人工呼吸急救法的原理和步骤

人工呼吸急救法的原理和步骤

如对您有帮助,可购买打赏,谢谢

生活常识分享人工呼吸急救法的原理和步骤

导语:当一个人在最危急关头的时候往往要进行人工呼吸急救方法,下面教大家如何正确进行人工呼吸急救方法。

一般在紧急情况下,人工呼吸是一项挽救生命的有效措施。可是人工呼吸的原理是什么?人工呼吸是为了唤醒心脏的跳动吗?

如果当人因发生触电、溺水、心脑血管意外而导致心脏和呼吸骤然停止的情况时,需要配合人工呼吸,使病人的心肺复苏,产生正常的通气。

原理:

其实正常情况下,我们吸入的是空气,呼出的是二氧化碳。而病人需要的不是氧气吗?这该怎样解释呢?

而且人工呼吸时,被吸入的空气中氧气和二氧化碳的交换量还很少。再者人呼吸一次只能吸收大约4%的氧气。此时吹出的气体大部份是新鲜的空气也含有少部份的二氧化碳。而少量的二氧化碳还能刺激需急救者的呼吸中枢神经,有利于恢复呼吸。

因为这吹入的空气,能使肺内的压力增加,再通过胸外按压,就能达到肺内压的周期性交替升降,从而唤醒肺动力。此动力就能保证肺内空气与大气之间的交换与流通。

那么以上就是人工呼吸的原理,而具体的操作方法我们推荐的也是最常见的口对口的吹气方法,步骤如下:

1、病人取仰卧位,即胸腹朝天。

2、首先清理患者呼吸道,保持呼吸道清洁。

3、使患者头部尽量后仰,以保持呼吸道畅通。

4、救护人站在其头部的一侧,自己深吸一口气,对着伤病人的口(两嘴要对紧不要漏气)将气吹入,造成吸气。为使空气不从鼻孔漏出,

电路原理图设计说明

电路原理图设计 原理图设计是电路设计的基础,只有在设计好原理图的基础上才可以进行印刷电路板的设计和电路仿真等。本章详细介绍了如何设计电路原理图、编辑修改原理图。通过本章 的学习,掌握原理图设计的过程和技巧。 3.1 电路原理图设计流程 原理图的设计流程如图3-1 所示 . 。 图3-1 原理图设计流程 原理图具体设计步骤: (1 )新建原理图文件。在进人SCH 设计系统之前,首先要构思好原理图,即必须知道所设计的项目需要哪些电路来完成,然后用Protel DXP 来画出电路原理图。

(2 )设置工作环境。根据实际电路的复杂程度来设置图纸的大小。在电路设计的整个过程中,图纸的大小都可以不断地调整,设置合适的图纸大小是完成原理图设计的第一步。 (3 )放置元件。从元件库中选取元件,布置到图纸的合适位置,并对元件的名称、封装进行定义和设定,根据元件之间的走线等联系对元件在工作平面上的位置进行调整和修改使得原理图美观而且易懂。 (4 )原理图的布线。根据实际电路的需要,利用SCH 提供的各种工具、指令进行布线,将工作平面上的器件用具有电气意义的导线、符号连接起来,构成一幅完整的电路原理图。 (5 )建立网络表。完成上面的步骤以后,可以看到一张完整的电路原理图了,但是要完成电路板的设计,就需要生成一个网络表文件。网络表是电路板和电路原理图之间的重要纽带。 (6 )原理图的电气检查。当完成原理图布线后,需要设置项目选项来编译当前项目,利用Protel DXP 提供的错误检查报告修改原理图。 (7 )编译和调整。如果原理图已通过电气检查,那么原理图的设计就完成了。这是对于一般电路设计而言,尤其是较大的项目,通常需要对电路的多次修改才能够通过电气检查。 (8 )存盘和报表输出:Protel DXP 提供了利用各种报表工具生成的报表(如网络表、元件清单等),同时可以对设计好的原理图和各种报表进行存盘和输出打印,为印刷板电路的设计做好准备。 3.2 原理图的设计方法和步骤 为了更直观地说明电路原理图的设计方法和步骤,下面就以图3 -2 所示的简单555 定时器电路图为例,介绍电路原理图的设计方法和步骤。

PCR扩增的原理和操作步骤

PCR 扩增反应的操作 第一节PCR 扩增反应的基本原理 一、聚合酶链式反应(PCR )的基本构成 PCR 是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA )的扩增反应,是模拟体内DNA 复制过程,在体外特异性扩增DNA 片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA 作图、DNA 测序、分子系统遗传学等。 PCR 基本原理: 是以单链DNA 为模板,4 种dNTP 为底物,在模板3'末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA 得到极大程度的扩增。在微量离心管中,加入与待扩增的DNA 片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA 膜板、四种dNTP 溶液、耐热Taq DNA 聚合酶、Mg 2+等。反应时先将上述溶液加热,使模板DNA 在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA 聚合酶的催化下,以dNTP 为原料,引物沿5'→ 3'方向延伸,形成新的DNA 片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。因此PCR 循环过程为三部分构成:模板变性、引物退火、热稳定DNA 聚合酶在适当温度下催化DNA 链延伸合成(见图)。 1.模板DNA 的变性 模板DNA加热到90~95 C时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。变性温度与DNA 中G-C 含量有关,G-C 间由三个氢键连接,而A-T 间只有两个氢键相连,所以G-C 含量较高的模板,其解链温度相对要高些。故PCR 中DNA 变性需要的温度和时间与模板DNA 的二级结构的复杂性、G-C 含量高低等均有关。对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起 始阶段热变性温度可以采用97 C ,时间适当延长,即所谓的热启动。 2.模板DNA 与引物的退火 将反应混合物温度降低至37~65C时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复 合物。退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。一般要求引物的浓度大大高于模板DNA 的浓度 ,并由于引物的长度显著短于模板的长度, 因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1?2min。 3.引物的延伸 DNA 模板-引物复合物在Taq DNA 聚合酶的作用下,以dNTP 为反应原料,靶序列为模板, 按碱基配对与半保留复制原理,合成一条与模板DNA 链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72 C条件下,Taq DNA聚合酶催化的合成速度大约为40?60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA 都可以起模板作用,因此每一轮循环以后, DNA 拷贝数就增加一倍。每完成一个循环需2?4min, —次PCR 经过30?40次循环,约2?3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA 产物的浓度不再增加。 PCR 的三个反应步骤反复进行,使DNA 扩增量呈指数上升。反应最终的DNA 扩增量可用Y =(1 + X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期, 靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数

