋的绝对误差、相对误差和引用误差是按照误差的数值表示来分类的。 1、绝对误差 绝对误差是指仪表的测量值与被测变量真实值之差。用公式表示为: △C=Cm-Cr 式(1-1) 试中Cm代表测量值,Cr代表真实值(简称真值),△C代表绝对误差。事实上,被测变量的真实值并不能确切知道,往往用精确度比较高的标准仪器来测量同一被测变量,其测量结果当作被测变量的真实值。 绝对误差有单位和符号,但不能完整地反映仪表的准确度,只能反应某点的准确程度。我们将各点绝对误差中最大的称为仪表的绝对误差。绝对误差符号相反的值称为修正值。 2、相对误差 相对误差是指测量的绝对误差与被测变量之比。用公式表示为 式(1-2) 式中AC为测量的绝对误差,Cr为被测变量的真实值。 由上式可见,相对误差C0是一个比值,它能够客观地反映测量结果的准确度,通常以百分数表示。 如某化学反应釜中物料实际温度为300℃,仪表的示值为298.5℃。 求得测量的绝对误差 测量的相对误差 3、引用误差(相对折合误差或相对百分误差) 测量仪表的准确性不仅与绝对误差和相对误差有关,而且还与仪表的测量范围有关。工业仪表通常用引用误差来表示仪表的准确程度,即绝对值与测量范围上限或测量表量程的比值,以非分比表示:

工业品检测实验室常用仪器基本知识

常用分析仪器知识 一、绪论 1.与我们制程产品相关,所使用的相对复杂一些的仪器包括以下: 1)原子吸收分光光度仪(AAS) 2)紫外-可见分光光度仪(UV-VIS) 3)循环伏安分析仪(CVS) 4)X射线能量色散光谱仪(EDX) 5)扫描电子显微镜(SEM) 6)X射线测厚仪(XRF测厚) 2.常用仪器综述 1)按仪器的通常分类,AAS、XRF测厚、EDX(其实也是属于XRF的一种)和UV都是属于光谱仪;CVS属于电化学仪器;SEM属于电镜仪器。 2)SEM通常可与XRF测厚和EDX联合使用,有些EDX机器也同时兼具XRF测厚功能,从相关常见的分析报告可同时看到样品的SEM图和分析 测量的结果图表。 3)AAS、UV、XRF测厚、EDX和CVS都是使用分析比较技术,要求进入仪器测试的标准样品和未知样品具有相似性和重现性,简而言之,样品测试 前需要作校正和样品处理。 二、AAS 1.AAS定量分析原理和仪器结构组成 1)分析原理:原子吸收的过程是当基态原子吸收某些特定波长的能量由基态到激发态。根据Lambert-Beer 定律,吸收值与浓度成正比关系,从标准溶 液作出校正曲线后,再读出未知溶液的浓度。原子吸收分光光度仪即是利 用原子化器将样品原子蒸气化后,吸收某一特定波长光,此光来自空心阴 极灯管,再经过光学系统分光经由单光器过滤仅有要测的波长光进入侦测 器。 2)仪器组成:A.放射光源(空心阴极管或EDL灯管);B.样品导入装置-简易雾化器;C.火焰式原子化器;D.分光仪(Echell 分光系统);E.侦测器(固态 半导体) 2.优缺点 1)优点:A.可做多种金属元素的定量分析(约70多个).

基本测量仪器的使用

第19讲基本测量仪器的使用 单元复习目的 (一)知识和技能: 1.复习初中物理基本测量仪器的使用,使学生明白实验中一些基本的测量仪器的使用规则。 2.使学生通过复习明确测量仪器的不规则使用会造成的后果,并知道如何改正错误。 3. 熟悉中考在这部分的题型、热点考点的考查形式。 (二)过程和方法 1.通过复习和归纳,学会梳理知识的方法。 2.通过复习活动,进一步了解研究物理问题的方法。 (三)情感态度和价值观 通过教师和学生的双边活动,激发学生的学习的学习兴趣和对科学的求知欲望,使学生乐于探索生活中物理现象和物理原理。 重点、难点 重点:天平和量筒;弹簧测力计;温度计;电流表和电压表。 难点:刻度尺的估读。 复习内容 本专题重点梳理初中物理阶段基本测量仪器的使用,这部分内容在前面的章节复习中都复习过,在本专题中再重新作一个梳理,使学生对测量仪器的使用有一个整体的印象。 复习流程 一、复习引入 二、考点知识梳理

三、重点难点扫描 (一)热学——温度计 1.温度计的原理是。 2.温度计的使用: ⑴使用前,要观察温度计的量程和分度值; ⑵使用时:①温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底和容器壁;②温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;③读数时温度计的玻璃泡要继续留在液体中,视线要与温度计液柱的上表面相平。 (二)电学——验电器 1.验电器的原理是:同种电荷互相排斥 2.验电器的结构:金属球、金属杆、金属箔片。 3.验电器的用途:检验物体是否带电。 4.验电器的使用方法:用待检验的物体是接触验电器的金属球,观察金属箔片是否张开。 (三)电学——电流表和电压表 1.天平: ⑴天平的原理:天平的两臂长度相等,当两个盘中物体的相同时,天平就会平衡。 ⑵天平使用的注意事项: ①被测物体的质量不能超过; ②向盘中加减砝码时要用,不能用手接触砝码,不能把砝码弄湿弄脏; ③不能直接放到天平盘中。 ⑶天平的使用方法: ①“放”:把天平放在,把游码放在; ②“调”:调节天平两端的平衡螺母,使指针指在分度盘的中线处,这时天平平衡;

