电流滞环跟踪PWM(CHBPWM)控制技术的仿真要点

电流滞环跟踪PWM(CHBPWM)控制技术的仿真要点
电流滞环跟踪PWM(CHBPWM)控制技术的仿真要点

目录

摘要 (1)

关键词 (1)

一、电流滞环跟踪控制原理 (2)

二、三相电流滞环跟踪控制系统的仿真 (5)

1、建立系统仿真模型 (5)

2、模块参数设置 (6)

3、电路封装 (8)

4、作图程序设计 (10)

三、仿真波形及频谱分析 (12)

四、仿真结果分析与总结 (18)

1、仿真波形比较 (18)

2、电流频谱分析比较 (19)

3、相电压、线电压频谱分析比较 (19)

4、总结 (19)

五、课设心得体会 (20)

六、参考文献 (21)

摘要:

滞环控制是一种应用很广的闭环电流跟踪控制方法,通常以响应速度快和结构简单而著称。在各种变流器控制系统中,滞环控制单元一般同时兼有两种职能,一则作为闭环电流调节器,二则起着PWM调制器的作用,将电流参考信号转换为相应的开关指令信号。然而,滞环控制的开关频率一般具有很大的不定性,高低频率悬殊,其开关频率范围往往是人们在进行滞环控制系统设计师比较关心的重要方面,只有明确开关频率的计算方法,才便于进行开关器件、滤波参数及滞环控制参数的选择。

电流跟踪型逆变器输出电流跟随给定的电流波形变化,这也是一种PWM控制方式。电流跟踪一般都采用滞环控制,即当逆变器输出电流与给定电流的偏差超过一定值时,改变逆变器的开关状态,使逆变器输出电流增加或减小,将输出电流与给定电流的偏差控制在一定范围内。

关键词:电流滞环跟踪PWM、闭环控制、滞环控制器HBC、环宽、电流偏差、开关频率、响应波形、频谱图

一、电流滞环跟踪控制原理

常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。

图1 电流滞环跟踪控制的A相原理图

图中,电流控制器是带滞环的比较器,环宽为2h。将给定电流i*a 与输出电流i a进行比较,电流偏差?i a超过时±h,经滞环控制器HBC 控制逆变器A相上(或下)桥臂的功率器件动作。B、C二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图4。

?如果,i a < i*a ,且i*a - i a ≥h,滞环控制器HBC输出正电平,

驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增

大。当增长到与相等时,虽然,但HBC仍保持正电平输出,保持

导通,使继续增大

?直到达到i a= i*a+ h,?i a = –h,使滞环翻转,HBC输出负电

平,关断V1 ,并经延时后驱动V4

但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而

是通过二极管续流,使受到反向钳位而不能导通。此后,逐渐减小,直到时,,到达滞环偏差的下限值,使HBC 再翻转,又重复使导通。这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。从图2 中可以看到,输出电流是十分接近正弦波的。

图2 电流滞环跟踪控制时的电流波形

图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和电机的反电动势有关。

图3 三相电流跟踪型PWM逆变电路

图4 三相电流跟踪型PWM逆变电路输出波形因此,输出相电压波形呈PWM状,但与两侧窄中间宽的SPWM波相反,两侧增宽而中间变窄,这说明为了使电流波形跟踪正弦波,应该调整一下电压波形。

电流跟踪控制的精度与滞环的环宽有关,同时还受到功率开关器件允许开关频率的制约。当环宽选得较大时,可降低开关频率,但电流波形失真较多,谐波分量高;如果环宽太小,电流波形虽然较好,却使开关频率增大了。这是一对矛盾的因素,实用中,应在充分利用器件开关频率的前提下,正确地选择尽可能小的环宽。

电流滞环跟踪控制方法的精度高,响应快,且易于实现。但受功率开关器件允许开关频率的限制,仅在电机堵转且在给定电流峰值处才发挥出最高开关频率,在其他情况下,器件的允许开关频率都未得到充分利用。为了克服这个缺点,可以采用具有恒定开关频率的电流控制器,或者在局

部范围内限制开关频率,但这样对电流波形都会产生影响。

二、三相电流跟踪滞环控制系统的仿真

使用MATLAB软件中的Simulink和SimpowerSystems工具箱构建三相电流跟踪滞环控制系统的仿真模型。

1、建立系统仿真模型

仿真参数为:E=100-300V; f=50Hz;带宽2h=5-30; 步长h=0.0001s,其

他参数自定。

选用的模块主要有:Mux 、Sum 、Relay、Scope 、Sine Wave 、DC V oltage Source 、Ground 、Series RLC Branch 、Multimeter 、IGBT/Diode 、Logical Operator、Terminator、V oltage Measurement 、Powergui。

2、模块参数设置

Sine Wave Amplitude: 20 ;

Bias: 0;

Frequency(rad/sec): 100*pi ;

Phase (rad):0;

Sample Time:0

Sine Wave1 Amplitude: 20 ;

Bias: 0;

Frequency(rad/sec): 100*pi ;

Phase(rad) :-4*pi/3;

Sample Time:0

Sine Wave2 Amplitude: 20 ;

Bias: 0;

Frequency(rad/sec): 100*pi ;

Phase(rad) :-2*pi/3;

Sample Time:0

Sum Icon shape:round;

List of signs:|+-;

Sample time:-1 Multimeter2 Ib:Series RLC Branch Multimeter4 Ib:Series RLC Branch2 Multimeter5 Ib:Series RLC Branch1 Relay、Relay2、Relay4 Switch on point:2.5;

