电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较
电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较

薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。

它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。

厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。

由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。

金属箔电阻

将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

这些功能有助于提高系统稳定性和可靠性,精度、稳定性和速度之间不必相互妥协。为获得精确电阻值,大金属箔晶片电阻可通过有选择地消除内在“短板”进行修整。当需要按已知增量加大电阻时,可以切割标记的区域(图2),逐步少量提高电阻。

图2

合金特性及其与基片之间的热机平衡力形成的标准温度系数,在0 °C 至 + 60 °C 范围内为± 1 ppm/°C (Z 箔为0.05 ppm/°C)(图3)。

图3

采用平箔时,并联电路设计可降低阻抗,电阻最大总阻抗为 0.08 uH。最大电容

为 0.05 pF。1-k? 电阻设置时间在 100 MHZ以下小于 1 ns。上升时间取决于电阻值,但

较高和较低电阻值相对于中间值仅略有下降。没有振铃噪声对于高速切换电路是十分重要的,例如信号转换。

薄膜电阻和厚膜电阻的区别

薄膜电阻和厚膜电阻的区别 (捷比信)薄膜电阻器是用类真空蒸发、磁控溅射的方法将一定电阻率材料蒸镀于绝缘材料表面制成一种电阻器。是现在主流的贴片精密电阻器。 捷比信薄膜电阻和厚膜电阻的最大区别是: 一、膜厚的区别,厚膜电路的膜厚一般大于10μm,薄膜的膜厚小于10μm,大多处于小于1μm; 二、制造工艺的区别,厚膜电路一般采用丝网印刷工艺,捷比信薄膜电阻采用的是真空蒸发、磁控溅射等工艺方法。 厚膜电阻和捷比信薄膜电阻在材料和工艺上的区别直接导致了两种电阻在性能上的差异。厚膜电阻一般精度较差,10%,5%,1%是常见精度,而捷比信薄膜电阻则可以做到0.01%万分之一精度,0.1%千分之一精度等。同时厚膜电阻的温度系数上很难控制,一般较大,同样的,捷比信薄膜电阻则可以做到非常低的温度系数,如5PPM/℃,10 PPM/℃这样电阻阻值随温度变化非常小,阻值稳定可靠。所以捷比信薄膜电阻常用于各类仪器仪表,医疗器械,电源,电力设备,电子数码产品等。 以下是其他相关电阻器:

1.碳膜电阻器 将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低。性能稳定。阻值范围宽。温度系数和电压系数低,是目前应用最广泛的电阻器。 2.金属膜电阻器。 用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数校在仪器仪表及通讯设备中大量采用。 3.金属氧化膜电阻器 在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。 大品牌有保证---捷比信精密电阻!欢迎来电来函索取资料,样品及查货等。 业德薄膜电阻器是用类真空蒸发、磁控溅射的方法将一定电阻率材料蒸镀于绝缘材料表面制成一种电阻器。是现在主流的贴片精密电阻器。 业德薄膜电阻和厚膜电阻的最大区别是: 一、膜厚的区别,厚膜电路的膜厚一般大于10μm,薄膜的膜厚小于10μm,大多处于小于1μm; 二、制造工艺的区别,厚膜电路一般采用丝网印刷工艺,业德薄膜电阻采用的是真空蒸发、磁控溅射等工艺方法。 厚膜电阻和业德薄膜电阻在材料和工艺上的区别直接导致了两种电阻在性能上的差异。厚膜电阻一般精度较差,10%,5%,1%是常见精度,而薄膜电阻则可以做到0.01%万分之一精度,0.1%千分之一精度等。同时厚膜电阻的温度系数上很难控制,一般较大,同样的,薄膜电阻则可以做到非常低的温度系数,如 5PPM/℃,10 PPM/℃这样电阻阻值随温度变化非常小,阻值稳定可靠。所以薄膜电阻常用于各类仪器仪表,医疗器械,电源,电力设备,电子数码产品等。 以下是其他相关电阻器: 1.碳膜电阻器