Protel99SE层次原理图设计步骤

Protel99SE多张原理图的设计步骤 1. Protel实现一个系统多张原理图,电路模块化的使用方法。 “在Protel中如何实现多张图的统一编号”即多张原理图其实是一个电路板(为了模块化才在多个图中画的)。以前建的Protel工程不大,一张图基本就搞定了,也没尝试过多图的。研究了一下,也不是很难,作为总结写在这里。 以下是步骤:(前提是你已经在你的工程中画好了原理图) (1)、先建一张空白电路原理图,比如Global.sch,并打开该原理图。 (2)、在Global.sch窗口下选择Designed-> Create Symbol From Sheet, 然后在弹出的窗口中选择你的第一张图,这时会有另一个对话框出现 点击OK后,在Global.sch里鼠标会有变化,用鼠标在Globa l.sch 上画一个框就代表你的第一张原理图,其他原理图照此办理。 (3)、这样你可以在Global.sch中Annotate(Tool->Annotate)了。将Options标签下的Current Sheet Only 项的小勾去掉。然后再选择Ad vanced Options标签下需要编号的图纸文件名前打上小勾,点击OK,完成。 (4)、在Netlist Creation的时候注意在Sheets To Nitlist下选择“Ac tive Project”。

出处:https://www.360docs.net/doc/19162572.html,/pepsi360/blog/item/cc82cb07fcb64fc47b894 79b.html 2. Protel99SE多张原理图生成一张总网表的方法 (1). 新建一张原理图,点击"PlaceSheetSymbol"放置一个原理图符号,然后右击选其“proterties”,在filename 一栏输入你准备与之绑定的原理图文件名.确定ok。 依此类推...,直到把全部的原理图与每一个放置的原理图符号绑定完为止,最后保存。 (2). 打开全部的原理图(否则导入PCB时不能生成网络,只有元器件)。 (3). 打开"Design"菜单下的“Creat netlist..."选项,在"sheets to netlist "一栏选择“Active sheet plus sub sheets",然后点击ok,就可生成多张原理图的总网表。 (4). 在PCB图设计模式下导入总网表即可。 出处:https://www.360docs.net/doc/19162572.html,/s/blog_4cdc39f50100h4tm.html 3. [小窍门]如何把多张原理图整合起来 在实际工作中我们可能需要把多张原理图连接起来,在同一PCB文件上进行绘制,具体操作步骤如下: (1).首先要确保每张原理图都要放置互相连接的端口(即Port),相连的端口名称要一样。 (2).新建一个SCH文件或打开一个上面有足够空白空间的SCH文件。

流式细胞术 FCM 介绍及简易操作步骤

流式细胞术 FCM 介绍及简易操作步骤 分享 首次分享者:☆秋秋☆已被分享29次评论(0)复制链接分享转载举报一. 流式细胞术概述 流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术,?它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体,同时具有分析和分选细胞功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析,在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。 国内使用的流式细胞仪主要由美国的两个厂家生产: Becton-Dickinson公司(简称B-D公司)和BECKMAN- COULTER公司。流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。B-D?公司最新产品为FACS Vantage和FACS Calibur。BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL。EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA 和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能,?多用于科学研究。 二.流式细胞仪主要技术指标 1.流式细胞仪的分析速度: 一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。 3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。 4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。 5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。 三.流式细胞仪主要构造和工作原理流动室及液流驱动系统 流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信号检测与存储、显示、分析系统⑤细胞分选系统。 流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力,鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息