分析化学常用仪器英文名称

分析化学常用仪器英文名称 玻璃漏斗Glass funnel long stem 试管test tube test tube brush test tube holder test tube rack 蒸发皿evaporating dish small 烧杯beaker 锥形瓶Erlenmeyer 量筒grad cylinder 洗瓶plastic wash bottle 勺皿casserole ,small 塞式烧瓶stoppered flask 分液漏斗separatory funnel water bath/oil bath strring bar magnetic stirrer 冷凝器condenser 圆颈烧瓶Round-buttom flask 试剂瓶reagent bottles 托盘天平platform. balance 托盘pan 指针刻度表pointer and scale crossbeams and sliding weights 游码 分析天平two-pan/single-pan analytical balance 滴定管burette glass bead(basic) nozzle 移液管pipette 洗耳球rubber suction bulb 玻棒glass rod 玻璃活塞stopcock 容量瓶volumetric flasks 比重瓶(one-mark)volumetric flasks 刻度吸管graduated pipettes 锥形瓶conical flask 药匙medicine spoon Erlenmeyer flask 滴管drip tube;dropper 烧杯beaker 玻棒Glass stic

人教版九年级化学实验常见仪器及其基本操作(知识归纳)

第一节常见仪器及其基本操作 【知识目标】 1.知道常用的化学实验仪器试管、滴管、酒精灯、烧杯、量筒、集气瓶、漏斗、长颈漏斗、托盘天平、玻璃棒等的名称、性质、用途。 2.知道常见药品的保存和使用,实验室安全常识和环保常识。 3.学会固体、液体药品的取用,药品的称量,酒精灯的使用与加热,仪器的洗涤,仪器的连接与装配,溶液的配制,装置气密性的检查,溶解、过滤、蒸发等一些重要的实验基本操作。【知识整理】 一、常用化学仪器及使用方法 1.能直接加热的仪器

二、化学实验基本操作 1.药品的取用 (1)取用药品遵守“三不”原则:不能用手接触药品,不能品尝药品的味道,不要把鼻子凑到容器口去闻药品气味(应用招气入鼻法)。 (2)药品没有具体说明取用量时,一般按最少量取用:液体取1ml-2ml ,固体只需盖满试管底部。 (3)用剩的药品要做到“三不一要” :不放回原瓶;不随丢弃;不拿出实验室;要放入指定容器。 (4)固体药品的取用:块状固体用镊子夹,粉末状或细晶体用药匙取,必要时可用纸槽取。操作:把试管横放,将药品送到试管底部,再把试管竖起。 (5)液体药品的取用:瓶塞倒放,试剂瓶的标签向手心,瓶靠试管口,倒完后盖紧瓶塞,将试剂瓶放回原处。 ①定量取用液体操作:量筒放平,视线与量筒内液体凹液面的最低处保持水平,再读出液体的体积数(若仰视会使读数偏小,俯视会使读数偏大)。 ②吸取和滴加少量液体用滴管:胶头在上,滴管不要接触反应容器内壁或放在实验台上,以免沾污滴管。 (6)浓酸,浓碱的使用:浓酸,浓碱都具有强腐蚀性,使用时要格外小心。 2.药品分类贮藏 ⑴盛放碱液的试剂瓶要用橡皮塞。⑵易变质的药品存放时间不能长久贮存,最好现用现配制[如:澄清的石灰水长期存放将因跟空气中的二氧化碳反应而失效]。⑶易潮解、易挥发、 有吸水性的药品要密封保存。⑷易燃物质(如:酒精、硫、磷、镁粉等)和易爆炸的物质(如:高锰酸钾、硝酸铵等)存放时要远离火源。⑸白磷保存在冷水中,金属钠保存在煤油中。 3.过滤的操作 操作要点:“一贴二低三靠”。一贴:滤纸紧贴漏斗内壁。二低:滤纸上沿低于漏斗口,液体低于滤纸上沿。三靠:漏斗颈下端紧靠承接滤液的烧杯的内壁,引流的玻璃棒下端轻靠滤纸三层一侧;盛待过滤的烧杯的尖嘴部靠在玻璃棒的中下部。应手持玻璃棒中上部。 4.物质的加热 ⑴酒精灯的使用注意事项:禁止向燃着的酒精灯添加酒精;禁止用酒精灯引燃另一酒精