制动单元正确选型和制动电阻计算公式

制动单元正确选型和制动电阻计算公式制动单元正确选型和制动电阻 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

制动电阻选型

制动电阻选型 一、能耗制动的工作方式 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速w1小于转子转速w时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩Te,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能P经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压Ud升高。过高的直流电压将使各部分器件受到损害。 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动(如下图所示)。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。

制动单元V B 制动单元的功能是当直流回路的电压Ud 超过规定的限值时(如660V 或710V ),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路 制动电阻R B 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 二、制动单元与制动电阻的选配 1、估算负载转矩 公式: 根据 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; 要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。制动力矩越大,制动能力越强,制动性能约好。但是制动力矩要求越大,设备投资也会越大。 制动力矩精确计算困难,一般进行估算就能满足要求。 (1)按100%制动力矩设计,可以满足90%以上的负载。 (2)对电梯,提升机,吊车,按100%。 (3)开卷和卷起设备,按120%。 (4)离心机100%。 (5)需要急速停车的大惯性负载,可能需要120%的制动力矩。 普通惯性负载80%。 (6)在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必 须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器 本身。 (7)超过150%的力矩是没有必要的,因为超过了这个数值,变频器本身也到了极限, 没有增大的余地了。 d T J dt Ω

制动器的选型和计算

1 引言 目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。能耗制动是变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。 2 制动电阻的介绍 制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。 3 制动电阻的阻值和功率计算 3.1刹车使用率ED% 制动使用率ED%,也就是说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。(图1) 图1刹车使用率ED%定义 现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。

薄膜表面电阻率中文版

薄膜表面电阻率 玛丽亚.古铁雷斯 李海勇 杰弗里,巴顿 材料工程中部分实现210配对实验方法的课程要求 2002年秋 G. Selvaduray教授

什么是表面电阻率? 定义 表面电阻率可以被定义为材料的固有表面电阻乘以试样表面的尺寸比(电极宽度除以电极之间的距离),如果电极已形成了一个正方形的对立两边,表面电阻率则转换被测电阻 【1】换句话说,它是材料表面固有电阻的量度。表面电阻率不依赖于材料的物理尺寸。根据欧姆法律电路理论,材料的电阻是应用电压除以穿过材料两个电极之间的电流得到的。 R=V/I (1) 其中: R为电阻,单位欧姆 V为电压,单位伏特 I为电流,单位安培 这个电阻和样品的长度成正比和样品的横截面面积成反比。比例常数的电阻率 R=ρ l/A (2) 其中: Ρ为电阻率 A为横截面面积 l为长度 单位

表面电阻率的物理单位是欧姆/平方。在实际中,表面电阻率常常以欧姆/平方的单位给出。这个单位应该被看做是一种标志而不是表面电阻率的物理单位。尽管如此,理解欧姆/平方的意义还是很重要的,因为在绝大多数出版物中,表面电阻率的单位是以那种方式表达的。 [2]那些对这个术语不熟悉的人会问,每平方是什么?是英寸?英尺?还是码?答案是,只要量度与方形有关就是每平方。假设测试样品有一个长方形的形状与厚度(t)。那么等式2可以写成 ρ=R wt/l=Rw/l (3) 其中 w为宽度 l为长度 根据电路类推,方形式样的电阻可以认为是一个电路有个电阻值为R0的电阻,如图1所示。根据等式3,电阻率等于电阻,因为w=1. 图1:方形式样作为独立的电阻 对于长度是其宽度2倍的长方形式样,其电阻为2R0。这可以被认为