Switch off point:-2.5;

Output when on:1;

Output when off:0 Scope Number of axes:3;

Variable name:b Scope1 Number of axes:4;

Variable name:c Scope2 Number of axes:6;

Variable name:a

Logical Operator Logical Operator1 Logical Operator2 Operator:NOT; Number of input ports:1

DC V oltage Source DC V oltage Source1 Amplitude(V):100; Measurements:voltage

Series RLC Branch Resistance(Ohms): 5 ;

Series RLC Branch1

Series RLC Branch2 Inductance(H): 0.005 ; Capacitance(F): inf;

Measurements:Branch

vo;tage and

current 注:表格中未注明的参数为默认值;Relay 、Relay2、Relay4中的“Switch on point ”与“Switch off point ”的值的绝对值就是h ,2h 就是环宽。 此表格所设置的参数为E=200V ,f=50HZ,带宽2h=5。

在菜单栏中选中"Simulation","Configuration Parameters 、、、"将Stop

time 改为0.04,将Max step size 改为1e-4,将Solver 改为ode23tb(stiff/TR-BDF2),此时步长h=0.0001s.

3、电路封装

封装后的电路图如下所示:

其中子系统Subsystem和Subsystem1的内部图如下:

Subsystem内部图(脉冲电路图)

Subsystem1内部图(主电路图)

4、作图程序设计

在上述电路建立完成后,执行后双击各示波器可观察触发脉冲波形、相电压和线电压波形及电流波形,使用Powergui中的FFT Analysis可观察相电压和线电压的频谱图。

建立3个M文件分别用来编写触发脉冲波形、电流波形、电压波形的作图程序,其程序设计分别如下:

①触发脉冲波形作图程序

②电流波形作图程序

③相电压及线电压波形作图程序

三、仿真波形及频谱分析

(一)、环宽2h=5时的仿真波形及频谱分析

1、仿真波形

①触发脉冲波形

②电流波形

③电压波形

2、频谱分析(先用powergui将信离散化,号取采样时间为1e-6s)

①相电压频谱图

当环宽2h=5时,输出相电压的基波(50HZ)峰值为105.6,总谐波失真(THD)为174.25%。

②线电压频谱图

当环宽2h=5时,输出线电压的基波(50HZ)峰值为183.5,总谐波失真(THD)为142.12%。

③输出相电流频谱图

由频谱图可知,2h=5时,输出电流的基波(50HZ)峰值为20.14,总谐波失真(THD)为10.25%。

(二)、环宽2h=20时的仿真波形及频谱分析

1、仿真波形

①触发脉冲波形

②电流波形

③电压波形

2、频谱分析(先用powergui将信离散化,号取采样时间为1e-6s)

①相电压频谱图

当环宽2h=20时,输出相电压的基波(50HZ)的峰值为126.3,总谐波失真(THD)为134.96%,f=0时的直流分量为1.56%,谐波分量较大的有f=650HZ时的78.15%,f=550HZ时的54.16%,f=950HZ时的32.75%。

②线电压频谱图

当环宽2h=20时,输出线电压的基波(50HZ)的峰值为218.6,总谐波失真(THD)为116.25%,f=0时的直流分量为2.53%,谐波分量较大的有f=550HZ时的59.73%,f=650HZ时的44.35%,f=500HZ时的21.91%。

③输出相电流频谱

由频谱图可知,2h=20时,输出电流的基波(50HZ)峰值为24.26,总谐波失真(THD)为32.58%。

四、仿真结果分析与总结

1、仿真波形比较

由上述两组波形比较可知,当环宽2h=5时,其触发脉冲波形比2h=20时要更密集,即触发频率快,对IGBT的开关频率高;电流跟踪效果明显比2h=20时的要好,其总谐波失真也要比2h=20时小,但是可以看出在一个周期内,其电流在环宽内变化的次数也明显比2h=20时多,这与上面触发频率快相一致;其输出相电压与线电压的波形同样体现出2h=5时的开关频率比2h=20时的快,由波形的疏密容易看出。

2、电流频谱分析比较

由仿真出的电流波形的频谱图对比可知,当环宽较小(2h=5)时,电流的基波分量的峰值接近于给定电流峰值(20),且总谐波失真(THD)较小为10.25%;而当环宽较大(2h=20)时,电流的基波分量的峰值较大,明显大于给定电流的峰值,且总谐波失真(THD)较大为32.58%.

3、相电压、线电压频谱分析比较

由仿真出的相电压与线电压的波形已经容易比较出当环宽2h=5时,其波形较密,因其为PWM波形,所以由FFT Analysis分析出来的谐波失真应该比环宽2h=20时的要大,而频谱分析结果恰好符合上述分析,2h=5时相电压总谐波失真(THD)为174.25%,而2h=20时相电压总谐波失真(THD)为134.96%,2h=5时线电压总谐波失真(THD)为142.12%,而2h=20时线电压总谐波失真(THD)为116.25%.

