系统辨识复习资料

系统辨识复习资料
系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法

定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。

辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型

辨识的三大要素:输入输出数据、模型类、等价准则

基本原理:

步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。

基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等)

2随机语言的描述

白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。

白噪声过程(一系列不相关的随机变量组成的理想化随机过程)

相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度:

M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。

M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性

辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。

3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n

i i i i y k a

y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0

()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,,

)

()(2τδστ=W R +∞

<<∞-=ωσω2)(W S )}({k

W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω==

∞-∞=-l l j W W e l R S ???≠=≈+=?0

,

00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

第二种含噪声的被辨识系统数学模型:它与第一种的区别仅在于噪声的状况不同,第二种被辨识系统如下图所示:

ξ(k)为噪声序列,假设为零均值独立同分布的平稳随即序列,且 ()()()y k x k k ξ=+ 由由以上两式可推导出0011()()()()n n

i i i i y k a y k i b u k i v k ===

-+-+∑∑,式中01

()()()n i i v k k a k i ξξ==--∑

4阐述最小二乘辨识方法的原理、数学模型以及推导

数学模型:

推导过程:

含噪声的数学模型为:0011()()()()n n

i i i i y k a

y k i b u k i v k ===-+-+∑∑ 式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0

()()()T y k k v k ψθ=+ 0θ是被辨识系统的真实参数向量(2n 维,n 为系统的阶数)。

为了采用最小二乘法进行参数估计,令上式中的k=n+i,n+i+1,…N+i,并写成矩阵形式,其中I,N 均为正整数.则有 0()()()Y N N V N θ=ψ+

如果我们根据上述辨识系统的输入输出观测信息来构造一个模型,其中参数向量为1212[]T

n n a a a bb b θ=L L 。则应有11()()()(,)n n

i i i i y k a y k i b u k i e k θ===-+-+∑∑ 并定义其中e (k,θ)为方程误差.在这种情况下,方程的误差项除了噪声v(k)误差外,还应包括

由于模型参数θ不等于真实参数θ0而引起的误差.显然有

0(,)()e k v k θ=,导出()()(,)Y N N N θεθ=ψ+。

(,)N εθ为向量方程误差。

(,)()()N Y N N εθθ=-ψ

()(,)(,)[()()][()()]T T J N N Y N N Y N N θεθεθθθ==-ψ-ψ

最小二乘的基本思想是:找到一个 0θ的估计值θ∧

,使性能指标

2()(,)(,)(,)N def T T

k n J N N e k θεθεθεεθ=??→==∑取极值。根据一阶倒数为零,二阶偏导大于零,那么从上式中可解出122()()2T T LS T Y

J θθθ∧

-=ψψψ?=ψψ?。 优缺点:最小二乘法具有简单实用、递推算法的收敛可靠、几乎不需要验前统计知识等优点,而且当方程误差为白噪声的条件下,最小二乘参数估计是无偏的、一致和有效的估计。所以它是一种最基本的参数估计方法,并且得到了广泛的应用。但它具有以下两方面的缺点:当模型噪声是有色噪声时,最小二乘参数估计不是无偏的、一致的估计;递推最小二乘法随着数据的增长,将出现所谓的“数据饱和”现象。

5递推最小二乘的基本思想

它的基本思想可以概括为:本次(新)的估计值 ()k θ∧ = 上次(老)的估计值 (1)k θ∧

- + 修正项即利用本次观测的结果对老的观测数据进行修正。 递推公式的推导:

1(11)

(1)()(1)[(1)(1)()](12)

(1)(1)(1)(1)()(1)(1)()(13)(1)()(1)(1)()(1)

T WLS WLS WLS T T N N L N y N N N L N P N N w N P N N N P N P N P N w N N P N N θθψθψψψψψ∧∧∧--+=+++-+-+=+++++-+=-++++ 在公式1-1中,(1)WLS N θ∧+为本次新的估计值,()WLS N θ∧

为上次老的估计值,(1)[(1)(1)()]T

WLS L N y N N N ψθ∧++-+为修正项。且L(N+1)为增益矩阵。

6最小二乘的统计特性

无偏性:无偏性是用来衡量估计值是否围绕真值波动,它是估计值的一个重要统计特 性。所谓无偏性,通俗一点讲,它是指:设 是 的一个估计值,满足 一致性:估计值的一致性,是人们最关系的一种统计特性。如果估计值具有一致性,

说明当样本无限增大时,它将以概率1收敛于真值。谓估计的一致性是指:如果根据无穷多的输入、输出信息(即 N →∞ ),所得到的估计 无限趋近于真值 有效性:有效性是估计的另一个重要统计特性。它意味着估计值偏差的均方差阵将达到最小

值。从无偏性的要求来看,无偏估计量不是唯一的。这就需要在无偏估计量中选择好的。估计值的均方误差是衡量估计值好坏的重要指标。

7广义最小二乘基本思想

提出:广义最小二乘法(GLS )是针对有色噪声不能给出无偏一致估计,而在最小二乘法基础上作了某些改进的一种参数估计方法。

基本思想:把一个含有噪声的模型0

()()()Y N N V N θ=ψ+中的有色噪声 ()V N 经过形成滤波器(称白化滤波器)转化为零均值的白噪声 ()M N (噪声滤波)。进而将模型化成一个等?θ0?E()θ

θ=

效的含有白噪声的模型。**0()()()Y N N M N θ=ψ+然后针对这一等效的模型,再用最小二乘法求出0

θ的一致估计。

8限定记忆最小二乘如何提出?解决什么问题?基本思想?