RT-PCR的实验原理与操作步骤

提取组织或细胞中的总RNA以其中的mRN作为模板,采用Oligo(dT)或随机引物利用逆转录酶反转录成cDNA再以cDNA为模板进行PCR扩增,而获得目的基因或检测基因表达。RT-PCF使测的灵敏性提高了几个数量级,使一些极为微量 RNA羊品分析成为可能。该技术主要用于:分析基因的转录产物、获取目的基因、合成cDNA探针、构建RNA高效转录系统。 (一)反转录酶的选择 1. Moloney 鼠白血病病毒(MMLV)反转录酶:有强的聚合酶活性,RNA酶H活 性相对较弱。最适作用温度为37 C。 2. 禽成髓细胞瘤病毒(AMV)反转录酶:有强的聚合酶活性和 RNA 酶 H 活性。 最适作用温度为42 C。 3. Thermus thermophilus 、 Thermus flavus 等嗜热微生物的热稳定性反转录 酶:在Mn2存在下,允许高温反转录 RNA,以消除RNA模板的二级结构。 4. MMLV 反转录酶的 RNase H- 突变体:商品名为 SuperScript 和 SuperScript U。此种酶较其它酶能多将更大部分的RNA转换成cDNA,这一 特性允许从含二级结构的、低温反转录很困难的 m 模板合成较长 cDNA 。 (二)合成 cDNA 引物的选择 1. 随机六聚体引物:当特定 mRNA 由于含有使反转录酶终止的序列而难于拷贝 其全长序列时,可采用随机六聚体引物这一不特异的引物来拷贝全长 mRNA 。 用此种方法时,体系中所有RNA分子全部充当了 cDNA第一链模板,PCR引物在扩增过程中赋予所需要的特异性。通常用此引物合成的 cDNA 中 96%来源 于 rRNA。 2. Oligo(dT) :是一种对 mRNA 特异的方法。因绝大多数真核细胞 mRNA 具有

protel 99se绘制原理图的主要步骤

protel 99se绘制原理图的主要步骤 通常,硬件电路设计师在设计电路时,都需要遵循一定的步骤。要知道,严格按照步 骤进行工作是设计出完美电路的必要前提。对一般的电路设计而言,其过程主要分为 以下3步: 1.设计电路原理图 在设计电路之初,必须先确定整个电路的功能及电气连接图。用户可以使用Protel99 提供的所有工具绘制一张满意的原理图,为后面的几个工作步骤提供可靠的依据和保证。 2.生成网络表 要想将设计好的原理图转变成可以制作成电路板的PCB图,就必须通过网络表这一桥梁。在设计完原理图之后,通过原理图内给出的元件电气连接关系可以生成一个网络 表文件。用户在PCB设计系统下引用该网络表,就可以此为依据绘制电路板。 3.设计印刷电路板 在设计印刷电路板之前,需要先从网络表中获得电气连接以及封装形式,并通过这些 封装形式及网络表内记载的元件电气连接特性,将元件的管脚用信号线连接起来,然 后再使用手动或自动布线,完成PCB板的制作。 原理图的设计步骤: 一般来讲,进入SCH设计环境之后,需要经过以下几个步骤才算完成原理图的设计:1.设置好原理图所用的图纸大小。最好在设计之处就确定好要用多大的图纸。虽然在 设计过程中可以更改图纸的大小和属性,但养成良好的习惯会在将来的设计过程中受益。 2.制作元件库中没有的原理图符号。因为很多元件在Protel99中并没有收录,这时就 需要用户自己绘制这些元件的原理图符号,并最终将其应用于电路原理图的绘制过程 之中。 3.对电路图的元件进行构思。在放置元件之前,需要先大致地估计一下元件的位置和 分布,如果忽略了这一步,有时会给后面的工作造成意想不到的困难! 4.元件布局。这是绘制原理图最关键的一步。虽然在简单的电路图中,即使并没有太 在意元件布局,最终也可以成功地进行自动或手动布线,但是在设计较为复杂的电路 图时,元件布局的合理与否将直接影响原理图的绘制效率以及所绘制出的原理图外观。

流式细胞仪细胞分选的操作步骤

细胞分选的简要操作步骤 一、上样前的准备 FACSCalibu可以分选细胞进行培养或功能性研究,而这些研究需要清洁环境以保持分选后细胞不受污染继续培养,因此在样本制备,上机检测分选等过程中需严格按无菌技术操作。 1、应用无菌技术制备下列无菌工作液。 3L 70%乙醇(用无菌蒸馏水配制) 5L无菌蒸馏水 5L无菌PBS 2、在干净的鞘液筒中加入3L 70%乙醇。盖紧盖子,振摇鞘液筒,确保桶内壁被乙醇充分洗 涤。安好鞘液筒。 3、将过滤器短接,否则乙醇将破坏滤膜。。 4、用70%乙醇冲洗收集管接口处,并喷洒进样口处的空气。 5、在收集管接口处安装2支BD 50ml收集管(若不使用浓缩器)。 6、放上一支装有70 %乙醇的进样管。 7、设分选门(画一个空门使机器进行分选操作)。 9、从Acquire menu选择SortSetup。在Sort Gate菜单中选择步骤7设定的分选门。按液流控制 键RUN。 10、在Setup 方框中打叉,点击Acquisition Control 菜单中Acquire。。 11、跑乙醇直至2支收集管注满(每管注满需要9min ),点击Pause, Abort。 12、再重复上述步骤2次,共需要1h。 13、断开鞘液筒,在鞘液筒中加入500mL无菌蒸馏水,振摇鞘液筒,倒掉液体,反复操作直 至洗净桶内壁残余乙醇。 14、在鞘液筒中加入3L无菌蒸馏水,盖紧盖子。安好鞘液筒。 15、在收集管接口处安装2支新的收集管。 16、放上一支装有无菌蒸馏水的进样管。 17、点击Acquisition Control 菜单中Acquire。 18、跑无菌蒸馏水直至2支收集管注满(每管注满需要9min),点击Pause Abort。 19、再重复上述步骤2次,共需要1h。 20、断开鞘液筒,在鞘液筒中加入3L无菌PBS盖紧盖子。安好鞘液筒。 21、在收集管接口处安装2支新的收集管。 22、放上一支装有无菌PBS的进样管。 23、点击Acquisition Control 菜单中Acquire。 24、第一支收集管(最左)中收集15 mL PBS后取下,使PBS由左至右流入下一收集管。重复 操作至2个管都收集了15 mL PBS为止。点击Pause, Abort。 25、在收集管接口处安装2支新的收集管。若要分选动物细胞,则应用无菌技术,用无菌 PBS4 % BSA缓冲液过夜包被50mL锥型管,将包被好的锥型管安置于收集接口。 26、按下述分选步骤分选样本 二、分选细胞