实验1基本测量仪器的使用

实验1 基本测量仪器的使用 【实验目的】 1.熟悉米尺、游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法,练习使用分析天平进行精密称衡; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法,熟悉精密称衡中的系统误差补正. 【实验仪器】 米尺、游标卡尺,螺旋测微计,测厚仪,分析天平,球体,圆柱等,金属块、玻璃块、有机被璃块等. 【实验原理】 一、米尺 “米”是国际公认的标准长度单位,历史上由保存在巴黎国际标准度量衡局的米原器二刻线间的长度决定。1983年第十七届国际计量大会通过的“米”的新定义为:1m是光在真空中于1/299792458s的时间内所传播的距离。 常用米尺(包括各种常用直尺)的分度值是1mm毫米,因此用米尺测量长度时可以读准到毫米级,估计到0.1毫米级(1/10毫米位)。 用米尺测量物体长度的要领是紧贴、对准、正视。米尺自身有一定的厚度,若不贴紧待测物,观测者从不同角度看去,将产生读数的差异,测量时应尽量减少视差。为避免端边磨损带来的误差,也可以不用零刻度线,而以某一刻度线(如1.00cm)作为测量起点,考虑到刻度的不均匀,可以不同刻度线为起点作多次测量而取其中平均值。 二、游标卡尺 (1)游标卡尺构造 游标卡尺的构造如图1-4所示,卡钳E和E'同刻有毫米的主尺A相连,游标框W上附有游标B以及卡钳F和F',推动游标框W可使游标B连同卡钳F、F'沿主尺滑动.当两对钳口E与F,E'与F'紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F或E'F'卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E、F间或卡钳E'、F'的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E'F'部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C是用来固定油标框的,防止游标框在主尺上滑动以便于读数.

常用测量仪器的介绍

螺旋测微器 螺旋测微器又称千分尺(micrometer)、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量范围为几个厘米。它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量。 螺旋测微器简介 一种机械千分尺(螺旋测微器) 知名品牌:安一量具、哈量、成量、青量、上工、瑞士TESA、日本Mitutoyo等。 右图为一种常见的螺旋测微器。 螺旋测微器的分类 一种电子千分尺(螺旋测微器) 螺旋测微器分为机械式千分尺和电子千分尺两类。①机械式千分尺。简称千分尺,是利用精密螺纹副原理测长的手携式通用长度测量工具。1848年,法国的J.L.帕尔默取得外径千分尺的专利。1869年,美国的J.R.布朗和L.夏普等将外径千分尺制成商品,用于测量金属线外径和板材厚度。千分尺的品种很多。改变千分尺测量面形状和尺架等就可以制成不同用途的千分尺,如用于测量内径、螺纹中径、齿轮公法线或深度等的千分尺。②电子千分尺。也叫数显千分尺,测量系统中应用了光栅测长技术和集成电路等。电子千分尺是20世纪70年代中期出现的,用于外径测量。 螺旋测微器的组成

螺旋测微器组成部分图解 图上A为测杆,它的活动部分加工成螺距为0.5mm的螺杆,当它在固定套管B的螺套中转动一周时,螺杆将前进或后退0.5毫米,螺套周边有50个分格。大于0.5毫米的部分由主尺上直接读出,不足0.5毫米的部分由活动套管周边的刻线去测量。所以用螺旋测微器测量长度时,读数也分为两步,即(1)从活动套管的前沿在固定套管的位置,读出主尺数(注意0.5毫米的短线是否露出)。(2)从固定套管上的横线所对活动套管上的分格数,读出不到一圈的小数,二者相加就是测量值。 螺旋测微器的尾端有一装置D,拧动D可使测杆移动,当测杆和被测物相接后的压力达到某一数值时,棘轮将滑动并有咔咔的响声,活动套管不再转动,测杆也停止前进,这时就可以读数了。 不夹被测物而使测杆和小砧E相接时,活动套管上的零线应当刚好和固定套管上的横线对齐。实际操作过程中,由于使用不当,初始状态多少和上述要求不符,即有一个不等于零的读数。所以,在测量时要先看有无零误差,如果有,则须在最后的读数上去掉零误差的数值。 螺旋测微器原理和使用 螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。螺旋测微器的精密螺纹的螺距是0.5mm,可动刻度有5 0个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退0.5mm,因此旋转每个小分度,相当于测微螺杆前进或推后0.5/50=0.01mm。可见,可动刻度每一小分度表示0.01mm,所以以螺旋测微器可准确到0.01mm。由于还能再估读一位,可读到毫米的千分位,故又名千分尺。

化工仪表基础知识

(五)、液位测量仪表 1、什么叫液位?什么叫料位? 在容器中液体介质的高低叫液位;容器中固体或颗粒状物质的堆积高度叫料位。 2、物位仪表按工作原理可分为哪几类? 可分为:直读式、差压式、浮力式、电磁式、核辐射式、声波式、光学式七大类。 3、玻璃液位计是根据(连通器)原理对液位进行测量的;浮力式液位计是 利用(浮力)原理对液位进行测量的;静压式液位计根据(流体静压平衡)原理工作的;电容式物位计是通过电容传感器把(物位)转换为(电容量)的变化来对物位进行测量的。 4、差压式液位计测量的原理是什么?浮力式液位测量的原理是什么? 差压式是利用液位或物料堆积对某定点产生压力的原理来工作的;浮力式是利用浮子高度随液位变化而改变或对沉筒的浮力随液位高度而变化的原理工作的。 5、电磁式液位计测量的原理是什么? 电磁式液位测量的原理是将液位的变化转换为电量的变化,通过测出的这些电量的变化来测知液位;核辐射式液位测量原理是利用核辐射透过物料时,其强度随物质层厚度而变化的原理来工作的。