制动电阻的选型计算

精品文档 制动电阻的选型:动作电压 710V 1)电阻功率(千瓦) =电机千瓦数 *(10%--50%), 1)制动电阻值(欧姆) 粗略算法:R=U/2I~U/I在我国,直流回路电压计算如下:U=380*1.414*1.1V=600V 其中, R :电阻阻值 U :直流母线放电电压, I :电机额定电流 2)最小容许电阻(欧姆):max(驱动器technical data 中要求,放电电压/额定电流), 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量 +电机负载测折算到电机测的转动惯量) * (制动前速度 - 制动后速度)) /375* 减速时间 -负载转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的 18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方 /(0.1047*(制动转矩-20%电机额定转矩) *制动前电机转速) 在制动单元工作过程中,直流母线的电压的升降取决于常数 RC R即为制动电阻的阻值,C为变频器内部电解电容的容量。这里制动单元动作电压值一般为 710V。 C、然后进行制动单元的选择 在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算 公式如下: 制动电流瞬间值 =制动单元直流母线电压值 /制动电阻值 D最后计算制动电阻的标称功率 由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的 标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率 % 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是

高分子膜材料

高分子膜材料 姓名:*** 指导老师:** 专业:高分子材料2011年6月8号

摘要:高分子膜材料具有制备简单、性能稳定以及与指示剂相容性好等特点。本文介绍高分子膜材料的分类、性能以及高分子膜材料在工业、农业以及日常生活中的应用,主要是论述高分子膜材料的研究进展以及发展前景等。 前言:高分子膜材料虽然很早就出现,但是对它的研究还是近些年来才开始。在上世纪20年代,由于石油工业的发展促进了三大合成材料品种的不断增多,高分子膜材料的应用范围也在逐渐扩大。由包装膜开始,在30年代已经将纤维膜应用于超滤分离;40年代则出现了离子交换膜和点渗析分离法;50年代出现了饭渗透法膜分离技术;60年代又加拿大和美国学者分别成功的制造出了高效能膜和超过滤膜,总之,国外高分子膜材料技术的发展是迅速的。近年来,我国的科研工作者也开始重视这方面的研究,膜的汇总类及应用范围在不断扩大,其中用量最大的是选择性分离膜,如离子交换膜、微孔过滤膜、超过滤膜、液膜、液晶膜等等。目前已应用的领域有核燃料及金属提炼、气体分离、海水淡化、超纯水制备、污废处理、人工脏器的孩子早、医药、食品农药、化工等各个方面。

众所周知,进入二十一世纪以后,环境已经成为制约各国发展的重要因素,各种各样的工业废水、废气以及工业垃圾对环境造成了巨大破坏。而高分子膜材料以其独特的微处理性可以很好的清除废水、废气以及工业垃圾中所含有的有毒重金属、有机物和矿物质等物质,因而在新世纪高分子膜材料必然迎来新的发展。

目录 第一节:高分子膜材料的研究分类 (2) 第二节:各种高分子膜材料的的介绍 (3) 第三节:高分子膜材料的发展前景 (5) 第四节:高分子膜材料的性能 (6) 第五节:高分子膜材料的应用 (8) 参考文献 (11)

制动电阻的选型计算

制动电阻的选型:动作电压710V 1) 电阻功率(千瓦)=电机千瓦数*(10%--50%), 1) 制动电阻值(欧姆) 粗略算法:R=U/2I~U/I 在我国,直流回路电压计算如下:U=380*1.414*1.1V=600V 其中, R:电阻阻值 U:直流母线放电电压, I:电机额定电流 2) 最小容许电阻(欧姆):max(驱动器technical data中要求,放电电压/额定电流), 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速) 在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。这里制动单元动作电压值一般为710V。 C、然后进行制动单元的选择 在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下: 制动电流瞬间值=制动单元直流母线电压值/制动电阻值 D、最后计算制动电阻的标称功率 由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率% 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。

厚膜电阻硫化

厚膜电阻硫化 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空气中的硫---电阻杀手 有一批现场仪表在某化工厂使用一年后,仪表纷纷出现故障。经分析发现仪表中使用的厚膜贴片电阻阻值变大了,甚至变成开路了。把失效的电阻放到显微镜下观察,可以发现电阻电极边缘出现了黑色结晶物质,进一步分析成分发现,黑色物质是硫化银晶体。原来电阻被来自空气中的硫给腐蚀了。 (电极边缘的硫化银晶体光颉供图) 那么这个过程是怎样发生的呢。通常厚膜电阻的结如下:

(图片来源:风华高科) 其中面电极是连接二氧化钌电阻体和焊接端头用的内部电极。这种电极一般是银钯合金。由于电阻表面的二次保护层和焊接端头不是严丝合缝的。导致面电极部分暴露在空气中。因此当空气中含有大量硫化气体时,银被硫化物反应成硫化银。由于硫化银不导电,所以随着电阻被硫化,电阻值逐渐增大,直至最终成为开路。 实际上,并非只有用在化工厂的电阻会被硫化,在矿业、火力发电厂中的电阻同样存在被硫化的危险,甚至在某些场合仅仅因为在封闭环境中使用了含硫的橡胶、油也会导致在高温下释放的硫导致电阻硫化。因此汽车电子中也逐渐开始重视电阻的硫化。 为了防止电阻的硫化人们开始进行抗硫化电阻的研制。一般说来,薄膜电阻是由镍铬合金或氮化钽制成,这种薄膜电阻中不含银,所以天生就具有良好的抗硫化能力。所以一般而言,抗硫化电阻常常指的是厚膜电阻。厚膜电阻的抗硫化设计一般采用调整面电极成分和调整厚膜电阻结构的方法进行。

面电极是银钯合金,提高钯的含量可以增强抗硫化性能。但是增加钯后银钯合金的熔点会升高,会对工艺产生一定影响。所以目前主要生产抗硫化电阻的厂家都在调整电阻结构上下足了功夫。 防止面电极直接暴露在空气中是目前通过调整电阻结构来实现抗硫化设计的主要方法。这种方法是在面电极上再使用一种不易被腐蚀的材料做成一个保护性中间层。中间层填补了二次保护膜和焊接端头之间的空隙,以避免面电极直接暴露。最常见的一种结构是采用金质材料做中间层。如下为AAC公司出品的抗硫化电阻结构。 如图所示,在内部的面电极(图中为Inner Electrode)外部使用了金质导电层作为面电极的保护层。由于金属于贵金属所以这种抗硫化电阻的成本比较高。 为了降低成本,电阻厂商在这层中间保护层成分上开始想办法,比如而Rohm公司的抗硫化电阻是用特殊的树脂材料代替金,另外一些公司则根据自己技术、工艺的特点使用镍铬作为金的替代品。 而风华高科在结构上不仅采用了中间层保护面电极,而且还改进工艺,将焊接端头包裹住二次保护膜的边缘,以防止内部电极的暴露。目前抗硫化电阻价格较普通厚膜电阻要昂贵,一般抗硫化电阻用于前文所述的化工、矿业、火力发电、汽车电子外,还用于某些对可靠性要求严格的高端应用中,如电信等行业。