电路原理图设计步骤

电路原理图设计步骤 1.新建一张图纸,进行系统参数和图纸参数设置; 2.调用所需的元件库; 3.放置元件,设置元件属性; 4.电气连线; 5.放置文字注释; 6.电气规则检查; 7.产生网络表及元件清单; 8.图纸输出. 模块子电路图设计步骤 1.创建主图。新建一张图纸,改名,文件名后缀为“prj”。 2.绘制主图。图中以子图符号表示子图内容,设置子图符号属性。 3.在主图上从子图符号生成子图图纸。每个子图符号对应一张子图图纸。 4.绘制子图。 5.子图也可以包含下一级子图。各级子图的文件名后缀均是“sch”。 6.设置各张图纸的图号。 元件符号设计步骤 1.新建一个元件库,改名,设置参数; 2.新建一个库元件,改名; 3.绘制元件外形轮廓; 4.放置管脚,编辑管脚属性; 5.添加同元件的其他部件; 6.也可以复制其他元件的符号,经编辑修改形成新的元件; 7.设置元件属性; 8.元件规则检查; 9.产生元件报告及库报告; 元件封装设计步骤 1.新建一个元件封装库,改名; 2.设置库编辑器的参数; 3.新建一个库元件,改名; 4.第一种方法,对相似元件的封装,可利用现有的元件封装,经修改编辑形成; 5.第二种方法,对形状规则的元件封装,可利用元件封装设计向导自动形成; 6.第三种方法,手工设计元件封装: ①根据实物测量或厂家资料确定外形尺寸; ②在丝印层绘制元件的外形轮廓; ③在导电层放置焊盘; ④指定元件封装的参考点 PCB布局原则 1.元件放置在PCB的元件面,尽量不放在焊接面; 2.元件分布均匀,间隔一致,排列整齐,不允许重叠,便于装拆; 3.属同一电路功能块的元件尽量放在一起;

分子标记的实验原理及操作流程

AFLP分子标记实验 扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性(RAPD和限制性片段长度多态性(RFLP技术上发展起来的DNA多态性检测技术,具有RFLP技术高重复性和RAPD技术简便快捷的特点,不需象RFLP 分析一样必须制备探针,且与RAPD标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD技术重复性差的缺陷。同其他以PCR为基础的标记技术相比,AFLP技术能同时检测到大量的位点和多态性标记。此技术已经成功地用于遗传多样性研究,种质资源鉴定方面的研究,构建遗传图谱等。 其基本原理是:以PCR(聚合酶链式反应为基础,结合了 RFLP、RAPD的分子标记技术。把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的’接头”用与接头互补的但3-端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3-端严格配对的片段才能得到扩增,再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。 一、实验材料 采用青稞叶片提取总DNA 实验设备 1. 美国贝克曼库尔特CEQ8000毛细管电泳系统, 2. 美国贝克曼库尔特台式冷冻离心机, 3. 美国MJ公司PCR仪,

4. 安玛西亚电泳仪等。 三、实验试剂 1. 试剂:请使用高质量产品,推荐日本东洋坊TOYOBO公司的相关产品 DNA提取试剂盒; EcoRI酶,Msel酶,T4连接酶试剂盒; Taq 酶,dNTP, PCR reactio n buffer; 琼脂糖电泳试剂:琼脂糖,无毒GeneFinder核酸染料替代传统EB染料;超纯水(18.2M ? ? cm 2. 其他实验需要物品 微量移液枪(一套及相应尺寸Tip头,PCR管,冰浴等。 四、实验流程 1、总DNA提取 使用DNA提取试剂盒提取植物基因组DNA,通过紫外分光光度计检测或用标准品跑胶检测。一般来说,100ng的基因组DNA作为反应模板是足够的。 2、EcoR1酶消化(20ul体系/样品 EcoR1 1ul

原理图元件库的设计步骤(精)

原理图元件库的设计步骤 一. 了解欲绘制的原理图元件的结构 1. 该单片机实际包含40只引脚,图中只出现了38只, 有两只引脚被隐藏,即电源VCC(Pin40和GND(Pin20。 2. 电气符号包含了引脚名和引脚编号两种基本信息。 3. 部分引脚包含引脚电气类型信息(第12脚、第13脚、第32至第39脚。 4. 除了第18脚和第19脚垂直放置,其余水平放置。由于VCC及GND隐藏,所以放置方式可以任意。 5. 一些引脚的名称带有上划线及斜线,应正确标识。

二. 新建集成元件库及电气符号库 1. 在D盘新建一个文件夹D:/student 2. 建立一个工程文件,选择File/New/Project/Integrated Library,如:Dong自制元件库.LibPkg 3. 新建一个电气符号库,选择File/New/Library/Schematic Library,如:Dong自制元件库.SchLib 4. 追加原理图元件 在左侧的SCH Library标签中,点击库元件列表框(第一个窗口下的Add(追加按钮,弹出New Component Name对话框,追加一个原理图元件,输入8051并确认,8051随即被添加到元件列表框中。 三. 绘制原理图元件 1. 绘制矩形元件体 矩形框的左上角定位在原点,则矩形框的右下脚应位于(130,-250。 注意:图纸设置中各Grids都设为10mil。 2. 放置引脚 (1P0.0~P0.7的放置及属性设置 单击实用工具面板的引脚放置工具图标,并按Tab键,系统弹出【引脚属性】对话框: 【Display Name显示名称】文本框中输入“P0.0”; 【Designator标识符】文本框中输入“39”;

流式细胞术样本制备.

