正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用.

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用.
正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用.

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用

071330225 张洋洋

目录

正态分布函数 (3)

正态分布应用领域 (4)

正态分布案例分析 (5)

指数分布函数 (5)

指数分布的应用领域 (6)

指数分布案例分析 (7)

对数正态分布函数 (7)

对数正态分布的应用领域 (9)

对数正态分布案例分析 (9)

威布尔分布函数 (10)

威布尔分布的应用领域 (16)

威布尔分布案例分析 (16)

附录 (18)

参考文献 (21)

正态分布函数【1】

0.20

0.15

0.10

0.05

105510

正态分布概率密度函数f(t)

蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 绿线:μ=1 σ=3

均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

1.0

0.8

0.6

0.4

0.2

105510

正态分布函数F(t)

蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3

均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。

1.0

0.8

0.6

0.4

0.2

105510

正态分布可靠度函数R(t)

蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3

均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。

2.5

2.0

1.5

1.0

0.5

105510

正态分布失效率函数λ(t)

蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3

均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。正态分布应用领域【1】

正态分布是一种最常见的连续型随机变量的分布,它在概率论和数理统计中无论在理论研究还是实际应用上都占有头等重要的地位,这是因为它在误差理论、无线电噪声理论、自动控制、产品检验、质量控制、质量管理等领域都有广泛应用.数理统计中许多重要问题的解决都是以正态分布为基础的.某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布;有些资料虽为偏态分布,但经数据变换后可成为正态或近似正态分布,故可按正态分布规律处理。

正态分布案例分析【1】

例1.10 某地1993年抽样调查了100名18岁男大学生身高(cm),其均数=172.70cm,标准差s=4.01cm,①估计该地18岁男大学生身高在168cm以下者占该地18岁男大学生总数的百分数;②分别求X+-1s、X+-1.96s、X+-2.58s范围内18岁男大学生占该地18岁男大学生总数的实际百分数,并与理论百分数比较。

本例,μ、σ未知但样本含量n较大,按式(3.1)用样本均数X和标准差S分别代替μ和σ,求得u值,u=(168-172.70)/4.01=-1.17。查附表标准正态曲线下的面积,在表的左侧找到-1.1,表的上方找到0.07,两者相交处为0.1210=12.10%。该地18岁男大学生身高在168cm以下者,约占总数12.10%。其它计算结果见表3。

表3 100名18岁男大学生身高的实际分布与理论分布

分布身高/cm 实际分布人数实际分布百分数理论分布X+-1s 168.69~176.71 67 67 68.27 X+-1.96s 164.84~180.56 95 95 95.00 X+-2.58s 162.35~183.05 99 99 99.00

指数分布函数

30

25

20

15

10

5

246810

指数分布概率密度函数f(t)

蓝线:θ=2 红线:θ=3

θ值改变,图像陡峭度改变,且θ值越小,图像越陡,上升的越快。

1.0

0.8

0.6

0.4

0.2

246810

指数分布函数F(t)

蓝线:θ=2 红线:θ=3

θ值改变,图像陡峭度改变,且θ值越小,图像越陡,上升的越快。

1.0

0.8

0.6

0.4

0.2

246810

指数分布可靠度函数R(t)

蓝线:θ=2 红线:θ=3

θ值改变,图像陡峭度改变,且θ值越小,图像越陡,下降的越快。

指数分布的应用领域【1】

在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果。这种分布表现为均值越小,分布偏斜的越厉害。指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相

同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。

指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。

指数分布案例分析【2】

对数正态分布函数

2.0

1.5

1.0

0.5

0.51.01.52.02.53.0 0.8

0.6

0.4

0.2

0.5 1.0 1.5 2.0 2.5 3.0

对数正态分布概率密度函数f(t)

蓝线:μ=0 σ=0.5 红线:μ=0.5 σ=0.5 棕线:μ=0.8 σ=0.5

图像随μ的增大而变得陡峭,且向f(t)轴靠近。(上图)

蓝线:μ=0 σ=0.5 红线:μ=0 σ=0.7 棕线:μ=0 σ=1 绿线:μ=0 σ=1.3 图像随σ的增大先下降再上升,且向f(t)轴靠近。(下图)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

246810

对数正态分布可靠度函数R(t)

蓝线:μ=0 σ=0.5 红线:μ=0.8 σ=0.5 棕线:μ=0 σ=1

μ越大,图像越陡,下降的越快;σ越小,图像越陡,下降的越快。

4

3

2

1

246810

对数正态分布失效率函数λ(t)

蓝线:μ=0 σ=0.5 红线:μ=0.8 σ=0.5 棕线:μ=0 σ=1

图像随μ的增大而变得陡峭,且向λ(t)轴靠近。图像随σ的增大先下降再上升,且向λ(t)轴靠近。

对数正态分布的应用领域【3】

对数正态分布在实际中有着重要的应用,如在经融市场的理论研究中,著名的期权定价公式以及许多实证研究都用对数正态分布来描述经融资产的价格。在工程、医学和生物学领域里对数正态分布也有着广泛的应用。

对数正态分布案例分析【4】

即此股票有效期为6个月的一份欧式看涨期权的价值为9.52元,如果发现此期权的价格低于9.52元可以考虑买入,如果价格高于9.52元则考虑卖出此期权.