4、总结

由上述分析可知,当所给环宽小时,电流跟踪控制的精度高,电流跟踪效果好,同时电流的谐波分量也少,但是对IGBT的开关频率要求高;二当所给环宽大时,电流跟踪控制的精度就减小了,电流跟踪的效果也变差,电流的谐波分量也高,不过降低了对IGBT的开关频率要求。

所以在现实应用中,应该根据所给开关器件如IGBT的开关频率范围来选择环宽的大小,一般在开关频率允许的条件下,尽可能地选择小的环宽,这样输出的电流波形质量越高。

PWM控制电路的基本构成及工作原理

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如 图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可 靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

PWM控制原理要点

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

滞环控制

电流滞环跟踪PWM(CHBPWM)控制技术的仿真 桂寒 120100068 摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink 工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。 关键词:电流滞环控制 脉宽控制 滞环宽度控制法 1. 前言 2. 应用PWM 控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM 控制技术都是以输出电压近似正弦波为目标的。但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。 2. 电流滞环跟踪控制原理 2.1 单相电流滞环控制原理 常用的一种电流闭环控制方法是电流滞环跟踪 PWM (Current Hysteresis Band PWM ——CHBPWM )控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A 相控制原理如1图所示。 图1 电流滞环跟踪控制的A 相原理图 图中,电流控制器是带滞环的比较器,环宽为2h 。将给定电流 *a i 与输出电流 a i 进行比较,电流偏差 ? a i 超过时 ±h ,经滞环控制器HBC 控制逆变器 A 相上(或下)桥臂的功率器件动作。B 、C 二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。

? 如果, a i < *a i , 且*a i - a i ≥ h ,滞环控制器 HBC 输出正电平,驱动上桥臂功 率开关器件V1导通,变压变频器输出正电压,使a i 增大。当增长到与*a i 相等时,虽然滞环比较器的输入信号的符号发生了变化,但HBC 仍保持正电平输出,保持导通,使a i 继续增大 ? 直到达到a i = *a i + h , a i = –h ,使滞环翻转,HBC 输出负电平,关断V1 ,并经过延时后驱动V4,直到电流的负半周V4才能导通。 但此时未必能够导通,由于电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。此后,逐渐减小,直到时ia=ia*-h ,到达滞环偏差的下限值,使HBC 再翻转,又重复使V1导通。这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。从图 2 中可以看到,输出电流是十分接近正弦波的。 图2 电流滞环跟踪控制时的电流波形 图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和电机的反电动势有关。 2.2 三相电流滞环控制原理 图3 三相电流跟踪型PWM 逆变电路

PWM控制电路设计

PWM控制电路设计 CYBERNET 应用系统事业部 LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学方面阐述了如何运用LED特性进行设计。 在上一期的“LED驱动电路设计-基础篇”中,介绍了LED的电子特性和基本的驱动电路。遗憾的是,阻抗型驱动电路和恒电流源型驱动电路,大围输入电压和大电流中性能并不强,有时并不能发挥出LED的性能。相反,用脉冲调制方法驱动LED电路,能够发挥LED的多个优点。这次主要针对运用脉冲调制的驱动电路进行说明。 PWM是什么? 脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time) Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。

图1 Pulse Width Modulation (PWM) 在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。这就是接下来要介绍的PWM控制。PWM信号的应用 PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。图2的降压电路帮助理解PWM的控制原理。在这个电路中,将24V的输入电压转换成12V,需要增加负载。负载就是单纯的阻抗。电压转换电路的方法有很多,运用PWM信号的效果如何呢?

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

电流滞环跟踪PWM(CHBPWM)控制技术的仿真要点

目录 摘要 (1) 关键词 (1) 一、电流滞环跟踪控制原理 (2) 二、三相电流滞环跟踪控制系统的仿真 (5) 1、建立系统仿真模型 (5) 2、模块参数设置 (6) 3、电路封装 (8) 4、作图程序设计 (10) 三、仿真波形及频谱分析 (12) 四、仿真结果分析与总结 (18) 1、仿真波形比较 (18) 2、电流频谱分析比较 (19) 3、相电压、线电压频谱分析比较 (19) 4、总结 (19) 五、课设心得体会 (20) 六、参考文献 (21)

摘要: 滞环控制是一种应用很广的闭环电流跟踪控制方法,通常以响应速度快和结构简单而著称。在各种变流器控制系统中,滞环控制单元一般同时兼有两种职能,一则作为闭环电流调节器,二则起着PWM调制器的作用,将电流参考信号转换为相应的开关指令信号。然而,滞环控制的开关频率一般具有很大的不定性,高低频率悬殊,其开关频率范围往往是人们在进行滞环控制系统设计师比较关心的重要方面,只有明确开关频率的计算方法,才便于进行开关器件、滤波参数及滞环控制参数的选择。 电流跟踪型逆变器输出电流跟随给定的电流波形变化,这也是一种PWM控制方式。电流跟踪一般都采用滞环控制,即当逆变器输出电流与给定电流的偏差超过一定值时,改变逆变器的开关状态,使逆变器输出电流增加或减小,将输出电流与给定电流的偏差控制在一定范围内。 关键词:电流滞环跟踪PWM、闭环控制、滞环控制器HBC、环宽、电流偏差、开关频率、响应波形、频谱图

一、电流滞环跟踪控制原理 常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。 图1 电流滞环跟踪控制的A相原理图 图中,电流控制器是带滞环的比较器,环宽为2h。将给定电流i*a 与输出电流i a进行比较,电流偏差?i a超过时±h,经滞环控制器HBC 控制逆变器A相上(或下)桥臂的功率器件动作。B、C二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图4。 ?如果,i a < i*a ,且i*a - i a ≥h,滞环控制器HBC输出正电平, 驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增 大。当增长到与相等时,虽然,但HBC仍保持正电平输出,保持 导通,使继续增大 ?直到达到i a= i*a+ h,?i a = –h,使滞环翻转,HBC输出负电 平,关断V1 ,并经延时后驱动V4 但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而