增长记忆估计: 递推最小二乘法中,利用不断增长的全部观测信息,包括历史观测数据和最新观测数据。通过不断递推计算来获得模型参数。

限定记忆估计:进行参数估计时,所取得的观测数据始终是有限组的最新观测数据,每增加一组最新的观测数据,就随即丢弃一组最老的观测数据。

提出: 限定记忆最小二乘是最小二乘的改进,适用时变参数估计的一种递推算法。它可以有效地克服数据饱和现象,防止估计发散。

基本思想:1???()(1)(1)N N N LS LS LS N N N θθθ+???→+?????→+递推去掉一组老数据 其中?()N LS

N θ?是N 时刻基于(),(1),,(1);(),(1),,()u n u N u N y n y n y N +-+L L 这2N+1个数据情况下的最小二乘估计;

1?(1)N LS N θ++?是N+1时刻获得一组数据u (N ),y(N+1)后根据?()N LS

N θ递推得到的最小二乘估计;

?(1)N LS

N θ+?是N+1时刻获得一组新数据u(N),y(N+1)后,去掉一组最早的数据, u(n), y(n);根据u(n+1),u(n+2),…,u(N);y(n+1),y(n+2),…,y(N+1)这2N+1个数据得到的参数估计值。 显然,这种方法所获得的参数估计始终是2N+1个最新数据所提供的信息,每增加一组新数据,就要去掉一组最早的数据,数据长度始终保持不变,起到了隔断历史数据的最用。所以,它能够更有效地克服数据饱和,防止估计发散。

9谈谈对系统辨识应用的理解?

系统辨识是建模的一种方法,包括经典的系统辨识方法和现代的系统辨识,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。

系统辨识大作业1201张青

《系统辨识》大作业 学号:12051124 班级:自动化1班 姓名:张青 信息与控制工程学院自动化系 2015-07-11

第一题 模仿index2,搭建对象,由相关分析法,获得脉冲响应序列?()g k ,由? ()g k ,参照讲义, 获得系统的脉冲传递函数()G z 和传递函数()G s ;应用最小二乘辨识,获得脉冲响应序列? ()g k ;同图显示两种方法的辨识效果图;应用相关最小二乘法,拟合对象的差分方程模型;构建时变对象,用最小二乘法和带遗忘因子的最小二乘法,(可以用辨识工具箱) 辨识模型的参数,比较两种方法的辨识效果差异; 答:根据index2搭建结构框图: 相关分析法:利用结构框图得到UY 和tout 其中的U 就是题目中要求得出的M 序列,根据结构框图可知序列的周期是 1512124=-=-=n p N 。 在command window 中输入下列指令,既可以得到脉冲相应序列()g k :

aa=5;NNPP=15;ts=2; RR=ones(15)+eye(15); for i=15:-1:1 UU(16-i,:)=UY(16+i:30+i,1)'; end YY=[UY(31:45,2)]; GG=RR*UU*YY/[aa*aa*(NNPP+1)*ts]; plot(0:2:29,GG) hold on stem(0:2:29,GG,'filled') Grid;title('脉冲序列g(τ)') 最小二乘法建模的响应序列 由于是二阶水箱系统,可以假设系统的传递函数为2 21101)(s a s a s b b s G +++= ,已知)(τg ,求2110,,,a a b b