威布尔分布函数

1.5

2.02.5

3.03.5

4.0

0.5

1.0

1.5

图一

0.6

0.4

0.2

2345

图2

2.5

2.0

1.5

1.0

0.5

2345

图3

对数正态分布概率密度函数f(t)

图1:γ=1,η=1 蓝线 m=0.5 红线 m=1 棕线m=2 绿线 m=3

随m的变大,图像由凹变缓再变凸。

图2:m=1,γ=1 蓝线η=0.5 红线η=1 棕线η=2 绿线η=3

随γ的变大,图像由陡变缓。

图3:m=1,η=1 蓝线γ=0.5 红线γ=1 棕线γ=2 绿线γ=3

随γ的变大,图像由缓变陡。

0.9

0.8

0.7

0.6

246810

图1

1.0

0.8

0.6

0.4

0.2

246810

图2

0.95

0.90

0.85

45678910

图3

对数正态分布函数F(t)

图1:γ=0,η=1 蓝线 m=0.5 红线 m=1 棕线m=2 绿线 m=3

随m增大,图像越陡,上升越快。

图2:m=1,γ=0 蓝线η=0.5 红线η=1 棕线η=2 绿线η=3

随η增大,图像越缓,上升越慢。

图3:m=1,η=1 蓝线γ=0 红线γ=1 棕线γ=2 绿线γ=3

图像随γ变化而平移,γ变大,向右移。

1.0

0.8

0.6

0.4

0.2

2345

图1

1.0

0.8

0.6

0.4

0.2

2345

图2

4

3

2

1

1.0 1.5

2.0 2.5

3.0

图3

对数正态分布可靠度函数R(t)

图1:γ=1,η=1 蓝线 m=0.5 红线 m=1 棕线m=2 绿线 m=3

随m增大,图像下降由先快后慢变成先慢后快。

图2:m=1,γ=1 蓝线η=0.5 红线η=1 棕线η=2 绿线η=3

随η增大,图像下降由陡变缓。

图3:m=1,η=1 蓝线γ=0.5 红线γ=1 棕线γ=1.5 绿线γ=2

随γ增大,图像下降由缓变陡。

6

5

4

3

2

1

1234

图1

25

20

15

10

5

1234

图2

25

20

15

10

5

12345

图3

对数正态分布失效率函数λ(t)

图1:γ=0,η=1 蓝线 m=0.5 红线 m=1 棕线m=1.5 绿线 m=2

随m增大,图像由下降到上升。

图2:m=3,γ=0 蓝线η=0.5 红线η=1 棕线η=2 绿线η=3

随η增大,图像上升变得缓慢。

图3:m=3,η=1 蓝线γ=0 红线γ=1 棕线γ=2 绿线γ=3

图像随γ变化而平移,γ增大向右平移。

威布尔分布的应用领域【1】

1.生存分析

2.工业制造:研究生产过程和运输时间关系

3.极值理论

4.预测天气

5.可靠性和失效分析

6.雷达系统:对接受到的杂波信号的依分布建模

7.拟合度:无线通信技术中,相对指数衰减频道模型,威布尔衰减模型对衰减频道建模有较好的拟合度

8.量化寿险模型的重复索赔

9.预测技术变革

10.风速:由于曲线形状与现实状况很匹配,被用来描述风速的分布

威布尔分布案例分析【5】

以白云鄂博矿医风电场选址为例.该地区的多年平均风速为v=5.5m/s(1972~2006年),在测风年(2005年6月~2006年5月)内测风塔上10m年平均风速v为6.1m/s.最大风速值为Vmax=16.7以.观测时间T=8760h.测风塔海拔高度为1612m。拟定风电场测风塔上10m 的月平均风速见表l:

根据所给的资料.利用上述4种方法分别对威布尔分布的参数k和c进行计算.计算结果见表2

将表2中的k和c值输人到威布尔分布函数曲线的仿真系统图1中,通过计算机模拟仿真.得到的拟合曲线如图3。

由图3可知,上述4种方法拟合出来的曲线基本重合,且通过计算得到的威布尔分布函数。可以确定风速的分布形式.风力发电机组设计的各个参数.因此给实际使用带来了许多方便。根据拟合的威布尔曲线可以很好地描述白云鄂博矿区10In 的风速分布情况.并能得出对该地区的风能资源评价的参数,如平均风功率密度,风能可利用小时数。