PWM控制电路的基本构成及工作原理

PWM控制电路的基本构成及工作原理 于开关器件的高频通断和输出整流二极管反向恢复。很强的电磁骚扰信号通过空间辐射和电源线的传导而干扰邻近的敏感设备。除了功率开关管和高频整流二极管外,产生辐射干扰的主要元器件还有脉冲变压器及滤波电感等。 虽然,功率开关管的快速通断给开关电源带来了更高的效益,但是,也带来了更强的高频辐射。要降低辐射干扰,可应用电压缓冲电路,如在开关管两端并联RCD缓冲电路,或电流缓冲电路,如在开关管的集电极上串联 20~80μH的电感。电感在功率开关管导通时能避免集电极电流突然增大,同时也可以减少整流电路中冲击电流的影响。 功率开关管的集电极是一个强干扰源,开关管的散热片应接到开关管的发射极上,以确保集电极与散热片之间由于分布电容而产生的电流流入主电路中。为减少散热片和机壳的分布电容,散热片应尽量远离机壳,如有条件的话,可采用有屏蔽措施的开关管散热片。 整流二极管应采用恢复电荷小,且反向恢复时间短的,如肖特基管,最好是选用反向恢复呈软特性的。另外在肖特基管两端套磁珠和并联RC吸收网络均可减少干扰,电阻、电容的取值可为几Ω和数千pF,电容引线应尽可能短,以减少引线电感。实际使用中一般采用具有软恢复特性的整流二极管,并在二极管两端并接小电容来消除电路的寄生振荡。 负载电流越大,续流结束时流经整流二极管的电流也越大,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。采用多个整流二极管并联来分担负载电流,可以降低短路尖峰电流的影响。 开关电源必须屏蔽,采用模块式全密封结构,建议用1mm以上厚度的 镀锌钢板,屏蔽层必须良好接地。在高频脉冲变压器初、次级之间加一屏蔽层

电流滞环跟踪spwm

课程设计(论文)任务书 电气与电子工程学院电力牵引与传动专业班一、课程设计(论文)题目:电流滞环跟综PWM(CHBPWM)控制技术的仿真 二、课程设计(论文)工作自 2013年6月16日起至2013年6月21日止。 三、课程设计(论文) 地点: 电气学院机房 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟练掌握MATLAB语言的基本知识和技能; (2)熟悉matlab下的simulink和simpowersystems工具箱; (3)熟悉构建三相电流跟踪滞环控制系统的仿真模型; (4)培养分析、解决问题的能力;提高学生的科技论文写作能力。2.课程设计的任务及要求 1)基本要求: (1)要求对主电路和脉冲电路进行封装; (2)仿真参数为:E=100-300V; f=50HZ; 带宽2h; 步长h=0.0001s,其他参数自定; (3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,要求采用subplot作图; (4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。2)创新要求: 封装使仿真模型更加美观、合理 3)课程设计论文编写要求 (1)要按照课程设计模板的规格书写课程设计论文 (2)论文包括目录、正文、心得体会、参考文献等 (3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成 4)答辩与评分标准: (1)完成原理分析:20分; (2)完成设计过程:40分; (3)完成调试:20分; (4)回答问题:20分; 5)参考文献: (1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008. (2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.

PWM驱动电路

PWM是什么? 脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time 表示,如下公式: 占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time) Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。 图1 Pulse Width Modulation (PWM) 在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。这就是接下来要介绍的PWM控制。PWM信号的应用 PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。图2的降压电路帮助理解PWM的控制原理。在这个电路中,将24V的输入电压转换成12V,需要增加负载。负载就是单纯的阻抗。电压转换电路的方法有很多,运用PWM信号的效果如何呢?

图2 降压电路 在图2的降压电路中取PWM控制电路,如图3所示。MOSFEL作为开关设计使用。当PWM信号的转换频率数为20kHz时,转换周期为50μs。PWM信号为High的时候,开关为On,电流从输入端流经负载。当PWM信号处于Low状态时,开关Off,没有输入和输出,电流也断掉。 这里尝试将PWM信号的占空比固定在50%,施加在开关中。 开关开着的时候电流和电压施加到负载上。开关关着的时候因为没有电流,所以负载的供给电压为零。如图4绿色的波形、V(OUT)可在负载中看到输出电压。 图3 运用PWM信号的降压电路