6、电磁翻板式液位计由哪几部分构成? 电磁翻板液位计主要由液位计本体,内置定向磁性源程序的浮子和翻板箱等部件组成。 7、电磁翻板液位计的工作原理是什么? 其原理是:液位计内的浮子,浮于介质的液面上,当液位计的本体内的液位随容器液位同步变化时,浮于其上的浮子也相应发生变化,在定向磁性源磁能作用下,翻板箱上的翻板转向,翻板颜色显示不同的颜色。 翻板颜色界面的变化仅取决于浮子的位置,而不受介质压力的影响,适用于现场液位的测量。 8、常用的液位开关有外浮筒式、浮球式、电容式、电阻式、核辐射式、超声波式等。 一般液体可采用外浮筒式、浮球式、电容式、电阻式。外浮筒式液位开关的设定值在1-300mm内连续可调,有高温型、高压型、耐腐蚀型等,在石化、化肥装置中使用较多。液/液界面使用电容式较好。泡沫液体可采用电容式或电阻式。浆状液体和腐蚀性液体可采用电容式核辐射式、超声波式。 (六)、自动调节仪表及阀门 1、什么叫自动调节系统?其组成是什么? 对生产中某些关键性参数进行自动调节,使它们在受到外界干扰而偏离正常状态时,能自动地调回到规定的数值范围内,为此目的而设置的系统称

光学基本测量仪器

光学基本测量仪器 1 望远镜 1.1 结构 望远镜是用来观察远距离目标的一种助视光学仪器,其结构如图1所示。物镜L l是一块消色差复合正透镜,镶嵌在套筒M1的前端,M1套在镜筒N上,可前后移动。目镜L2通常由两块凸透镜组成,装在目镜筒M2的两端,靠近物镜的透镜称接场镜,靠近眼睛的称接目镜,M2可套入镜筒N并可前后移动。实验用测量望远镜在镜筒N内靠近物镜的一侧还装有十字准线K。 图1 望远镜的结构特点是两分立系统的光学间隔为零,即物镜的后焦平面和目镜的前焦平面重合。这样远处物体经物镜在其后焦平面上成一倒立缩小的实像,此像作为目镜的物再经目镜成一视角放大的虚像为眼睛接受。 1.2 调节方法 1.调节目镜即改变L2和K之间的距离,使得能清晰地看到十字准线像。 2.物镜调焦即改变L l和K之间的距离,使得能清晰地同时看到准线和观察物的像,且无视差。产生视差的原因,是观察物通过物镜所成的像与准线不在同一平面上,当左右或上下稍微改变视线方向时,可看到两个像之间有相对位移,这时称之为有视差。 2 读数显微镜 2.1 结构 和普通观察显微镜不同,测量用显微镜的物镜应在严格而准确的横向放大率下工作。为此,在预先确定放大率的物镜像平面处安置一块分划板,并与物镜固结为一个整体。为使各种视度眼睛的人都能使用,测量用显微镜的目镜必须可以进行视度调节。 读数显微镜由测微螺旋和测量用显微镜组成,可直接用来精密测量微小物体的长度、孔距、直径等。根据不同的测量要求,读数显微镜的量程、分度值和视角放大率等有不同的规格。常用的JCD-Ⅱ读数显微镜结构如图2所示。

图2 JCD-II型读数显微镜 1—目镜 2—调焦旋钮 3—方轴 4—接头轴 5—测微手轮 6—标尺 7—镜筒支架 8—物镜 9—旋手 10—弹簧压片 11—载物台 12—底座 图中1是目镜及显微镜镜筒。旋转测微手轮5,可使镜筒支架带动镜筒沿导轨移动。显微镜用调焦旋钮2调焦。测微装置分度值为0.01mm,其读数方法与螺旋测微计相同。测量架方轴可插入接头轴4的十字孔中,并可前后移动。接头轴可在底座内旋转、升降,并用旋手9固定。 2.2 调节方法 1)将被测物体置于载物台面玻璃上,用弹簧压片压紧,使其处于镜筒下方。 2)调节目镜,至看清十字分划板。 3)转动调焦旋钮调节物镜,使被测物体清晰可见,并消除与分划板的视差。调整被测量物,使其被测部分的横向和显微镜移动方向平行。 4)转动测微手轮,使十字分划板纵丝对准待测长度的起点,记下此时读数A,沿同一方向转动测微手轮,使分划板纵丝恰好止于待测长度的终点,记下读数B,则所测长度 A 。 L=B 2.3 注意事项 1)转动调焦旋钮时,注意应避免使显微镜与被测物相接触。正确的作法是首先使物镜接近被测物,然后调节镜筒缓慢上移。 2)测量过程中,测微手轮只能向一个方向转动,中途不能逆转,以免引入螺距误差。 3 测微目镜 3.1 结构

仪器分析知识点整理

仪器分析知识点整理 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M*

2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。 ②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。 ③富燃火焰:指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。 ④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。 ⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰? 一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸

最全的各类分析仪器介绍

电子称电子称是用来对货物进行称重的自动化称重设备,通过传感器的力电转换,经称重仪表处理来完成对货物的计量,适用于各种散货的计量。 电子秤电子秤是用来对货物进行称重的自动化称重设备,通过传感器的力电转换,经称重仪表处理来完成对货物的计量,适用于各种散货的计量。 测厚仪测厚仪用来测量不同单一材料或者覆盖层的厚度,分无损和有损两种,其中大部分是无损的。 硬度计硬度计是测量各种材料硬度的仪器,分为洛氏、维氏、布氏、邵氏、里氏、消氏等不同类别。 电子天平是实验室分析或质量控制所必须的仪器,具有称量大,精度高,在较差使用环境下亦可达到精密称量的要求。 测温仪是温度计的一种,用红外线的原理来感应物体表面温度,操作比较方便,特别是高温物体的测量。应用广泛,如钢铸造、炉温、机器零件、玻璃及室温、体温等各种物体表面温度的测量。 干燥箱干燥箱是一种常用的仪器设备,主要用来干燥样品,也可以提供实验所需的温度环境.干燥箱应用与化工,电子,铸造,汽车,食品,机械等各个行业. 分光光度计常用分析仪器之一,常用于样品的定性与定量的分析,或透射、反射等光谱分析。广泛应用于医药,食品,石油,建材等各个领域 电导率仪电导率仪是适用于精密测量各种液体介质的仪器设备,主要用来精密测量液体介质的电导率值,当配以相应常数的电极可以精确测量高纯水电导率,广泛应用各领域的科研和生产. 粘度计一种用于测量液体的粘性阻力与液体的动力粘度的仪器,广泛应用于油脂、油漆。电流表电流表是测定电流强弱和方向的电学仪器。分直流电流表和交流电流表。供实验室和工业现场测试用。 温湿度计用来测定环境的温度及湿度,以确定产品生产或仓储的环境条件。也应用于人们日常生活。应用较为广泛。 水分测定仪快速测定物质含水量,可提供实时温度、样品质量、脱水率、样品含水百分比等数。 酸度计酸度计是一种常用的仪器设备,主要用来精密测量液体介质的酸碱度值,配上相应

仪器仪表基础知识问答.doc

仪器仪表基础知识问答 仪器仪表基础知识 压力的解釋: 1、人气压:地球表血上的空气柱因重力而产生的压力。它和所处的海拔高度、纬度及气彖状况有关。 2、差压(压差):两个压力之间的相对差值。 3、绝对压力:介质(液体、气体或蒸汽)所处空间的所有压力。 绝对压力是相对零压力而言的压力。 4、表压力(相对压力):如果绝对压力和人气压的差值是一个正值,那么这个正值就是表压力,即表压力二绝对压力-人气压>0。 5、负压(真空表压力):和“表压力“相对应,如果绝对压力和人气压的差值是一个负值,那么这个负值就是负压力,即负压力二绝对压力-人气压<0。 6、静态压力:一般理解为“不随时间变化的压力,或者是随时间变化较缓慢的压力,即在流体中不受流速影响而测得的表压力值”。 7、动态压力:和“静态压力”相对应,“随时间快速变化的压力,即动压是指单位体积的流体所具有的动能人小。”通常用1 /2P v2计算。式屮P—流体密度;v-流体运动速度。” HART协议和现场总线技术有哪些异同? IIART和现场总线技术都可以实现对现场设备的状态、参数等进行远程访问。同时,两种技术都支持在一条总线上连接多台设备的联网方式。HART和现场总线都采用设备描述,实现设备的互操作和综合运用。所以,它们Z间有一定的相似Z处。 它们之间的不同有以下四点: 1)现场总线采用真正的全数字通信,而HART是以FSK方式叠加在原有的4?20mA模拟信号上的,因此可以直接联入现有的DCS系统中而不需要重新组态; 2)现场总线多采用多点连接,HART协议一般仅在做监测运用的时候才会采用多点连接方式; 3)用现场总线组成的控制系统中,设备间可以玄接进行通信,而不需要经过主机干预;