系统辨识考试汇总

基于人工神经网络的二阶系统辨识 摘要:BP神经网络是误差反向传播神经网络的简称,提供了一个处理非线 v k的二阶系统,提出了改进的BP神经网络性问题的模型。本文针对带有噪声() 对二阶系统的辨识方法,以达到对系统的精确辨识;通过仿真实验数据可得,神经网络的输出与被辨识系统输出之间的误差很小(当k>=8时,error<0.1%);首先介绍了人工神经网络的系统辨识方面的发展与研究现状,然后介绍常规BP算法和改进的BP算法,最后通过一个具体的二阶系统的实例充分证明了改进BP 神经网络具有的良好辨识效果,实用性强。 关键字:BP神经网络;系统辨识;二阶非线性系统 Second-order system identification based on artificial neural networks WeiLu (College of Electrical and Control Engineering, Xi’an University of Science and Technology,Xi’an 710054,China) Abstract:BP neural network is the abbreviation of erroneous reverse transmission neural network, which provides a model of dealing with nonlinear problems.In this paper, the second-order system with noise, and puts forward the improved BP neural network to second order system modeling method. In order to achieve an accurate identification of the system.Through the simulation experiment the error between the output of neural network and the output of identification system is very small(The error<0.1% when k>=8). First, introduced the artificial neural network system identification aspects of development and research,Then, introduced the conventional BP algorithm and improved BP algorithm,Finally, Through an example of a specific second-order system fully proved that the improved BP neural network has good recognition results and practical. Key words:BP neural network;System Identification;Second-order nonlinear system 一绪论 在自然科学和社会科学的各个领域中,越来越多需要辨识系统模型的问题 已广泛引起人们的重视,很多学者在研究有关线性和非线性的辨识问题。

系统辨识研究生期末结课作业-中北大学-余红英老师

BP神经网络 (一)定义 误差反向传播的BP算法简称BP算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。 (二)BP网络特点 1)是一种多层网络,包括输入层、隐含层和输出层; 2)层与层之间采用全互连方式,同一层神经元之间不连接; 3)权值通过δ学习算法进行调节; 4)神经元激发函数为S函数; 5)学习算法由正向传播和反向传播组成; 6)层与层的连接是单向的,信息的传播是双向的。 (三)BP主要应用 回归预测(可以进行拟合,数据处理分析,事物预测,控制等)、分类识别(进行类型划分,模式识别等),但无论那种网络,什么方法,解决问题的精确度都无法打到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫无意义的,有意义的解析必定会损失精度。 (四)BP网络各种算法的应用范围 1)Traingd:批梯度下降训练函数,沿网络性能参数的负梯度方向调整网络的权值和阈值;

2)Traingdm:动量批梯度下降函数,也是一种批处理的前馈神经网络训练方法,不但具有更快的收敛速度,而且引入了一个动量项,有效避免了局部最小问题在网络训练中出现; 3)Trainrp:有弹回的BP算法,用于消除梯度模值对网络训练带来的影响,提高训练的速度(主要通过delt_inc和delt_dec来实现权值的改变); 4)Trainlm:Levenberg-Marquardt算法,对于中等规模的BP神经网络有最快的收敛速度,是系统默认的算法.由于其避免了直接计算赫赛矩阵,从而减少了训练中的计算量,但需要较大内存量.; 5)traincgb:Plwell-Beale算法:通过判断前后梯度的正交性来决定权值和阈值的调整方向是否回到负梯度方向上来; 6)trainscg:比例共轭梯度算法:将模值信赖域算法与共轭梯度算法结合起来,减少用于调整方向时搜索网络的时间。 一般来说,traingd和traingdm是普通训练函数,而traingda,traingdx,traingd,trainrp,traincgf,traincgb,trainsc g,trainbgf等等都是快速训练函数.总体感觉就是训练时间的差别比较大,还带有精度的差异。 (五)实例及其仿真分析(BP网络底层代码的实现) 1)程序 %% 读入数据 xlsfile='student.xls'; [data,label]=getdata(xlsfile);

系统辨识之经典辨识法

系统辨识作业一 学院信息科学与工程学院专业控制科学与工程 班级控制二班 姓名 学号

2018 年 11 月 系统辨识 所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时 的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。 辨识的内容主要包括四个方面: ①实验设计; ②模型结构辨识; ③模型参数辨识; ④模型检验。 辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集 数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。 根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参 数模型辨识方法,另一类是参数模型辨识方法。 其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是 非参数模型。在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛 适用于一些复杂的过程。经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉 冲响应法。 1.阶跃响应法 阶跃响应法是一种常用非参数模型辨识方法。常用的方法有近似法、半对数法、切线法、两点法和面积法等。本次作业采用面积法求传递函数。 1.1面积法 ① 当系统的传递函数无零点时,即系统传递函数如下: G(S) = + ?11?1+?+ 1+1 (1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取 微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K后,要得到无 因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述: () ?1 () (1-2) 面积法原则上可以求出n为任意阶的个系数。以n为3为例。有: 3() 2() () {| →∞ =| →∞ =| →∞ = 0 (1-3) ()| →∞ = 1

最优估计大作业1.