PWM电流源型变流器

电力电子学大作业 题目:PWM流源型变流器学院:电气与电子工程学院专业:电力电子与电力传动学生姓名: 授课教师: 2011年6 月7日

PWM电流源型变流器 摘要:本文对PWM电流源型逆变器(CSI)和PWM电流源型整流器(CSR)进行了深入研究。根据两者的谐波特性,都采用用了特定谐波消除(SHE)这中调制方法。通过Matlab/Simulink仿真得到相关波形,并由此结果可知特定谐波消除法对PWM电流源型变流器而言是一种非常有效的调制方法。 关键词:SHE、电流源型、逆变、整流 随着门极换相晶闸管(GCT)器件的出现,中压传动系统中越来越多的使用PWM电流源型变流器。PWM电流源型变流器分为PWM电流源型逆变器和PWM电流源型整流器。前者具有拓扑结构简单、输出波形好、短路保护可靠等优点,在中压传动系统中使用得非常广泛;后者具有功率因数高、进线电流畸变程度低、动态响应性能好等特点。 本文分别对PWM电流源型逆变器和PWM电流源型整流器进行了介绍,两者都采用了SHE调制法。本文还将对这个调制方法进行详细介绍,并分析采用该调制法的两种变流器的谐波特性。 1.PWM电流源型逆变器 1.1 逆变器结构 图1 理想的PWM电流源型逆变器 如图1所示为理想化的PWM电流源型逆变器,它由6个GCT器件构成逆变器,且此GCT是具有反阻断能力的对称型结构。在中压传动系统中,这6个GCT器件还可以由两个或更多个器件串联代替。直流输入侧是一个理想的电流源。在实际应用中,电流源可以用电流源型整流器实现。 输入端引入的三相电容是用来帮助开关器件换相的。当开关关断的瞬间,逆变器输出的电流必须在很短的时间内减小到零,电容则为储存在负载电感中的能量提供电流通路,否则可能产生很高的电压尖峰,并导致功率开关器件损坏。同时,此电容还可以起滤波的作用,以改善输出电流、电压波形。且电容值可以随

电流滞环跟踪PWM仿真

题目七电流滞环跟踪PWM(CHBPWM)控制技术 的仿真 摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。 关键词:电流滞环控制脉宽控制滞环宽度控制法 一、前言 应用PWM控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM控制技术都是以输出电压近似正弦波为目标的。但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。 二、电流滞环跟踪控制原理 常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。 图1 电流滞环跟踪控制的A相原理图

图中,电流控制器是带滞环的比较器,环宽为2h。将给定电流i*a 与输出电流i a进行比较,电流偏差?i a超过时±h,经滞环控制器HBC 控制逆变器A相上(或下)桥臂的功率器件动作。B、C二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。 ?如果,i a < i*a ,且i*a - i a ≥h,滞环控制器HBC输出正电平, 驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增 大。当增长到与相等时,虽然,但HBC仍保持正电平输出,保持 导通,使继续增大 ?直到达到i a= i*a+ h,?i a = –h,使滞环翻转,HBC输出负电 平,关断V1 ,并经延时后驱动V4 但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。此后,逐渐减小,直到时,,到达滞环偏差的下限值,使HBC 再翻转,又重复使导通。这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。从图2 中可以看到,输出电流是十分接近正弦波的。 图2 电流滞环跟踪控制时的电流波形 图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和

电流滞环控制pwm

电流滞环控制的三相PWM逆变器仿真 11级三班8号XX 摘要 针对传统的SPWM电压型逆变器的不足,提出采用电流滞环跟踪PWM的逆变器控制方式。介绍了电流滞环跟踪PWM逆变器的控制原理,对其开关频率进行了数学分析,最后构建模型并进行仿真。仿真结果表明,此方法效果明显,动态性能好,可保证电流波形好的正弦性。 关键词:电流滞环控制、三相PWM逆变器、开关频率、simulink 一、引言 三相PWM逆变器中的滞环电流控制因其控制方式简单、易于硬件实现、工作可靠、无跟踪误差、动态响应快等优点,得到了广泛的重视与应用。PWM(Pulse Width Modulation)控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,但是在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。 电流滞环跟踪控制方法的精度高,响应快,且易于实现。但受功率开关器件允许开关频率的限制,仅在电机堵转且在给定电流峰值处才发挥出最高开关频率,在其他情况下,器件的允许开关频率都未得到充分利用。为了克服这个缺点,可以采用具有恒定开关频率的电流控制器,或者在局部范围内限制开关频率,但这样对电流波形都会产生影响。 二、电流滞环跟踪控制原理 2.1电流滞环控制原理 常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。

一种电流型PWM控制芯片的设计

2007年第 24卷第 8期微电子学与计算机 1引言 目前 , 国内 DC-DC 电源需求量日益增大。 DC-DC 转换器分为线性电源和开关型电源。开关型电源的调整管工作在开关状态 , 功耗小 , 效率高 , 因此在计算机、通信、雷达、电子仪器以及家用电器等电子领域有着广泛的应用前景。文中设计并实现了一种高性能的 PWM 控制芯片 , 主要用于开关型 DC-DC 电源的功率控制。该芯片采用可调整的带隙基准源 , 具有基准电压精度高、温漂低的优点。电流型反馈模式的采用使其与传统电压模式的 PWM 控制器相比 , 具有系统动态响应快的明显优点。芯片结构设计合理 , 控制功能齐全 , 为 DC-DC 电源系统提供了高性能的关键芯片。 2电路工作原理及其电流型反馈模式 如图 1所示 , 虚线框内为本电路的设计内容 , 框外是其典型应用的简化电路。本电路的主要模块包括电压基准、振荡器、误差放大器、电流检测比较器、PWM 锁存器、欠压锁定电路、输出级电路和过压保护电路等。 电路工作原理如下 :系统的输出电压 V O U T 经过分压处理作为误差放大器的输入 , 与内部电压基准模块提供的 2.5V 基准电压比较后产生误差电压 , 而变压器初级线圈 (电感的电流在采样电阻上产生 的电压降 V IO U T 作为电流检测比较器的输入 , 与误差放大器产生的误差电压进行比较 , 经过PWM 锁存器和输出级的功率放大 , 输出 PWM 控制信号 Out- 一种电流型 PWM 控制芯片的设计