常用仪器分析介绍

近代分析仪器及其发展(一) (北京普析通用仪器有限责任公司分析中心北京 100081)Recent Analysis Instruments and Development Beijing Purking General InstrumentCo.,Lt Analytical Centre 近代分析仪器的发展促进了分析化学向纵深发展,并在国民经济各个领域获得了广泛的应用,从航天材料、食品安全、环境污染、医疗卫生、地质勘探、工业生产、农业生产、检验检疫诸多方面都离不开分析仪器。现代分析化学的发展趋势是高灵敏度、高选择性(复杂体系)、智能化、快速、自动、简便、经济。对分析仪器而言,一方面要降低仪器的信噪比,另一方面是各类分析仪器的联用,特别是分离仪器和检测器的连用,如色谱仪 (气相色谱、液相色谱或超临界流体色谱仪、多维色谱仪等)和各种分析仪器(质谱、核磁共振波谱、傅立叶红外光谱、原子吸收光谱和原子发射光谱)的联用,利用前者的优异的分离功能,将组分分离后由后者加以识别,进行定性和定量分析。此外,近红外光谱化学计量学软件设计及其在各行业的应用软件 (包括建模、校准、评价、数据优化等软件和软件包)的开发和完善也将成为国内外分析仪器发展的另一个热点。 1 原子光谱分析法 1.1 原子发射光谱分析法(AES) 21世纪新兴的原子光谱分析光源是等离子体光源(plasma source),分为直流等离子体 (DCP)、高频电感耦合等离子体(ICP)和微波等离子体 (MP)。直流等离子体是最早用于原子光谱分析的一种等离子体光源,功率较ICP低,雾化器不易堵塞,总氩气的用量只及 ICP耗气量的一半,无高频辐射,检出限与ICP相近或稍差,精密度不如ICP好,线性范围比ICP窄,基体效应比 ICP严重,电极易污染。ICP具有优良的分析特性,被测元素能有效的进行原子化和消除化学干扰,工作曲线有较宽的线性范围,达 4~6个数量级,信噪比高,可快速进行多元素的同时测定。微波等离子体包括电容耦合微波等离子体(CMP)和诱导微波等离子体 (MIP),常用微波频率为 2450 MHz,主要优点是激发能力强,以He气为工作气体时,可以测定包括卤素在内的几乎所有元素,有很好的检出限。AES法广泛应用于钢铁、合金、有色金属、地质、石化等领域的分析。 1.2 原子吸收光谱法(AAS) 按照所用的原子化方法的不同,可分为火焰原子吸收法(FAAS)、石墨炉原子吸收法 (GFAAS)和石英炉原子化法,可以在较低的温度下原子化,包括汞蒸气原子化、氢化物原子化和挥发物原子化。背景校正器有氘灯背景校正器、塞曼效应背景校正器、自吸背景校正器。原子吸收法的优点是检出限低,FAAS为 10-6~10-9 g/mL,GFAAS为10-10~10-14g/mL。目前, 1.3 原子荧光光谱法(AFS) 原子荧光光谱在元素及其形态分析方面有着广泛的应用,特别是与氢化物发生进样技术的结合,在测定地质样品、钢铁合金、环境样品、食品、生物样品等中的 Ge、Sn、Pb、As、Sb、Bi、Se、Te、Hg和 Cd等元素都有很好的效果。原子荧光光谱法的特点是谱线简单、光谱干扰少、检出限低,测定空气中的汞,检出限达到每立方米2.2×10-9个原子,可进行多元素同时测定,校正曲线的线性范围宽,达到4~7数量级,适用元素的范围不如AES和 AAS广泛。AFS法与AAS、AES分析技术互相补充,在冶金、地质、环境监测、生物、医学分析等领域得到了日益广泛的应用。 2 分子光谱分析法 2.1 紫外一可见分光光度法(UV-VIS) 紫外可见分光光度法是历史最悠久、应用面最为广泛的一种仪器分析方法,现在又发展了多种分光光度测量技术,如双波长(三波长)分光光度法,可以有效地消除复杂试样的背景吸收、散射、浑浊对测定的影响,很适合于生物样品和环境样品的分析。胶束增溶分光光度法可以提高测定选择性和灵敏度,摩尔吸收系数一般可达 106 L/(mol·cm )。导数分光光度法提高了对重叠、平坦谱带的分辨率与测定灵敏度,示差分光光度法提高了测定很稀或很浓溶液吸光度的精度。正交函数吸光光度法在吸收曲线的某一区域选择适当的正交多项式,使干扰组分的正交多项式系数最小,以致可以忽略不计,用待测组分的正交多项式的系数进行定量分析。随着化学计量学方法的兴起,出现了多种计算机辅助分光光度法,如因子分析、偏最小二乘法、多元线性回归分光光度法等,可以在谱带严重重叠的情况下,不经分离可以直接实现多组分的同时测定。此外,还有流动注射吸光光度法、动力学吸光光度法、浮选吸光光度法、固相吸光光度法、计量学吸光光度法等。 2.2 红外光谱吸收法(IR) 红外光谱能提供有机化合物丰富的结构信息,特别是中红外光谱是鉴定有机化合物结构最主要的手段之一。近年来,近红外光谱技术与各种化学计量学算法相结合,取得了显著的研究成果。目前,傅立叶变换红外光谱仪 (FTIR),逐渐取代了色散型红外光谱仪,它主要由红外光源、光学系统、检测器以及数据处理与数据控制系统组成。现在数据库已储存有大量的有机化合物的标准红外图谱,检索也十分方便。对于化工生产控制和未知物剖析有很大帮助。 综 述

仪器分析练习题 基础知识

一. 名词解释 仪器分析法化学分析法比较法标准曲线法工作曲线标准加入法内标法外标法空白溶液参比溶液线性规律化学现象仪器信号仪器响应信噪比检测器质量型检测器浓度型检测器读出装置显示装置噪声基线基线漂移基线噪声检出限最小检测限重复性再现性 二. 简答 1.简要说明仪器分析为什么要依据线性规律进行分析。 2.简要说明为什么不是线性(模型)规律的方法也可以进行分析 3.简述仪器分析法与化学分析法的共同点和区别 4. 简述标准加入法和内标法的区别。什么情况下可以使用标准加入法,什么情况下可以使用内标法?为什么有些仪器分析方法可以使用内标法,而有些方法则不能使用内标法? 5.举例说明如何进行标准曲线法测量,并说明使用此方法的基本要求。 6.举例说明标准加入法的分析过程 7. 举例说明外标法的分析过程 8. 举例说明内标法的分析过程 9. 说明仪器分析的一般程序及各个步骤的基本原则 10. 列出学过的仪器分析方法的定量模型(数学模型) 11. 运用作图的方法进行标准曲线法分析时,回归直线是否必须经过原点?为什么? 12. 说明比较法、标准曲线法与外标法、内标法的联系和区别 13. 为什么仪器的信号必须大于噪声的标准差的3倍? 14. 请列举出学习和使用过的分析仪器的种类和型号 15. 样品进入检测器,是否一定会产生有用信号?说明原因 16. 样品的预处理一般包括几个方面的内容?说明具体原因 17.如何制作标准曲线?得到的回归直线是否必须经过原点?为什么? 18. 简要说明什么是外标法、内标法以及它们特点 19. 为什么仪器分析经常需要标准样品才能测量? 20. 哪些仪器分析方法可以不用标准样品?说明原因 21. 说明化学分析方法和仪器分析方法的共同点和不同点 22. 为什么不要将化学分析方法和仪器分析方法的误差的大小直接进行比较? 23. 说明仪器分析方法的一般分析思路 24. 说明比较法和标准曲线法的做法和各自的特点