样本制备实例: 细胞表面蛋白荧光染色 (Immunofluorescence Staining 原理: 对细胞表面蛋白质的染色可以分为直接染色(DIF 和间接染色(IIF 两种。直接染色是指用直接联有荧光的抗体染色;而间接染色则是采用一级抗体和蛋白先结合,然后再用带有荧光的与一级抗体有亲和力的二级抗体进行染色。荧光染色的方法在蛋白质检测中使用非常普遍,因为只要采用合适的抗体,几乎任意的蛋白都可以用指定的荧光标记。但是由于各种蛋白表达的强度和荧光染料自身荧光强度不同,以及临近通道串色的问题, 多色实验的基本原则是:最强的染料配表达最弱的蛋白,最弱的染料配表达最强的蛋白; 如果使用染料的数量不大则应尽量避免使用临近通道。还需要考虑染料之间的溢漏、以及偶联染料已降解的问题。现出现了 405nm 的激光激发的新型染料如 BV421、 BV605等为多色实验提供了更多的选择空间。 材料: ?被检测细胞 ?FACS Lysing Solution (细胞裂解液, 1倍或 10倍, 10倍的要先稀释到 1倍后使用 ?相应的蛋白荧光染色抗体 (e.g. CD4 FITC, CD8 PE, CD3 APC 步骤: 1. 在 100 μL外周血加入抗体: a. 同型对照:PB 100μL +Isotope FITC 20 μL+Isotope PE 20 μL+Isotope APC 5 μL b. 单阳管:PB 100μL +CD4 FITC 20 μL+Isotope PE 20 μL+Isotope APC 5 μL c. 单阳管:PB 100μL +Isotope FITC 20 μL+CD8 PE 20 μL+ Isotope APC 5 μL

凯氏定氮仪原理及操作步骤

凯氏定氮仪原理: 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 1.有机物中的胺根在强热和CuSO4,浓H2SO4 作用下,硝化生成(NH4)2SO4 反应式为: 2NH2+H2S04+2H=(NH4)2S04 (其中CuSO4做催化剂) 2.在凯氏定氮器中与碱作用,通过蒸馏释放出NH3 ,收集于H3BO3 溶液中 反应式为: (NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO4 2NH3+4H3BO3=(NH4)2B4O7+5H2O 3.用已知浓度的H2SO4(或HCI)标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量反应式为: (NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3 (NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3 凯氏定氮仪操作步骤: (一)消化

1、准备6个凯氏烧瓶,标号。1、 2、3号烧瓶中分别加入适当浓度的蛋白溶液,样品要加到烧瓶底部,切勿沾在瓶口及瓶颈上。再依次加入硫酸钾-硫酸铜接触剂,浓硫酸,30%过氧化氢。4、5、6号烧瓶作为空白对照,用以测定试剂中可能含有的微量含氮物质,对样品测定进行校正。4、5、6号烧瓶中加入蒸馏水代替样液,其余所加试剂与1、2、3号烧瓶相同。 2、将加好试剂的各烧瓶放置消化架上,接好抽气装置。先用微火加热煮沸,此时烧瓶内物质炭化变黑,并产生大量泡沫,务必注意防止气泡冲出管口。待泡沫消失停止产生后,加大火力,保持瓶内液体微沸,至溶液澄清后,再继续加热使消化液微沸15min。在消化过程中要随时转动烧瓶,以使内壁粘着物质均能流入底部,以保证样品完全消化。消化时放出的气体内含SO2,具有强烈刺激性,因此自始自终应打开抽水泵将气体抽入自来水排出。整个消化过程均应在通风橱中进行。消化完全后,关闭火焰,使烧瓶冷却至室温。 (二)蒸馏和吸收 蒸馏和吸收是在微量凯氏定氮仪内进行的。凯氏定氮蒸馏装置种类甚多,大体上都由蒸气发生、氨的蒸馏和氨的吸收三部分组成。 1、仪器的洗涤 仪器安装前,各部件需经一般方法洗涤干净,所用橡皮管、塞须浸在10%NaOH溶液中,煮约10min,水洗、水煮10min,再水洗数次,然后安装并固定在一只铁架台上。 仪器使用前,微量全部管道都须经水蒸气洗涤,以除去管道

最详细的流式细胞仪实验方法

流式细胞仪实验方法 一、实验准备 1.标本制备: 2.最小化非特异性结合: 二、凋亡 1.凋亡的检测方法:网站和其它 2.PI染色法 3.Annexin V 法 4.TUNNEL法 三、细胞因子 1.激活的细胞因子 2.CBA 四、血小板 1.活化 2.活化检测 3.网织血小板 五、红细胞 1.网织红细胞 2.PNH 3.胎儿红细胞 六、肿瘤学 1.DNA 细胞周期 2.蛋白 3.多药耐药 4.微小残留白血病