师娅 , 唐威 (西安微电子技术研究所 , 陕西西安 710054 摘要 :设计并实现了一种高性能的功能齐全的电流型 PWM 控制芯片。电路采用可调整的带隙基准源和电流型反馈模式 , 具有基准精度高、温漂低、系统动态响应快等优点。电路的输出级驱动电流可达 1A , 开关频率可达 500kHz , 具有过压、过流保护和欠压锁定的功能。 关键词 :PWM 控制器 ; 带隙基准 ; 电流型 中图分类号 :TN4文献标识码 :A 文章编号 :1000-7180(2007 08-0145-04 Design of Current-Mode PWM Controller SHI Ya , TANG Wei (Xi ′ an Microelectronic Technology Institute, Xi ′ an 710054, China Abstract :A high performance current mode PWM controller chip is implemented in this paper. High precision, low temperature coefficent and fast dynamic response is achieved by using adjustable bandgap reference and current mode of control in this chip. In addition, The PWM controller can reach up to output current of 1A and switching frequency of 500kHz, and has function such as UVLO, over-voltage and over-current protecting. Key words :PWM controller ; bandgap reference ; current mode 收稿日期 :2006-11-23 145 微电子学与计算机 2007年第 24卷第 8期

电流型PWM IC

UC3844是美国Unitrode公司(已被TI公司收购)生产的高性能电流型脉宽调制器(PWM)控制器。早期的PWM控制器是电压控制型的,常用的电压型PWM控制器有TL494、TL495、SG3524、SG3525等。电压型PWM是指控制器按反馈电压来调节输出脉宽,电流型PWM是指控制器按反馈电流来调节输出脉宽。 电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。 电流型PWM 电流型PWM正是针对电压PWM型的缺点发展起来的。它在原有的电压环上增加了电流反馈环节,构成电压电流双闭环控制。内环为电流控制环,外环为电压控制环。无论电流的变化,还是电压的变化,都会使PWM 输出脉冲占空比发生变化。这种控制方式可改善系统的电压调整率,提高系统的瞬态响应速度,增加系统的稳定性。其控制系统框图如图2所示。

电流型PWM控制的优点如下: a)电压调整率好。输入电压的变化立即引起电感电流的变化,电感电流的变化立即反映到电流控制回路而被抑制。不像电压控制要经过输出电压反馈到误差放大器,然后再调节的复杂过程,所以响应快。如果输入电压的变化是持续的,电压反馈环也起作用,因而可以达到较高的线形调整率。 b)负载调整率好。由于电压误差放大器可专门用于控制占空比,以适应负载变化造成的输出电压的变化,因而可大大改善负载调整率。 c)系统稳定性好。从控制理论的角度讲,电压控制单闭环系统是一个无条件的二阶稳定系统。而电流控制双闭环系统是一个无条件的一阶稳定系统,系统稳定性好。 电流型PWM控制芯片UC3844的基本原理 UC3844是电流型单端输出式PWM,其最大占空比为50%,启动电压16V ,具有过压保护和欠压锁定功能。当工作电压大于34V时,稳压管稳压,使内部电路在小于34V电压下可靠工作;当输入电压低于10V时,芯片被锁定,控制器停止工作。其内部框图和引脚图如图3所示。

电流型PWM 控制器在电源中的应用

电流型PWM 控制器在电源中的应用 发布日期:2009-3-16 14:51:51文章来源:搜电浏览次数:51 1 双环电流型PWM控制器工作原理 双环电流型脉宽调制( PWM) 控制器是在普通电压反馈PWM 控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM 控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环控制。双环电流型PWM控制器电路原理如图1 所示。 从图1 可以看出,电流型控制器有两个控制闭合环路:一个是输出电压反馈误差放大器A ,用于与基准电压比较后产生误差电压;另一个是变压器初级(电感) 中电流在Rs 上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误差信号对峰值电感电流起着实际控制作用。 系统工作过程如下:假定输入电压下降,整流后的直流电压下降,经电感延迟使输出电压下降,经误差放大器延迟,Vea上升,占空比变化,从而维持输出电压不变,在电流环中电感的峰值电流也随输入电压下降,电感电流的斜率di/dt 下降, 导致斜坡电压推迟到达Vea ,使PWM 占空比加大,起到调整输出电压的作用。由于既对电压又对电流起控制作用,所以控制效果较好在实际中得到广泛应用。 2 双环电流型PWM控制器的特点 a) 由于输入电压Vi 的变化立即反映为电感电流的变化,不经过误差放大器就能在比较器中改变输出脉冲宽度(电流控制环) ,因而使得系统的电压调整率非常好,可达到0.01 %/V ,能够与线性移压器相比。 b) 由于双环控制系统内在的快速响应和高稳定性,反馈回路的增益较高,不会造成稳定性与增益的矛盾,使输出电压有很高的精度。 c) 由于Rs 上感应出峰值电感电流,只要Rs 上电平达到1 V ,PWM控制器就立即关闭,形成逐个脉冲限流电路,使得在任何输入电压和负载瞬态变化时,功率开关管的峰值电流被控制在一定范围内,在过载和短路时对主开关管起到有效保护。 d) 误差放大器用于控制,由于负载变化造成的输出电压变化,使得当负载减小时电压升高的幅度大大减小,明显改善了负载调整率。 e) 由于系统的内环是一个良好的受控电流放大器,所以把电流取样信号转变成的电压信号和一个公共电压误差放大器的输出信号相比较,就可以实现并联均流,因而系统并联较易实现。