最优估计大作业 姓名:李海宝 学号:S314040186 导师:刘胜 专业:控制科学与工程

模糊逻辑卡尔曼滤波器在智能AUV导航系统中的自适应调 整 摘要 本论文基于全球定位系统(GPS)和几个惯性导航系统(INS)传感器描述了对于自主水下航行器(AUV)应用的一种智能导航系统的执行过程。本论文建议将简单卡尔曼滤波器(SKF)和扩展卡尔曼滤波器(EKF)一前一后地用于融合INS 传感器的数据并将它们与GPS数据结合到一起。传感器噪声特性里潜在的变化会引起SKF和EKF的初始统计假定的调整,本论文针对这一问题着重突出了模糊逻辑方法的使用。当这种算法包含实际传感器噪特性的时候,SKF和EKF只能维持他们的稳定性和性能,因此我们认为这种自适应机制同SKF与EKF一样有必要。此外,在提高导航系统的可靠性融合过程期间,故障检测和信号恢复算法也需在此要讨论。本论文建议的这种算法用于使真实的实验数据生效,这些数据都是从Plymouth大学和Cranfield大学所做的一系列AUV实验(运行低成本的锤头式AUV)中获得的。 关键词:自主水下航行器;导航;传感器融合;卡尔曼滤波器;扩展卡尔曼滤波器;模糊逻辑 1.引言 对于以科学、军事、商业为目的应用,如海洋勘察、搜索未爆弹药和电缆跟踪检查,AUV的发展需要相应导航系统的发展。这样的系统提供航行器位置和姿态的数据是很有必要的。在这样的系统中对精度的要求是最重要的:错误的位置和姿态数据会导致收集数据的一个毫无意义的解释,或者甚至AUV的一个灾难性故障。 越来越多来自整个世界的研究团队正利用INS和GPS来研发组合导航系统。然而,他们的工作中几乎都没有明确几个INS传感器融合的本质要求,这些传感器用于确保用户保持精度或甚至用来防止在与GPS融合之前导航系统这部分的完全失败。例如,金赛和惠特科姆(2003)使用一个切换机制来防止INS的完全失败。虽然这个方法简单易行,但是可能不适合用于维持一个确定的精度等级。 出于多传感器数据融合和集成的目的,几种估计方法在过去就已经被使用过。为此,SKF/EKF和它们的变形在过去就已经是流行的方法,并且一直到现在都对开发算法感兴趣。然而,在设计SKF/EKF过程中,一个显著的困难经常会被

系统辨识答案

1:修改课本p61的程序,并画出相应的图形; u = -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 z = Columns 1 through 11 0 0 Columns 12 through 16 HL =

0 0 0 ZL = c = a1 =

a2 = b1 = 1 b2 = 2:修改课本p63的程序,并画出相应的图形(V的取值范围为54-200); V = [, , , , , ]τ P = [, , , , , ]τ ZL = [, , , , , ]τ HL = c4 = alpha = beita = +004 3:表1中是在不同温度下测量同一热敏电阻的阻值, 70时根据测量值确定该电阻的数学模型,并求出当温度在C?

的电阻值。 要求用递推最小二乘求解: (a )设观测模型为 利用头两个数据给出 ?? ???===-0L T L L T L L z H P θH H P P 000)0()0(?)()()0(1 0 (b )写出最小二乘的递推公式; (c )利用Matlab 计算 T k a k b k )](),([)(?=θ 并画出相应的图形。 解:首先写成[][]?? ? ???=??????=+==a b t a b h h a bt k k z k k 1)()(12 θτ h θL L H z = T L L z z ],...,[1=z ,????? ???? ???=1 (112) 1 L L t t t H ,??????=a b θ 的形式。 利用头两个数据给出最小二乘的初值: ,126120.50??????=L H ?? ????=7907650L z 这样可以算得 i i v bt a y ++=

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

系统辨识作业2

系统辨识作业 学院: 专业: 姓名: 学号: 日期:

系统辨识作业: 以下图为仿真对象 图中,v(k)为服从N(0,1)正态分布的不相关随即噪声,输入信号采用循环周期Np>500的逆M 序列,幅值为1,选择辨识模型为: )()2()1()2()1()(2121k v k u b k u b k z a k z a k z +-+-=-+-+ 加权因子1)(=Λk ,数据长度L=500,初始条件取I P 610)0(= ,????????? ???=001.0001.0001.0)0(? θ 要求:(1)采用一次完成最小二乘法对系统进行辨识,给出数据u(k)和z(k), 及L H ,L Z 和θ 和)?(θ J 的值。 (2)采用递推最小二乘法进行辨识,要给出参数收敛曲线以及新息)(~k Z ,残差)(k ε,准则函数)(k J 随着递推次数K 的变化曲线。 (3)对仿真对象和辨识出的模型进行阶跃响应对比分析以检验辨识结果的实效。 1、一次完成法对系统进行辨识: 估计L T L L T L LS Z H H H 1)(?-=θ ,其中 []2121,,,b b a a LS =θ ????? ? ??????=L L Z Z Z Z 21 ????????????------------=????????? ???=)2()1()2()1()0()1()0()1()1()0()1() 0()()2()1(L u L u L z L z u u z z u u z z L h h h H L 一次完成算法对系统辨识的Matlab 程序见附录: 部分输入、输出数据如下,全部的输入输出数据用图1.1所示 输入数据u(k)=Columns 1 through 16 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0