化工仪表基础知识

五)、液位测量仪表 1、什么叫液位?什么叫料位? 在容器中液体介质的高低叫液位;容器中固体或颗粒状物质的堆积高度叫料位。2、物位仪表按工作原理可分为哪几类?可分为:直读式、差压式、浮力式、电磁式、核辐射式、声波式、光学式七大类。 3、玻璃液位计是根据(连通器)原理对液位进行测量的;浮力式液位计是利用(浮力) 原理对液位进行测量的;静压式液位计根据(流体静压平衡)原理工作的;电容式物位计是通过电容传感器把(物位)转换为(电容量)的变化来对物位进行测量的。 4、差压式液位计测量的原理是什么?浮力式液位测量的原理是什么? 差压式是利用液位或物料堆积对某定点产生压力的原理来工作的;浮力式是利用浮子高度随液位变化而改变或对沉筒的浮力随液位高度而变化的原理工作的。 5、电磁式液位计测量的原理是什么?电磁式液位测量的原理是将液位的变化转换为电量 的变化,通过测出的这些电量的变化来测知液位;核辐射式液位测量原理是利用核辐射透过 物料时,其强度随物质层厚度而变化的原理来工作的 6、电磁翻板式液位计由哪几部分构成? 电磁翻板液位计主要由液位计本体,内置定向磁性源程序的浮子和翻板箱等部件组成。

7、电磁翻板液位计的工作原理是什么?其原理是:液位计内的浮子,浮于介质的液面 上,当液位计的本体内的液位随容器液位同步变化时,浮于其上的浮子也相应发生变化,在定向磁性源磁能作用下,翻板箱上的翻板转向,翻板颜色显示不同的颜 色。翻板颜色界面的变化仅取决于浮子的位置,而不受介质压力的影响,适用于现场液位的测量。 8、常用的液位开关有外浮筒式、浮球式、电容式、电阻式、核辐射式、超声波式等。 一般液体可采用外浮筒式、浮球式、电容式、电阻式。外浮筒式液位开关的设定值在1-300mm 内连续可调,有高温型、高压型、耐腐蚀型等,在石化、化肥装置中使用较多。液/ 液界面使用电容式较好。泡沫液体可采用电容式或电阻式。浆状液体和腐蚀性液体可采用电容式核辐射式、超声波式。 (六)、自动调节仪表及阀门 1、什么叫自动调节系统?其组成是什么? 对生产中某些关键性参数进行自动调节,使它 们在受到外界干扰而偏离正 常状态时,能自动地调回到规定的数值范围内,为此目的而设置的系统称为自动调节系统。其组成为:调节对象、测量元件、变送器、自动调节器、执行器。 2、什么是调节对象?给定值和偏差? 自动调节系统中需调节其工艺参数的生产设备叫做调节对象,生产中要求保持的工艺指标称为给定值,在自动调节系统中,习惯上采用给定值减去测量值作为偏差,给定值大于测量值时为正偏差,而给定值小于测量值时称为负偏差。 3、什么叫控制回路?

第一章检测仪表基本知识.作业

第一章检测仪表基本知识 一、填空 1.测量就是用实验的方法,求出某个量的大小。测量有直接测量和间接测量二种方法。 2.测量误差按其产生的原因分为三种,即系统误差、疏忽误差、偶然误差。 3.从传递信号的连续性分,检测系统中传递信号形式分为模拟信号、数字信号和开关信号三种。 4.探索误差的目的是判断测量结果的可靠程度。 5.仪表准确度是根据工艺生产上所允许的最大测量误差来确定的。 6.过程控制系统是由控制器、执行器、测量变送和被控对象等环节组成。 7.在自动控制系统中,由于种种干扰作用,使被控变量偏离了设定值,即产生误差。 8.仪表的精确度不仅与绝对误差大小有关,还与该仪表的标尺范围有关。 9.检测仪表的性能指标主要有六个准确度、恒定度、灵敏度、反应时间、线性度、重复性。 10.测量误差通常有绝对误差相对误差三种表示方法。 11.工业现场用的测量仪表其准确确度大多是0.5级以下的。 二、选择题 1.小明同学因睡眠不好,在化学物品称量时,质量发生较大偏差,这种误差为()。 A.系统误差 B.疏忽误差 C.偶然误差 D.余差 2.( B )反应了检测仪表测量精度。 A.余差 B.偶然误差 C.系统误差 D.过渡时间 3.由于传动机构的间隙、运动件间的摩擦、弹性元件弹性滞后影响检测仪表的()指标。 A.变差 B.余差 C.重复性 D.衰减比 4.仪表中常见的信号类型有( )。 A.位移信号 B.压力信号 C.频率信号 D.电气信号 5.仪表中常用的标准信号有( )。 A.4-20mA B.1-5VDC C.0-20mA D.50LX 6.测量值与真实值之差为( B ) A、相对误差 B、绝对误差 C、系统误差 7.测量误差的表示方法主要有() A.绝对误差 B.相对误差 C. 变差 8.某台测温仪表的测温范围为0~600℃,工艺上要求测温误差不能大于±4℃,试确定应选仪表的准确度等级()。 A.0.4级 B.0.5级 C.0.6级 D.1.0级