PWM信号发生电路

1.P W M信号概述 脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC 变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)和AC-DC变换(功率因数校正)。 产生PWM信号的方法有多种,现分别论述如下: 1)普通电子元件构成PWM发生器电路 基本原理是由三角波或锯齿波发生器产生高频调制波,经比较器产生PWM信号。三角波或锯齿波与可调直流电压比较,产生可调占空比PWM信号;与正弦基波比较,产生占空比按正弦规律变化的SPWM信号。 此方法优点是成本低、各环节波形和电压值可观测、易于扩展应用电路等。缺点是电路集成度低,不利于产品化。 2)单片机自动生成PWM信号 基本原理是由单片机内部集成PWM发生器模块在程序控制下产生PWM信号。 优点是电路简单、便于程序控制。缺点是不利于学生观测PWM产生过程,闭环控制复杂和使用时受单片机性能制约。 3)可编程逻辑器件编程产生PWM信号 基本原理是以复杂可编程逻辑器件(CPLD)或现场可编程门阵列器件(FPGA)为硬件基础,设计专用程序产生PWM信号。 优点是电路简单、PWM频率和占空比定量准确。缺点是闭环控制复杂,产生SPWM信号难度大。 4)专用芯片产生PWM信号 是生产厂家设计、生产的特定功能芯片。 优点是使用方便、安全,便于应用到产品设计中。缺点是不利于学生观测PWM产生过程和灵活调节各项参数。 2.电子元件构成PWM发生器电路 图1电子元件构成PWM发生器电路 3.集成芯片SG3525构成PWM发生器电路 一、PWM信号发生电路说明 实验电路中,驱动开关管的PWM信号由专用PWM控制集成芯片SG3525产生(美国

电流型PWM控制器功率因数校正方法。。。

电压型PWM是指控制器按反馈电压来调节输出脉宽,而电流型PWM是指控制器按反馈电流来调节输出脉宽。电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈 电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压 调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。 1 双环电流型PWM控制器工作原理 双环24V电源电流型脉宽调制(PWM)控制器是在普通电压反馈PWM控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环控制。双环电流型PWM控制器电路原理如图1所示。 从图1可以看出,24V电源电流型控制器有两个控制闭合环路:一个是输出电压反馈误差放大器A,用于与基准电压比较后产生误差电压;另一个是变压器初级(电感)中电流在Rs上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误差信号对峰值电感电流起着实际控制作用。https://www.360docs.net/doc/1410967363.html,/520010/星战风暴 系统工作过程如下:假定输入电压下降,整流后的直流电压下降,经电感延迟使输出电压下降,经误差放大器延迟,Vea上升,占空比变化,从而维持输出电压不变,在电流环中电感的峰值电流也随输入电压下降,电感电流的斜率di/dt下降,导致斜坡电压推迟到达Vea,使PWM占空比加大,起到调整输出电压的作用。由于既对电压又对电流起控制作用,所以

控制效果较好在实际中得到广泛应用。 2 双环电流型PWM控制器的特点 a)由于输入电压Vi的变化立即反映为电感电流的变化,不经过误差放大器就能在比较器中改变输出脉冲宽度(电流控制环),因而使得系统的电压调整率非常好,可达到0.01%/V,能够与线性移压器相比。 b)由于24V电源双环控制系统内在的快速响应和高稳定性,反馈回路的增益较高,不会造成稳定性与增益的矛盾,使输出电压有很高的精度。 c)由于Rs上感应出峰值电感电流,只要Rs上电平达到1V,PWM控制器就立即关闭, 形成逐个脉冲限流电路,使得在任何输入电压和负载瞬态变化时,功率开关管的峰值电流被控制在一定范围内,在过载和短路时对主开关管起到有效保护。 d)误差放大器用于控制,由于负载变化造成的输出电压变化,使得当负载减小时电压升高的幅度大大减小,明显改善了负载调整率。 e)由于系统的内环是一个良好的受控电流放大器,所以把电流取样信号转变成的电压 信号和一个公共电压误差放大器的输出信号相比较,就可以实现并联均流,因而系统并联较易实现。 3 双环电流型PWM控制器功率因数校正 正是基于以上特点,电流型PWM控制器在实际应用中被越来越广泛地采用。对它采用 功率因数校正技术,可以有效地减少高次谐波对电网的干扰,减小功耗,具有较大的实际意义。 3.1 功率因数校正方法 功率因数校正主要有两种方法:一种是将电网上公用负载端并接一个专用的功率变换器,对无功和谐波进行补偿;另一种是将负载的整流电路与滤波电容之间增加一个功率变换电路,将输入电流校正成与电网电压相近的正弦波。实现功率因数校正在CCM和DCM下