图3白云鄂博矿区10m 的威布尔分布函数曲线

附录:

指数函数C语言程序:

#include

#include

#include

float E(float t,float s)

{

if(t<0||s<0) return 0;

else

{

float x=-t/s;

float y=1-exp(x);

return y;

}

}

void main()

{

float t,float s;

FILE *fp;

char name[10];

printf("please input the file name:"); gets(name);

fp=fopen(name,"w");

if(fp==NULL)

{

printf("cannot open file");

exit(1);

}

else

scanf("%f",&s);

fprintf(fp,"%f\n",s);

for(t=0;t<20;t++)

{

fprintf(fp,"%f ",t);

fprintf(fp,"%f\n",E(t,s));

}

fclose(fp);

}

指数函数F(t)

#include

#include

float E(float t,float s)

{

if(t<0||s<0) return 0;

else

{

float x=t/s;

float y=exp(x)/s;

return y;

}

}

void main()

{

float t,float s;

FILE *fp;

char name[10];

printf("please input the file name:"); gets(name);

fp=fopen(name,"w");

if(fp==NULL)

{

printf("cannot open file");

exit(1);

}

else

scanf("%f",&s);

fprintf(fp,"%f\n",s);

for(t=1;t<20;t++)

{

fprintf(fp,"%f ",t);

fprintf(fp,"%f\n",E(t,s));

}

fclose(fp);

}

指数密度函数f(t)

#include

#include

float E(float t,float s)

{

if(t<0||s<0) return 0;

else

{

float x=-t/s;

float y=exp(x);

return y;

}

}

void main()

{

float t,float s;

FILE *fp;

char name[10];

printf("please input the file name:"); gets(name);

fp=fopen(name,"w");

if(fp==NULL)

{

printf("cannot open file");

exit(1);

}

else

scanf("%f",&s);

fprintf(fp,"%f\n",s);

for(t=0;t<20;t++)

{

fprintf(fp,"%f ",t);

fprintf(fp,"%f\n",E(t,s));

}

fclose(fp);

}

指数可靠度函数R(t)

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用.

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用 071330225 张洋洋

目录 正态分布函数 (3) 正态分布应用领域 (4) 正态分布案例分析 (5) 指数分布函数 (5) 指数分布的应用领域 (6) 指数分布案例分析 (7) 对数正态分布函数 (7) 对数正态分布的应用领域 (9) 对数正态分布案例分析 (9) 威布尔分布函数 (10) 威布尔分布的应用领域 (16) 威布尔分布案例分析 (16) 附录 (18) 参考文献 (21)

正态分布函数【1】 0.20 0.15 0.10 0.05 105510 正态分布概率密度函数f(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 绿线:μ=1 σ=3 均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。 1.0 0.8 0.6 0.4 0.2 105510 正态分布函数F(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。

1.0 0.8 0.6 0.4 0.2 105510 正态分布可靠度函数R(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。 2.5 2.0 1.5 1.0 0.5 105510 正态分布失效率函数λ(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。正态分布应用领域【1】 正态分布是一种最常见的连续型随机变量的分布,它在概率论和数理统计中无论在理论研究还是实际应用上都占有头等重要的地位,这是因为它在误差理论、无线电噪声理论、自动控制、产品检验、质量控制、质量管理等领域都有广泛应用.数理统计中许多重要问题的解决都是以正态分布为基础的.某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布;有些资料虽为偏态分布,但经数据变换后可成为正态或近似正态分布,故可按正态分布规律处理。

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

MATLAB绘制威布尔分布曲线

MATLAB 绘制威布尔分布曲线 威布尔分布概率密度函数: 1(/)(,,)()a a x m a x f x m a e m m --= 威布尔分布概率分布函数: ()()1a mx F x e -=- 其中m>0,是尺度参数也叫比例参数,a>0是形状参数。 X 是随机变量,是未知参数,表示时间延滞。 图1:设定尺度参数m 值为1,取五个形状参数a ,自变量x 代码如下: m=[1 1 1 1 1,2]; a=[0.5 1 1.5 2.5 5,5]; x=linspace(0,5); linecolor=['r','b','g','k','y']; for n=1:5 y1=m(n)*a(n)*((m(n)*x).^(a(n)-1)).*(exp(-(m(n)*x).^a(n))); y=1-exp(-(m(n)*x).^a(n)); subplot(1,2,2) title('图1:概率分布函数'); plot(x,y);

hold on; subplot(1,2,1) type=linecolor(n); title('图1:概率密度函数'); plot(x,y1,type); hold on; legend('m=1,a=0.5','m=1,a=1','m=1,a=1.5','m=1,a=2.5','m=1,a=5'); end 图2:设定形状参数a值为2,取五个尺度参数m,自变量x 代码如下: m=[0.5 0.75 1 1.5 1.75,2]; a=[2 2 2 2 2.5]; x=linspace(0,5); linecolor=['r','y','b','g','k']; for n=1:5 y1=m(n)*a(n)*((m(n)*x).^(a(n)-1)).*(exp(-(m(n)*x).^a(n))); y=1-exp(-(m(n)*x).^a(n)); subplot(1,2,2) title('图2:概率分布函数'); plot(x,y); hold on;