仪器基本知识

第二章 预备知识 第一节 物理实验仪器基本知识 一、长度测量仪器 1、游标卡尺 游标卡尺是利用游标原理进行测量的一种通用量具,可以测量工件的内外尺寸、宽度、厚度、深度等。游标卡尺可分为三用卡尺、两用卡尺、双面卡尺和数显卡尺等。三用卡尺主要由主尺、游标和深度尺组成。见图2.1。 图2.2中主尺最小刻度的长度为1mm ,游标上的最小刻度代表0.02mm ,游标上的“1、2、3……”等数字分别代表0.10 mm 、0.20 mm 、0.30 mm ……。读数时,先看游标上的“0”线靠近哪一条主尺刻线,读出毫米数;然后判断游标上的哪一条刻线与主尺上某刻线对得最齐,游标上此刻线左边的数字乘以0.10 mm ,加上数字右边(对齐的刻线左边)的格数乘以0.02mm ,是从游标上读的数;主尺读数和游标读数相加,就是待测物体的尺寸。 例:图22所示游标卡尺游标上的最小刻度代表0.02mm ,读出l 的值。 l =21.44mm 2、千分尺 千分尺(螺旋测微计)是利用精密螺旋副进行测量的一种量具。千分尺按用途不同可分为外径千分尺、内径千分尺和深度千分尺等。外径千分尺由尺架、测砧、固定套管、微分筒、精密螺杆等组成。见图2.3。 图2.1 游标卡尺 1.尺身 2.内量爪 3.尺框 4.紧固螺钉 5.深度尺 6.游标 7.外量爪 图2.2

以移动量为25 mm 的千分尺为例(图2.4),在其固定套管上刻有一条水平刻线。水平刻线上方(或下方)有25个刻线,间距为1 mm ,水平刻线的下方(或上方)靠右错开0.5 mm 刻有24个刻线,微分筒的边缘作为毫米和半毫米的读数基准。微分筒上刻有50个刻线,精密螺杆的螺距是0.5 mm ,当微分筒旋转一个刻线时,微分筒沿水平方向移动了0.01 mm ,即微分筒上最小刻度的示值是0.01 mm 。读数时需要估计到最小刻度的十分之一,即估读到0.001 mm 。 使用方法: (1)注意:夹紧被测物体时,不能旋转微分筒,应该转动微分筒末端的手柄,当听到“咔咔”的响声后,停止转动。松开时才能旋转微分筒。 (2)测量时,必须先对千分尺进行零点校准。轻轻转动微分筒末端的手柄,使螺杆和测砧接触,此时,如果微分筒的零线和固定套管的水平刻线对齐,且微分筒的边缘与固定套管的零线重合,则千分尺的零点误差为0.000 mm ;若微分筒的零线在固定套管的水平刻线之上,则零点误差为正值;若微分筒的零线在固定套管的水平刻线之下,则零点误差为负值;其大小由微分筒零线偏离固定套管水平刻线的格数确定。 (3)用完后,使螺杆和测砧之间留有一定间隙,并用锁紧纽锁紧。 例:见图2.5,读出千分尺的零点误差。 左图:-0.004 mm ;右图:+0.011 mm 。 图2.3 千分尺 1.尺架 2.测砧 3.测微螺杆 4.固定管 5.微分套筒 6.手柄 图2.4

实验1基本测量仪器的使用

实验一基本测量仪器的使用 【实验目的】 1.熟悉米尺、游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法,练习使用分析天平进行精密称衡; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法,熟悉精密称衡中的系统误差补正. 【实验仪器】 米尺、游标卡尺,螺旋测微计,测厚仪,分析天平,球体,圆柱等,金属块、玻璃块、有机被璃块等. 【实验原理】 一、米尺 “米”是国际公认的标准长度单位,历史上由保存在巴黎国际标准度量衡局的米原器二刻线间的长度决定。1983年第十七届国际计量大会通过的“米”的新定义为:1m是光在真空中于1/299792458s的时间内所传播的距离。 常用米尺(包括各种常用直尺)的分度值是1mm毫米,因此用米尺测量长度时可以读准到毫米级,估计到0.1毫米级(1/10毫米位)。 用米尺测量物体长度的要领是紧贴、对准、正视。米尺自身有一定的厚度,若不贴紧待测物,观测者从不同角度看去,将产生读数的差异,测量时应尽量减少视差。为避免端边磨损带来的误差,也可以不用零刻度线,而以某一刻度线(如1.00cm)作为测量起点,考虑到刻度的不均匀,可以不同刻度线为起点作多次测量而取其中平均值。 二、游标卡尺 (1)游标卡尺构造 游标卡尺的构造如图1-4所示,卡钳E和E'同刻有毫米的主尺A相连,游标框W上附有游标B以及卡钳F和F',推动游标框W可使游标B连同卡钳F、F'沿主尺滑动.当两对钳口E与F,E'与F'紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F或E'F'卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E、F间或卡钳E'、F'的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E'F'部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C是用来固定油标框的,防止游标框在主尺上滑动以便于读数.

相关文档
最新文档