第一部分标本处理 一、流式细胞术常规检测时的样品制备 (一)直接免疫荧光标记法 取一定量细胞(约1X106细胞/ml),在每一管中分别加入50μl的HAB,并充分混匀,于室温中静置1分钟以上(),再直接加入连接有荧光素的抗体进行免疫标记反应(如做双标或多标染色,可把几种标记有不同荧光素的抗体同时加入),。孵育20-60分钟后,用PBS(pH7.2—7.4)洗1-2次,加入缓冲液重悬,上机检测。本方法操作简便,结果准确,易于分析,适用于同一细胞群多参数同时测定。虽然直标抗体试剂成本较高,但减少了间接标记法中较强的非特异荧光的干扰,因此更适用于临床标本的检测。 (二)间接免疫荧光标记法 取一定量的细胞悬液(约1X106细胞/ml),先加入特异的第一抗体,待反应完全后洗去未结合抗体,再加入荧光标记的第二抗体,生成抗原—抗体—抗抗体复合物,以FCM检测其上标记的荧光素被激发后发出的荧光。本方法费用较低,二抗应用广泛,多用于科研标本的检测。但由于二抗一般为多克隆抗体,特异性较差,非特异性荧光背景较强,易影响实验结果。所以标本制备时应加入阴性或阳性对照。另外,由于间标法步骤较多,增加了细胞的丢失,不适用测定细胞数较少的标本。 二、最小化非特异性结合的方法 1.荧光标记的抗体的浓度应该合适,如果浓度过高,背景会因为非特异性的相互作用的增加而增加。 2.在使用第一抗体之前,将样品与过量的蛋白一起培育,如小牛血清蛋白(BSA),脱脂干奶酪,或来自于同一寄主的正常血清来作为标记的第二抗体。这个步骤通过阻断第一抗体和细胞表面或胞内结构的非特异性的交互作用来降低背景。 3.在使用第一抗体之后,将样品与5%至10%的来自于同一寄主的正常血清和作为标记的第二抗体一起培育。这个步骤会减少不必要的第二抗体与第一抗体、细胞表面或胞内结构之间的交互作用。 通过用来自于同样的样品的血清稀释标记过的抗体可以略过此步骤。此步骤适用于很多方面,但有时候它也会导致已标记的第二抗体和正常血清中的免疫球蛋白的免疫复合体的形成。这种复合体会优先与一些细胞结构进行结合,或者它们最终会导致期望得到的抗体活性的丢失。 4.使用F(ab’)2片段会使背景决定于第一或第二抗体与FC受体的全分子结合。大多数的第二抗体的F(ab’)2片段容易利用。而第一抗体的F(ab’)2片段一般是不能利用或很难制作。因此,在NaN3存在的条件下,将新鲜组织或

流式细胞仪操作步骤(FACSCalibur)

一、开机程序: 1.检查鞘液桶和废液桶。确认鞘液充满状态(鞘液为鞘液桶体积的3/4位 置,可以连续工作3个小时左右)、盖紧黑盖、管道畅通、废液桶有足 够空间容纳本批标本排弃的废液。如果要添加鞘液,要先释放鞘液桶中 气压。 2.依次打开流式细胞仪FACSCalibur稳压器、主机开关、电脑开关,打印 机。 3.气压阀置于加压位置,待流式细胞仪处于STANDBY状态,做Prime,以 排除管路中气泡。 二、运行FACSComp软件、检查仪器状况 1.制备三色标准微球样本。一般情况向1ml鞘液(或过滤PBS)中加入 1滴质控小微球,也可以根据实际情况调节浓度。 2.机器预热5 min,打开FACSComp软件,选择保持路径。选择所需校 正内容,如果使用的微球是新一批产品要输入微球的批号。 3.在软件界面左侧Assay Selection选项中选择质控类型,即实验过 程中是否需要清洗样品。 4.上样品,微球溶液上样之前要充分混匀。功能键设置在“RUN”。 5.仪器自动检查,并做电压、补偿等设置。 6.FACSComp软件运行完毕,显示结果通过测试。 7.做Set up。 8.打印校正结果,退出FACSComp程序。 备注:在质控过程中,如果提示收集细胞速度慢可以提高细胞收集速度,但是在调节灵敏度(Sens)时,一定要用“Low”的状态上样,保证仪器灵敏度的准确。在使用仪器过程中要养成好的习惯,在上样品过程中,仪器保持在“Low”“Standby”状态。 三、样品分析软件:CellQuest Pro 软件,选择“联机”。 1.

(2)对实验样本进行命名; (3)对实验通道进行预设(FSC,SSC,FL1-FL4)。 备注:如果界面被关闭,重新调出步骤: 2.调出质控模板。 3.画图 选择画图工具(一般选择散点图),Inspect 界面会自动弹出,对几个常用选项进行设定:将散点图选中(用鼠标点击散点图边框才能够 选中图形),将 更改横纵坐 备注:第一个散点图横坐标为FSC,纵坐标为SSC 。 (1一般获取10000个细胞。 (2 ( 3)将所有补偿调为0 (4)将非 52 (5)FSC和SSC (6 4.上阴性对照 将阴性对照管混匀,上机,功能键设置在“RUN”,散点图出现细胞信 号,第一个图:让细胞信号出现在自己看上去舒服的区域;其他三个 散点图,要将细胞信号调整到阴性区域,即左下角区域。通过移动通

原理图设计方法1

原理图设计方法1

原理图设计简介 本文简要介绍了原理图的设计过程,希望能对初学者有所帮助。 一.建立一个新的工程 在进行一个新的设计时,首先必须利用Project Manager对该设计目录进行配置,使该目录具有如下的文件结构。 Project Project directory