射频微波薄膜电阻,薄膜高频电阻的规格、尺寸、电气性能和安装使用。

SHENZHEN DEPING ELECTRONICS CO.,LTD 深圳德平电子有限公司 TEL:+86-755-33554001FAX:+https://www.360docs.net/doc/192753567.html, Email:dpwm66@https://www.360docs.net/doc/192753567.html, 1.薄膜电阻产品用途及特点说明Thin Film Resistors Product Function and Characteristics 主要应用于微波集成电路模块,如放大、耦合、衰减、滤波等模块电路。降低信号电平、源与负载之间的匹配。低寄生参数、使用频率高至50GHz 。可焊性与键和性能良好。 Microwave Chip Resistor is used in Microwave Integrated Circuit Hybrid (MIC)and the application can be grouped into the following categories:Amplifiers 、Couplers 、Attenuators 、Filters.To reduce singal levels to prevent overloading Low parasitic parameters,working frequency up to 50GHz.Good solderability and bonding; 2.订购信息Ordering Information RG 0603A 500J 1①②③④⑤⑥①产品型号:Type ;②尺寸代码:Size code ; ③结构形式:Structure :A型,B 型;Type A ,Type B ;请参考外形图4,Outline Drawings4;④阻值:Resistance :R05=0.5?,5R0=5?;500=50?,102=1000?;可定做Customer designed ;⑤阻值精度:Accuracy :J=5%,K=10% ⑥基板材料:Other Show :1-氧化铍BeO,2-氮化铝AlN,3-氧化铝Al2O3; 3.温度特性说明Temperature Characteristic Information 工作温度Operation Temperature :–55℃~+150℃贮存温度Storage Temperature :–55℃~+150℃ 4.电阻结构Resistor Figuration 5.选型指导Selection Guide 可根据客户要求定做指定产品 Customer designed resistors are available Part Number Size code Power (Max )W Frequency (Ghz ) VSWR (Max ) Dimensions (mm)W L T RG0101A500J101010.1261:1.20.2540.2540.254RG0201A500J102010.25261:1.20.2540.5080.254RG0402A500J104021261:1.20.508 1.0120.254RG0603A500J106032261;1.20.762 1.5240.254RG0805A500J1 0805 5261:1.2 1.270 2.0320.254

铅酸钡厚膜电阻

铅酸钡厚膜电阻 前言:不同稀土元素或过渡元素,而用半导体化金属BaPbO3和碱性玻璃粉料制作的厚膜电 阻成本很低。利用指数等式估算玻璃含量与电阻率间的关系。提出三种导电隧道组成的导电 模型来解释掺杂曲线和电阻温度系数特性。原材料中P含量较高时可从根本上避免由字湿度 而引起的电阻器性能的降低。银是TCR调节剂,能够提高BaP6O3电阻的稳定性。 关键词:厚膜电阻,导电隧道,掺杂曲线-简介 大部分厚膜电阻浆料由下列材料组成:钯、Pa、钌Ru、铑Rn、铱Ir等元素的化合物或者氧 化物。这些系列的电阻有很好的性能,但这些元素如Pd、Ru、Rn、Ir不仅价格昂贵而且也很 稀少,因此人们把注意力转回了其他非过渡性金属化合物上,如BaP6O3、BaP6O3系钙钛矿 结构,其正交晶格为a=6.024A、b=6.065A、C=8.506A,尽管BaP6O3是标准的原子价化合物, 但他仍有金属的某些特性,电阻率低且是正温度系数。BaP6O3和RuO2常作为半导化金属,BaP6O3在TC=0.38K时具有低温超导性,加入适量的铋,Tc可升高至13k,除此之外,它还 被作为陶瓷电极、导体浆料、防腐颜料及烧结体电阻等。 本文将利用陶瓷合金的导电原理来制作铅酸钡陶瓷电阻器和厚膜电阻。如果铅酸钡作为厚膜 电阻的功能相,将测量和研究他们的特性。加入少量Ag2O来调整其电阻温度系数,并提出 了相应的导电模型来解释掺杂曲线和TCR特性。 二实验 A:BaPbO3粉末预制 将高纯度BaCO3,PbO(99%纯度)粉料以合适的比例混和,湿磨5h,在880℃氧气氛中干燥和 烧结4h,然后粉碎并在220Kg/㎝2压力下压制成小圆片,这些成型片子置于氧化锆托盘上,在空气中940℃烧结7h,然后把这些烧结体(BaP6O3陶瓷)粉碎、研末,过220钼丝网筛,获得BaP6O3粉末。 B:BaP6O3陶瓷电阻的制作 自制碱玻璃(71%SiO2-18%Na2O-8%CaO-3%Al2O3)粉,同BaP6O3粉料以合适比例混合,玻 璃料含量从15%到5%WT,用丙酮作溶剂湿磨5h,然后干燥并在400kg/㎝2条件下压制成条(0.5*0.5*2㎝3),把这些成型物置于氧化锆托盘上,空气气氛中烧结,峰值温度范围在 760-810℃约10分钟,传统的银导体作为烧结体陶瓷电阻的电。 C:BaP6O3厚膜电阻的制作 适当量的BaP6O3粉末和碱玻璃料不加或者加2%wtAg2O混合后作为电阻浆料的固体相,这 些粉料然后同适量的有机载体混合,如乙基纤维素、丁基熔汗剂,萜品醇等,制成厚膜浆料。用200目的丝网印制BaP6O3厚膜电阻,基片是清洗后预烧过并烧好Ag-Pd电极的氧化铝基片,干燥后,在空气气氛中烧结,烧结条件和前面烧结体电阻的条件一样。 对样品用数字万用表测量了电阻率和表面电阻率,在温度箱中测得高温TCR(25-125℃)和 低温TCR(25-55℃),在40℃下将样品置于相对湿度为95%的湿度箱中100h已检验其湿度 稳定性,并测得了阻值漂移5时间的关系曲线。 三结果讨论 烧结体BaP6O3陶瓷是黑色的,在室温下其电阻率约是3mΩ/㎝,电阻温度系数为 1350PPm/℃。