系统辨识大作业论文Use

中南大学 系统辨识大作业 学院:信息科学与工程学院 专业:控制科学与工程 学生姓名:龚晓辉 学号:134611066 指导老师:韩华教授 完成时间:2014年6月

基于随机逼近算法的系统辨识设计 龚晓辉1, 2 1. 中南大学信息科学与工程学院,长沙410083 2. 轨道交通安全运行控制与通信研究所, 长沙410083 E-mail: csugxh@https://www.360docs.net/doc/1916586331.html, 摘要:本文对系统辨识的基本原理和要素进行了详细阐述,介绍和分析了系统辨识中常用的最小二乘算法,极大似然法,神经网络算法和随机逼近算法。随机逼近算法只需利用输入输出的观测来辨识系统参数,在实际中有重要运用。本文对随机逼近算法进行了详细说明。同时,针对一个三阶系统设计了KW随机逼近算法进行了参数辨识,并且和递推最小二乘法进行了对比。实验证明在实际辨识过程中两种算法各有优缺点。 关键词: 系统辨识, 随机逼近法, 递推最小二乘法 1.引言 在我们所学的线性系统理论中,都是在系统模型已知的情况来设计控制率,使系统达到稳定性,准确性和快速性的要求。然而,在实际系统中,对象的模型往往是未知的。而且,非线性是普遍存在的,线性系统只是对非线性系统的一种近似。因此,了解对象准确的模型,对设计控制器及其重要。在一些实际对象中,如导弹,化学过程,生物规律,药物反应,以及社会经济等,这些对象使用机理分析法比较困难,但是通过使用辨识技术可以建立系统精确的模型,确定最优控制率[1]。如今,系统辨识技术已经在航空航天,海洋工程,生物学等各个领域获得了广泛运用。 2.系统辨识的基本思想与常用方法 辨识的目的是为了获得对象模型。对象的模型有多种表现形式,它包括直觉模型,图表模型,数学模型,解析模型,程序模型和语言模型。这些模型之间可以相互转换。我们在建立系统模型时,需要遵循目的性,实在性,可辨识性,悭吝性的基本原则。目的性指的是建模的目的要明确,实在性指的是模型的物理概念要明确。可辨识性指的是模型结构合理,输入信号持续激励,数据量充足。悭吝性指的是被辨识参数的个数要尽量少。 辨识对象模型要遵循上面的基本原则。它是将对象看成一个黑箱。从含有噪声的输入输出数据中,按照一个准则,运用辨识理论,从一组给定的模型中,确定一个与所测系统等价的模型,是现代控制理论的一个分支。系统辨识由数据、模型类和准则三要素组成。数据是由观测实体而得,它不是唯一的,受观测时间、观测目的、观测手段等影响。模型类就是模型结构,它也不是唯一的,受辨识目的、辨识方法等影响。而准则是辨识的优化目标,用来衡量模型接近实际系统的标准。它也不是唯一的,受辨识目的、辨识方法的影响。由于存在多种数据拟合

系统辨识习题解答(最新)

系统辨识习题解答 1-14、若一个过程的输入、输出关系可以用MA 模型描述,请将该过程的输入输出模 型写成最小二乘格式。 提示:① MA 模型z k D z u k ()()()=-1 ② 定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h 解:因为MA 模型z k D z u k ()()()=-1,其中 n n z d z d d z D ---+++= 1101)(,从而 )()1()()(10n k u d k u d k u d k z n -++-+= 所以当定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h ,则有最小二乘格式: )()()()()(0 k e k h k e k h d k z n i i i +=+=∑=τ , 其中e(k)是误差项。 2-3、设)}({k e 是一个平稳的有色噪声序列,为了考虑这种噪声对辨识的影响,需要 用一种模型来描述它。请解释如何用白噪声和表示定理把)(k e 表示成AR 模型、MA 模型和ARMA 模型。 解:根据表示定理,在一定条件下,有色噪声e(k)可以看成是由白噪声v(k)驱动的线 性环节的输出,该线性环节称为成形滤波器,其脉冲传递函数可写成 ) () ()(1 11 ---=z C z D z H 即 )()()()(1 1k v z D k e z C --= 其中 c c n n z c z c z C ---+++= 1 11 1)( d d n n z d z d z D ---+++= 1 111)(

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

自适应控制大作业

自适应控制结课作业 班级: 组员: 2016年1月

目录 1 遗忘因子递推最小二乘法 (1) 1.1最小二乘理论 (1) 1.2带遗忘因子的递推最小二乘法 (1) 1.2.1白噪声与白噪声序列 (1) 1.2.2遗忘因子递推最小二乘法 (2) 2.2仿真实例 (3) 2 广义最小方差自校正控制 (5) 2.1广义最小方差自校正控制 (5) 2.2仿真实例 (6) 3 参考模型自适应控制 (9) 3.1参考模型自适应控制 (9) 3.2仿真实例 (12) 3.2.1数值积分 (12) 3.2.2仿真结果 (12) 参考文献 (16)