包含了该设计所用到 的所有库文件的路 径。 design library 该目 录下存放原理图等相关信息。 Design directory 下面举例说明: 启动Project Manager Open: 打开一个已有Project . New :建立一个新的Project . 点击New 如下图: worklib Design

此处添入你 的工程名 cadence将会以你所填入的project name如:myproject给project file和design library分别命 名为myproject.cpm和myproject.lib 点击下一步 Available Library:列出所有可选择的库。包括cadence自带库等。 Project Library:个人工程中将用到的所有库。 如myproject_lib 点击下一步

此处添入你 的设计名点击下一步 点击Finish完成对设计目录的配置。 为统一原理图库,所有共享的原理图库统一放在CDMA硬件讨论园地----PCB设计专栏内。 其中:libcdma 目录为IS95项目所用的器件库(已作废)。 libcdma1 目录为IS95项目之后所用的器件库(已作废)。

PCB原理图绘制步骤

原理图的绘制 A、新建工作空间和原理图 项目是每项电子产品设计的基础,在一个项目文件中包括设计中生成的一切文件,比如原理图文件、PCB图文件、以及原理库文件和PCB库文件。在项目文件中可以执行对文件的各种操作,如新建、打开、关闭、复制与删除等。但是需要注意的是,项目文件只是起到管理的作用,在保存文件时项目中的各个文件是以单个文件的形式存在的。所以每完成一个库就保存一次。 新建工作区间 1、在菜单栏中选择File-New-Project-PCB Project. 2、形成一个PCB-Project1.PriPCB面板然后重命名最后分别添加scematic sheet形成Sheet.SchDoc文件保存后面一次添加形成PCB.PcbDoc、Pcblib.Pcblib、schlib.schlib文件分别进行保存。 3、在schlib.schlib文件里面添加你需要的库文件进行保存这时候要区分引脚与网口标号,特别是引脚一定要放置正确按照所发的书上进行标号,创建一个库就保存一次直到你需要的几个模块的器件你都画好了。 4、然后找到库文件将你画好的东西放置到Sheet.SchDoc原理图上面这时候再来放置网口标号用线将该连接的地方连接起来画好了看看自己的和书上的区别检查是否有错误的地方,最后将文件进行保存。点击Libraries面板,点左上角Libraries按钮,

如果你想在所有工程里都用就在Imstalled里点Install添加,如果只想在当前工程里使用就在Projiect里面点Add Library。 5、画封装图。 根据我们焊电路板的板子来测量距离将需要的器件进行封装,封装的过程中那一页会出现一个十字号将焊盘放置在十字号上确保第一个焊盘的x、y值都为零然后按照自己测量的数据一次拍好焊盘在一个在Top Layer这一层上放置,防止完成后切换到Top Overlay上面进行划线封装。对于LED灯要表明它的正极同样的道理没画好一个库进行一次保存直到最终完成了。最终形成了一个PCB Project文件库。 6、所有元器件编号的方法 你可以双击元件来改变,Visual属性为True。还可以让所有元件自动编号。 7、形成PCB图 在原理图里面双击你要添加的那一个模块添加PCB封装图浏览一下然后查看引脚映射是否一一对应如果对应就是没有出现错误最后点设计然后点击形成PCB图就可以了这个过程中也有一个地方查错的只要对了就会有一个对勾。这也是我自己一个一个添加的原因防止哪里出现了错误难以发现、最终画好了是出现的虚实线连接。 8、布线绘制图 这里面可以选择自动布线也可以进行手动添加布线,布线的时候

流式细胞术实验方法

流式细胞术实验方法 PI 染色操作步骤 1、将单细胞悬液加入2ml圆底离心管中,离心,1500rpm , 5min,弃上清液。 2、加入PBS 1ml离心洗涤1次,弃上清。 3、加入2ml预冷的70%酒精,4℃固定30min,或是-20℃固定过夜。 4、离心,弃上清液。 5、用1×PBS 1ml洗涤1次,离心。 6、加入RNase A (工作浓度20ug/ml)于500ul 1×PBS中,37℃孵育30min,离心。 7、用1×PBS 1ml洗涤1次,离心。 8、加入PI(工作浓度50ug/ml) 于500ul 1×PBS中,室温避光孵育30min。 9、混匀,过300目筛网,置流式管中, 4℃冰箱保存,待测。 GFP PI染色操作步骤 1、将单细胞悬液加入2ml圆底离心管中,离心,1500rpm , 5min,弃上清液。 2、加入PBS 1ml离心洗涤1次,弃上清。 3、加入2ml预冷PFA,PFA的浓度根据细胞的特点进行调节,4℃固定30min。 以下步骤同PI 染色操作步骤的(4-9) 细胞表面直接免疫荧光染色操作步骤 1、将单细胞悬液加入2ml圆底离心管中,离心,1500rpm , 5min,弃上清液。 2、以冷PBA 1ml,离心洗涤,弃上清液。 3、加入用PBA稀释的荧光素标记的抗体200ul。用微量移液器轻轻吹打混匀,4℃或置冰上孵育30min-1h。 4、离心弃上清液。 5、加入冷PBS1ml,离心洗涤2次,以除去未结合的多余抗体成分。 6、向细胞中加入冷PBS 500ul,吹打混匀,置流式管中,4℃避光保存,待测。 细胞表面间接免疫荧光染色操作步骤 1-2、同细胞表面直接免疫荧光染色操作步骤 3、用PBA稀释的第一抗体200ul,对照管加入对应于一抗的正常实验动物IgG,轻轻吹打混匀,4℃或置冰上孵育1、5-2h。离心,弃上清。 4、 BS1ml离心洗涤1次,以去除多余的未结合的特异性抗体。 5、 PBA适当稀释的荧光素标记的第二抗体200ul。吹打混匀,4℃或置冰上孵育30min,避光。 6、 PBS 1ml离心洗涤2次。