pwm控制原理

1.PWM的技术背景 随着CPU技术的发展,更多的晶体管和更高的主频,以及纳米级的工艺,都造成了CPU功率的飙升。尤其是第一个走进90纳米的Intel。更高的功率,就需要更好的散热设备。Intel为了对付prescott核心,开始从多方面加强散热,比如38度机箱比如BTX,比如 9CM风扇的主流应用,其中PWM技术,是最重要的技术之一。 Intel对散热器的评定标准非常严格,其最恶劣的环境条件在普通应用中很难出现。如果采用定转速风扇,在用户普通应用中,风扇的噪音根本让人无法忍受。传统的温控风扇是利用风扇轴承附近的测温探头侦测风扇的进风口温度,从而对风扇的转速进行调节。这种温控虽然解决了一定的问题,但是存在着精度粗糙,而且温控的转速只能做到高速低速两极变速。 PWM是脉宽调制电路的简称,它本身并不是一个新技术,在工业控制,单片机上早已经广泛的应用。而Intel将他和主板的CPU温度侦测相结合,将其应用于散热器风扇的转速精确控制上,取得了良好的效果。 2.PWM智能温控风扇的功能特点 首先,PWM风扇调节风扇转速是直接从CPU获取温度信息,在风扇上无任何测温装置。根据不同的CPU温度,温控风扇会有不同的转速调节与之对应,并且风扇的转速变化可以做到四级五级,甚至更多,基本上是无极变速的感觉。由于是脉宽信号的实时调节,风扇转速的变化非常灵敏,转速和CPU温度的变化几乎是同步的。 第二,PWM风扇在计算机待机的时候,可以保持在一个非常低的转速上。例如原包的Intel风扇,在待机时候,CPU温度在四五十度以下,其转速仅为一千多转,大大降低了运转的噪音。而设计的最高转速,四千多转,只有在CPU温度接近极限温度即65-67度时候,才会出现。相比传统的温控风扇有着更大的转速控制范围,更好的解决了噪音和性能的问题。

交互式有源箝位电流型PWM控制IC_LM5034

交互式有源箝位PWM控制IC--LM5034. 有源箝位正激式变换器有一系列的优点,然而要想获得更大的功率输出,只靠一只功率MOSFET就有些困难,那么如何利用原系统EMI以及输入电路的工作间隙进一步扩大输出功率呢?搞一个交互式有源箝位正激电路可能是最经济的方法。 一般有源箝位正激电路正常工作的占空比为40~50%,另外50~60%的时间为空档。我们将两个有源箝位正激电路放在一起,同频同步工作,但功率元件的导通信号差1800时将会非常优秀,此外两路工作既可以满足不同的多输出电压的需要,也可以做单输出的并联。 LM5034即是这样一款交互式控制方式有源箝位正激电路的控制IC。 LM5034中有一个100V高压以下的起动电路,然后由一个振荡器去控制两路正激拓扑,每路还都给出有源箝位驱动的重叠调节,两路各自的最大占空比控制。此外还给出欠压锁定,逐个周期式电流限制,打呃式的故障保护,可调整重新起动时间,电流型工作的斜率补偿,软起动及2MHz的最高振荡频率。每路栅驱动输出高达2.5A等,因此可以实现大功率仅次于全桥电路拓朴的功率输出。 内部等效电路如图1所示。 图1 LM5034控制器的内部等效电路

LM5034采用20Pin引脚的包封,下面先介绍各端子的功能。 1Pin OVLP.有源箝位的重迭时间设置。(间隔调整)在其外部接一支电阻到GND(10K~100K)设置此重迭时间,它用于调节功率开关的ZVS状态。 2Pin V1N.高压起动端子,输入电压可从13V~105V。 3Pin Comp1.PWM控制信号给1通道的PWM比较器的反相端子,OUT1的占空比随Comp1电压增加而增大,内部5KΩ电阻外接光耦。 4Pin CS1电流检测输入,1通道的电流取样及电流限制的检测,如果CS1超出0.5V,OUT1即被终止。其通过一外部电阻接出以调节PWM的斜率补偿,不得超过1.25V。 5Pin SS1第一通道的软起动端子,外接一电容设置软起动时间,充电电流为50uA,若故障后重新起动则电流仅为1uA。 6Pin UVLO输入欠压锁定,外部一个电阻分压器从输入到地,然后接于此端,UVLO参考电压为1.25V,内部开关给出25uA电流,可调节UVLO的窗口阈值,此外UVLO端的电压还控制着最大占空比。 7Pin VCC1起动调节器输出,给1通道提供一个7.7V的稳定电压,Vcc1及Vcc2两通道供电总合会超过19mA。 8Pin OUT1.第一通道栅驱动输出,频率为振荡器的1/2,电平为7.7V到GND。 9Pin AC1第一通道箝位MOSFET驱动输出,相位电平适合于P沟MOSFET。若驱动N沟MOSFET则需采用变压器隔离及倒相其与OUT1的交越(间隔)由OVLP端上的电阻调节。 10Pin GND1.第一通道的公共端。 11Pin GND2.第二通道的公共端。 12Pin. AC2.第二通道的箝位MOSFET驱动输出,它与OUT2的交越时间同样由OVLP调节。 13Pin OUT2第二通道主功率MOSFET输出驱动。同样,频率为振荡器的1/2,幅度为7.7V到GND。 14Pin VCC2起动调节器输出给二通道供电。 15Pin RES打呃保护及重新起动时间调节。 16Pin SS2软起动,控制器2通道软起动时间控制。 17Pin CS2 第二通道的电流检测输入。 18Pin COMP2.PWM控制信号给二通道PWM比较器,功能与COMP1相同。 19Pin DCL 最大占空比设置端。用一只外接电阻到地同时给OUT1和OUT2来设置。 20Pin RT/SYNC 振荡器定时电阻,调节振荡器频率,并用于外同步输入。 LM5034控制功能描述 LM5034 IC内包含了实现交互式有源箝位,正激电路控制的全部功能。两个独立通道,一个振荡频率,相差1800的工作相位差,这就大大减小了输入的滤波及纹波电流。每个通道都包含了完整的PWM控制器,电流检测端子,软起

相关文档
最新文档