1 遗忘因子递推最小二乘法 1.1最小二乘理论 最小二乘最早的想法是高斯在1795年预测行星和彗星运动轨道时提出来的,“未知量的最大可能的值是这样一个数值,它使各次实际观测和计算值之间的差值的平方乘以度量其精确度的数值以后的和为最小”。这一估计方法原理简单,不需要随机变量的任何统计特性,目前已经成为动态系统辨识的主要手段。最小二乘辨识方法使其能得到一个在最小方差意义上与实验数据最好拟合的数学模型。由最小二乘法获得的估计在一定条件下有最佳的统计特性,即统计结果是无偏的、一致的和有效的。 1.2带遗忘因子的递推最小二乘法 1.2.1白噪声与白噪声序列 系统辨识中所用到的数据通常含有噪声。从工程实际出发,这种噪声往往可以视为具有理想谱密度的平稳随机过程。白噪声是一种最简单的随机过程,是由一系列不相关的随机变量组成的理想化随机过程。白噪声的数学描述如下:如果随机过程()t ξ均值为0,自相关函数为2()σδτ,即 2()()R ξτσδτ= 式中,()δτ为单位脉冲函数(亦称为Dirac 函数),即 ,0 ()0,0τδττ∞=?=? ≠?,且-()1d δττ∞ ∞ =? 则称该随机过程为白噪声,其离散形式是白噪声序列。 如果随机序列{}()V k 均值为零,且两两互不相关,即对应的相关函数为: 2,0 ()[()()]0,0v n R n E v k v k n n σ?==+=?=? 则这种随机序列称为白噪声序列。其谱密度函数为常数2(2)σπ。白噪声序列的功率在π-到π的全频段内均匀分布。 建立系统的数学模型时,如果模型结构正确,则模型参数辨识的精度将直接依赖于输入信号,因此合理选用辨识输入信号是保证能否获得理想的辨识结果的

(完整版)自动控制原理试题及答案

一、 单项选择题(每小题1分,共20分) 1. 系统和输入已知,求输出并对动态特性进行研究,称为( C ) A.系统综合 B.系统辨识 C.系统分析 D.系统设计 2. 惯性环节和积分环节的频率特性在( A )上相等。 A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率 3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( C ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件 4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( A ) A.圆 B.半圆 C.椭圆 D.双曲线 5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时, 电动机可看作一个( B ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节 6. 若系统的开环传 递函数为2) (5 10+s s ,则它的开环增益为( C ) A.1 B.2 C.5 D.10 7. 二阶系统的传递函数5 2 5)(2++=s s s G ,则该系统是( B ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( B ) A.提高上升时间和峰值时间 B.减少上升时间和峰值时间 C.提高上升时间和调整时间 D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T 1=ω时,则相频特性)(ωj G ∠为( A ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( D ) A.振荡次数越多 B.稳定裕量越大 C.相位变化越小 D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( A ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。 12.某单位反馈系统的开环传递函数为:()) 5)(1(++=s s s k s G ,当k =( C )时,闭环系统临界稳定。 A.10 B.20 C.30 D.40 13.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数 有( C ) A.0 B.1 C.2 D.3 14.单位反馈系统开环传递函数为()s s s s G ++=652,当输入为单位阶跃时,则其位置误差为( C ) A.2 B.0.2 C.0.5 D.0.05

系统辨识

作业1 如图1.1所示一阶系统,系统传递函数为G(s)=1/(0.1s+1),如果采用M序列作为输入信号进行系统辨识,采用5级移位寄存器产生M序列作为输入信号,取M序列的时钟脉冲△=15ms,a=2辨识该系统的脉冲响应。并说明取5级移位寄存器合理与否。 图1.1 一阶RC系统 答: 1.解题步骤 1.初始化参数,设置模型参数,设置产生M序列的各个关键参数; 2.利用产生伪随机二进制序列信号的函数getPRBS产生M序列,并作为 系统输入; 3.通过系统模型,产生系统输出,并将输入输出画在同一图中; 4.计算系统输入输出相关函数R xy; 5.计算系统脉冲估计值ghat和系统真实脉冲输出g 2.程序清单 主程序 clc; close all; clear all; %% Initialization R = 100e3; % system initialization resistance=100k ohm C = 1e-6; % capacitance=1uf tc = R*C; % Time Constant % generate M-sequence n=5; a=2; % Level of the PRBS