原理及操作步骤

3 实验原理 3.1人工抗原的制备原理(以奥沙普秦为例) 奥沙普秦为小分子物质(分子质量小于500),本身不具有诱导产生抗体的能力,必须设法先将奥沙普秦与载体蛋白质偶联制备出相应的人工完全抗原,这是半抗原免疫分析的关键所在。合成人工抗原的机理为:水溶性的N-羟基琥珀酰亚胺(NHS)的羟基与奥沙普秦的羧基在脂溶性缩合剂二环己基碳二亚胺(DCC)的作用下,脱水缩合形成活泼酯化奥沙普秦中间化合物,然后载体蛋白在某一PH值下,一般是大于其等电点,是蛋白质中的氨基暴露出来,从而成为提供伯胺的底物,然后亲核进攻活性中间产物活泼酯化奥沙普秦,从而达到小分子化学物偶联到载体蛋白的目的。 3.2 ELISA技术的原理 ELISA 是以免疫学反应为基础,将抗原、抗体的特异性反应与酶对底物的高效催化作用相结合起来的一种敏感性很高的试验技术。免疫酶技术是将酶标记在抗体/抗原分子上,形成酶标抗体/酶标抗原,称为酶结合物。该酶结合物的酶在免疫反应后,作用于底物使之呈色,根据颜色的有无和深浅,定位或定量抗原/抗体。ELISA 法是免疫酶技术的一种,其特点是利用聚苯乙烯微量反应板(或球)吸附抗原/抗体,使之固相化,免疫反应和酶促反应都在其中进行。在每次反应后都要反复洗涤,这既保证了反应的定量关系,也避免了末反应的游离抗体/抗原的分离步骤。在ELISA 法中.酶促反应只进行一次,而抗原、抗体的免疫反应可进行一次或数次,即可用二抗(抗抗体)、三抗再次进行免疫反应。 目前常用的几种ELISA 方法有:测定抗体的间接法,测定抗原的双抗体夹心法和测定抗原的竞争法等。 3.3 ELISA竞争抑制法的原理 包被好的抗原与加入的抗原(标准抗原)形成竞争,如果抗体石特异性抗体,它就会与游离的标准抗原结合,而不与板上的检测

(完整word版)流式细胞术步骤.docx

利用流式细胞仪检测细胞周期和凋亡 1.细胞按每孔 4×105个的密度接种于 60 mm 细胞培养皿内,培养过夜后,用相应药物处理 细胞。 (设置实验组和对照组,实验组依辛伐他汀浓度分为 3 组,2μ mol/L、5μ mol/L、10μ mol/L 辛伐他汀组 正常对照组 (NC 组):胰岛素终浓度 0.058mg/L A 组:辛伐他汀终浓度2μ mol/L+胰岛素终浓度0.058mg/L ; B 组:辛伐他汀终浓度5μ mol/L+胰岛素终浓度0.058mg/L ; C 组:辛伐他汀终浓度10μ mol/L+胰岛素终浓度0.058mg/L ; 于 37℃, 5%CO2 培养箱中孵育 48h) 2. 胰酶消化收集细胞,并用 1 mL PBS 缓冲液清洗剩余细胞一次,全部加入15ML 管中。 3.800 rpm 离心 5 分钟,去除上清,加 5 mL PBS 缓冲液重悬细胞,再次离心弃上清,重复 两次,最后重悬细胞于0.5mL PBS 中。 4.用低速振荡器边震动边加入5 mL 预冷的 70%乙醇,固定, 4℃过夜。 5.次日将固定好的细胞以 1000 rpm 的转速离心 5 分钟,弃上清,加入 4 mL PBS 清洗一次,用 0.4 mL PBS 重悬细胞。 6. 加入 5 μL RNaseA( 10 mg/ml ) 37℃消化 1 (propidium iodide PI )4℃避光染色过夜(或者小时,加入终浓度50 mg/mL碘化丙啶37℃避光染色 1 小时),在 EPICS XL 流 式细胞仪上分析。 利用流式细胞抗体检测检测细胞膜表面蛋白的变化 1.细胞按每孔 4×105个的密度接种于 60 mm 细胞培养皿内,培养过夜后,用相应药物处理 细胞。 2.胰酶消化收集细胞,并用 1 mL PBS 缓冲液清洗剩余细胞一次,全部加入15ML 管中。 3 . 800 rpm 离心 5 分钟,去除上清,加 5 mL PBS 缓冲液重悬细胞,再次离心弃上清,重复 两次,最后重悬细胞于0.1mL PBS中,并转移到 1.5 mL离心管中。 4. 按照1:100加入1UL一抗(如下图对应),置于垂直混合液上室温孵育1-2小时。 5. 1500rpm ,小型离心机离心 5 分钟,去除上清,加 1 mL PBS 缓冲液重悬细胞,再次离心弃上清,重复 3 次,最后将洗好的细胞重悬于0.1mL PBS 中。

相关文档
最新文档