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

指数函数对数函数计算题30-1

指数函数对数函数计算题30-1 1、计算:lg 5·lg 8000+06.0lg 6 1lg )2 (lg 23++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:23log 1log 66-=x . 4、解方程:9-x -2×31-x =27. 5、解方程:x )8 1(=128. 6、解方程:5x+1=12 3-x . 7、计算:10log 5log )5(lg )2(lg 2233+ +·.10 log 18 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求函数121log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322+-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 19、解指数方程:22)223()223( =-++-x x ±2 20、解指数方程:014332 14111=+?------x x 21、解指数方程:042342222=-?--+-+x x x x

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

指数函数和对数函数复习有详细知识点和习题详解

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(*∈N n ()0 10a a =≠ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2) ()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8 - (2)() 2 10- (3)()44 3π- (4) ()() b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++=

指数函数和对数函数 知识点总结

指数函数和对数函数 知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,?? ?<≥-==) 0() 0(||a a a a a a n n 2.正数的分数指数幂,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质),,0(R s r a ∈> (1)r a ·s r r a a += ;(2)rs s r a a =)( ;(3) s r r a a ab =)( (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明: ○1 注意底数的限制0>a ,且a x N a =?log ;③注意对数的书 写格式. N a log 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 2、对数的运算性质:如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ;③n a M log n =M a log )(R n ∈. 注意:换底公式a b b c c a log log log =(0>a ,且1≠a ;0>c ,且 1≠c ;0>b ) . 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. 3、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,

指数函数和对数函数的重点知识

指数函数和对数函数的重点知识 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为 1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210 ,,的图象的认识。 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐 标都大于1,在第二象限内的纵坐标都小于1,y x =?? ???12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101 ,则,则 (4)y y x x ==210,的图象自左到右逐渐上升,y x =?? ? ? ?12的图象逐渐下降。 (4)当a >1时,y a x =是增函数, 当01<

基本初等函数I(指数函数与对数函数)

基本初等函数I(指数函数与对数函数)

基本初等函数(指数函数和对数函数 一、基本内容串讲 本章主干知识:指数的概念与运算,指数函数、图象及其性质,对数的概念与运算,对数函数、图象及其性质,幂函数的概念 1.指数函数:(1)有理指数幂的含义及其运算性质: ①r s r s a a a +?=;②()r s rs a a =;③()(0,0,,)r r r ab a b a b r s Q =>>∈。 (2)函数)10(≠>=a a a y x 且叫做指数函数。 x a y = 0 < a < 1 a > 1 图 象 性 质 定义 域 R 值域 (0 , +∞) 定点 过定点(0,1),即x = 0时,y = 1 (1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。 (2)0 < a < 1,当x > 0时,0 < y < 1;当x < 0时,y > 1。 单调性 在R 上是减函数 在R 上是增函数 对称性 x y a =和x y a -=关于y 轴对称 2.对数函数 (1)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么: ①N M MN a a a log log log +=; ②N M N M a a a log log log -=; ③)(log log R n M n M a n a ∈=。

(2)换底公式:)0,10,10(log log log >≠>≠>= b c c a a a b b c c a 且且 x y a log = 0 < a < 1 a > 1 图 象 定义域 (0 , +∞) 值域 R 性 质 (1)过定点(1,0),即x = 1时,y = 0 (2)在R 上是减函数 (2)在R 上是增函数 (3)同正异负,即0 < a < 1 , 0 < x < 1或a > 1 , x > 1时, log a x > 0; 0 < a < 1 , x > 1或a > 1 , 0 < x < 1时,log a x < 0。 3.幂函数 函数αx y =叫做幂函数(只考虑2 1 ,1,3,2,1-=α的图象)。 二、考点阐述 考点1有理指数幂的含义 1、化简1 327()125 -的结果是( ). A. 35 B. 5 3 C. 3 D.5 考点2幂的运算 2、(1)计算:25.021 21 32 5.032 0625.0])32.0()02.0()008.0()9 4 5()833[(÷?÷+---; (2)化简: 5332 33 23 233 2 3 134)2(248a a a a a b a a ab b b a a ??? -÷++-- 。 3、已知1 12 2 3x x - +=,求 22332 2 23 x x x x --+-+-的值。

相关文档
最新文档