del = 15e-3; % clock pulse period N=2^n-1; % Period of M sequence total=2*N; % Generate m-sequence using the 'getPRBS' function Out = getPRBS(n,a,del,total); % Generate response y(t) of the system s = tf('s'); G = 1/(tc*s+1); tf = total*del; tim = 0:del:tf-del; y = lsim(G, Out, tim); %plot input and output of the system figure stairs(tim,Out); axis([0 1.0 -2.5 2.5]); hold on plot(tim,y,'r'); hold off % Compute Rxy(i*del) sum = 0.0; Rxy = []; iDel_vec=[]; for i=1:N tau=i-1; iDel_vec=[iDel_vec;tau*del]; for j=1:N sum=sum+sign(Out(j))*y(j+tau); end Rxy_i = (a/N)*sum; sum=0.0; Rxy = [Rxy; tau Rxy_i]; end % Compute ghat & g ind = length(Rxy); C = -Rxy(ind, 2); S = (N+1)*a^2*del/N; Rxy_iDel = Rxy(:,2); ghat=(Rxy_iDel+ C )/S; ghat(1)=2*ghat(1); g = 10*exp(-10.*iDel_vec);

2003版系统辨识最小二乘法大作业

西北工业大学系统辩识大作业 题目:最小二乘法系统辨识

一、 问题重述: 用递推最小二乘法、加权最小二乘法、遗忘因子法、增广最小二乘法、广义最小二乘法、辅助变量法辨识如下模型的参数 离散化有 z^4 - 3.935 z^3 + 5.806 z^2 - 3.807 z + 0.9362 ---------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 噪声的成形滤波器 离散化有 4.004e-010 z^3 + 4.232e-009 z^2 + 4.066e-009 z + 3.551e-010 ----------------------------------------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 采样时间0.01s 要求:1.用Matlab 写出程序代码; 2.画出实际模型和辨识得到模型的误差曲线; 3.画出递推算法迭代时各辨识参数的变化曲线; 最小二乘法: 在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态 ,静态 , 线性 ,非线性系统。在使用最小二乘法进行参数估计时 ,为了实现实时控制 ,必须优化成参数递推算法 ,即最小二乘递推算法。这种辨识方法主要用于在线辨识。MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。对 4324326.51411.5320120232320 Y s s s s G U s s s s ++++== ++++432 120120232320 E N W s s s s == ++++

自适应控制习题(系统辨识)(2020年整理).pdf

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社,2007) 【2-1】 设某物理量Y 与X1、X2、X3的关系如下:Y=θ1X 1+θ2X 2+θ3X 3 由试验获得的数据如下表。试用最小二乘法确定模型参数θ1、θ2和θ3 X1: 0.62 0.4 0.42 0.82 0.66 0.72 0.38 0.52 0.45 0.69 0.55 0.36 X2: 12.0 14.2 14.6 12.1 10.8 8.20 13.0 10.5 8.80 17.0 14.2 12.8 X3: 5.20 6.10 0.32 8.30 5.10 7.90 4.20 8.00 3.90 5.50 3.80 6.20 Y: 51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3 【2-3】 考虑如下模型 )()(3.03.115.0)(212 1t w t u z z z z t y ++?+=???? 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(λ=0.95)和递推最小二乘法估计模型参数(限定数据长度N 为某一数值,如N=150或其它数值),并将结果加以比较。 【2-4】 对于如下模型 )()1.065.01()()5.0()()15.08.01(213221k w z z k u z z k y z z ??????+?++=+? 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB 中的函数“randn ”产生)。 【3-1】 设有不稳定系统: )()9.01()()1(111k u z z k y z ???+=? 期望传递函数的分母多项式为)5.01()(11???=z z Am ,期望输出m y 跟踪参考输入r y ,且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2】 设有被控过程: )()2.11()()6.07.11(1221k u z z k y z z ????+=+? 给定期望传递函数的分母多项式为)08.06.01()(211???+?=z z z A m ,试按照极点配置方法设计控制系统,使期望输出无稳态误差,并写出控制表达式u(k)。

系统辨识

系 统 辨 识 作 业 系统辨识作业: ?已知某系统为单输入/单输出系统,其测量噪声为有色噪声,分布未知。 现给出一个实验样本(如下表所示),求该系统模型。 说明: 可采用GLS ,ELS ,IV 等,要定阶,要比较仅用RLS 的计算结果 一、问题分析 在估计模型参数时需要已知模型的阶数,但是由于本系统模型阶数也是未知的,所以本系统需要先由输入/输出数据通过辩识得出系统的阶数。然后根据辨识的系统阶数再分析求解系统模型。 二、模型阶数的辨识 按照品质指标“残差平方总和”定阶,如高阶系统模型相应的系数为零,则可退化成相应的低阶系统即低阶模型可视为高阶模型的特例。理论上高阶模型的精度不低于低阶模型,但是考虑到计算机的舍入误差的影响,过高的阶数亦能引起模型精度的下降。一般说低阶模型描述粗糙,高阶模型精度高,但是代价亦大。根据逼近的观点,定阶往往是考虑多种因素的折衷。定阶一般是按照假设——检验的步骤进行的,检验过程中往往带有主观成分。 一般说来低阶模型描述粗糙,高阶模型精度高。残差平方总和J(n)是模型阶数的函数 在不同的模型阶数的假设下,参数估计得到的J(n)值亦不同。定阶的最简单办法是直接用J(n)。设模型阶数的“真值”为n 0 ,当n < n 0 时随着n 的增加,J(n)值将明显的下降;而当n ≥ n 0 时随着n 的增加,J(n)值变化将不显著。因此,由J(n)曲线随着n 的增加最后一次陡峭下降的n 值定做n 的估计值。用数理统计的检验方法,判断n 的增加使得J(n)值改善是否明显。 讨论如下 (1).当n=1时程序如下: clear u=zeros(100,1);%构造输入矩阵 z=zeros(100,1);%构造输出矩阵 u=[-0.93249 0.34935 0.76165 -0.9964 -0.38894 -0.12288 0.021565 -0.49555 -0.61624 -1.912 0.22207 -0.31231 -0.17866 -1.8356 -0.26472 1.7642 -1.0418 1.1146 -2.0856 0.8152 1.5094 -0.5822 0.61097 0.35521 2.5907 1.5843 -0.9603 -0.27341 0.39947 0.17493 -1.7451 0.8112 1.2645 1.5682 0.63959 -0.47757 0.99697 0.058774 -0.16174 -1.2928 -0.04722 0.73182 -0.19644 0.091783 -1.1908 -0.90716 0.85388 0.33836 0.74074 0.54181 0.15676 -0.50569 -0.17521 1.3255 -2.488 0.50261 -1.1533 0.36407 0.65283 -0.05983 ∑=-=N k T K k y n J 12 ) )(()(θ?

系统辨识大作业加学习心得

论文 系统辨识 姿态角控制 1.系统辨识概述 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力去观察、研究有关的系统辨识问题。 系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示可观系统(或将要改造的系统)本质特征的一种演算,并用这个模型吧对客观系统的理解表示成有用的形式。当然可以刻有另外的描述,辨识有三个要素:

数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类{}M(即给定一类已知结构的模型),一类输入信号u和等价准则(,)JLyyM(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择是误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的 一、控制对象 本文采用了控制不同电机转速组合的方法,对四轴旋翼蝶形飞行器进行姿态控制,使四旋翼蝶形飞行器在不同姿态下飞行时具有较好的性能。为了实现四轴旋翼蝶形飞行器的飞行控制,对飞行的控制系统进行了初步的设计,并给出了设计流程。同时利用matlab对四轴旋翼

系统辨识试卷B参考答案

襄樊学院2008-2009学年度上学期《系统辨识》试题 B卷参考答案及评分标准 一、选择题:(从下列各题的备选答案中选出一个或几个正确答案,并将其代号写在题干后面的括号内。答案选错或未选全者,该题不得分。每空2分,共12分) 1、(D) 2、(A) 3、(C) 4、(ABC) 5、(BCD) 6、(B) 二、填空题:(每空2分,共14分) 1、图解 2、阶次和时滞 3、极大似然法和预报误差法 4、渐消记忆的最小二乘递推算法和限定记忆的最小二乘递推算法 三、判断题(下列命题你认为正确的在题后括号内打“√”;错误的打“×”并改正;每小题2分,共20分)(注:正确的题目括号内打“√”得2分,打“×”得0分;错误的题目括号内打“×”得1分,改正正确再得1分,错误的题目括号内打“√”得0分;) 1、(×)非零→零 2、(√) 3、(×)完全相同→不完全相同 4、(√) 5、(×)不相同→相同 6、(√) 7、(√) 8、(√) 9、(×)灰箱→白箱 10、(×)不需要→需要 四、简答题:(回答要点,并简明扼要作解释,每小题6分,共18分) 1、答:计算中用一个数值来表示对观测数据的相对的“信任程度”,这就是权。(2分) 对于时变参数系统,其当前的观测数据最能反映被识对象当前的动态特性,数据愈“老”,它偏离当前对象特性的可能性愈大。因此要充分重视当前的数据而将“过时的”、“陈旧的”数据逐渐“遗忘”掉,这就是加权的概念。(2分)具体的方法是,每当取得一个新的量测数据,就将以前的所有数据都乘上一个加权因子ρ(0<ρ<1),这个加权因子体现出对老数据逐步衰减的作用,所以ρ也可称为衰减因子,因此在L次观测的基础上,在最小二乘准则中进行了某ρ=μ(0<μ<1),选择不同的μ就得到不同的加权效果。μ愈小,表示将过种加权,即取2 去的数据“遗忘”得愈快。(2分) 2、答:相关分析法的主要优点是由于M序列信号近似于白噪声,噪声功率均匀分布于整个频带,从而对系统的扰动甚微,保证系统能正常工作(1.5分)。此外。因为相关函数的计算是一种

相关文档
最新文档