不同设备的制动电阻选型计算

如何计算选用变频器的制动电阻 变频器制动电阻的作用 当变频器带动的电机或其他感性负载在停机的时候,一般都是采用能耗制动的方式来实现的,就是把停止后电机的动能和线圈里面的磁能都通过一个别的耗能元件消耗掉,从而实现快速停车。当供电停止后,变频器的逆变电路就反向导通,把这些剩余电能反馈到变频器的直流母线上来,直流母线上的电压会因此而升高,当升高到一定值的时候,变频器的制动电阻就投入运行,使这部分电能通过电阻发热的方式消耗掉,同时维持直流母线上的电压为一个正常值。电机刹车用时,当电机减速时电机处于发电状态,制动电阻就负责消耗掉电机发电送回变频器的多余的电能,防止变频器里的母线电压过高而跳保护。 R=U*U/Pz Pz=制动功率 R=制动电阻值 关于制动电阻的阻值,是根据变频器的厂家和型号来的,有严格的标准,但功率可以放大。为了保证散热性能,如果你要频繁制动,最好是把制动电阻的功率放到电机功率的一半。 刹车时间即变频器减速时间?及每隔多久需要刹车一次? 制动电阻规格有两个:功率和阻值.阻值=700/变频器功率/1.5 功率=变频器功率*刹车频率 选用RNW系列电阻,在高压大功率变频器的逆变器直流环节保护应用效果很好.电阻由全无机材料制成,吸收瞬间冲击电流能力很强.如不能及时泄放冲击能量,势必造成电压的上升,保护失效.选型要根据冲击能量来计算。 1, 计算制动电阻欧姆=700/电机千瓦数(380 系列) 电阻功率=电机千瓦数*10%--15% 2,制动单元 500 元起 加能电子 0755-8341-6757 0755-8341-6746 还有回馈制动单元4200元18-55 千瓦 磕头机抽油机变频器节能制动分析 对于油田磕头机来说,变频改造的优点是显而易见的 1,配合井下状态,改变冲次,从而改变抽油的效率, 2,柔性启动,把电机启动电流降低3-4倍,保护了电机和机械设备, 3,最大力矩得到限制,断托的可能性大大减小, 4,可以遥控抽油速度,不必更换机械设备, 但是,使用变频器后,用户发现不但不能节能,而且还耗用更多的电能,这是为什么呢? 由于磕头机有两个工作状态: 一个是电动机驱动机械设备运动,磕头机从电网吸收电能(电表正转) 另是一个释放能量(机械势能,井下负压,平衡块势能),由机械设备带动电动机 运动,是一个发电的过程(电表反转)。

ABB 800系列变频器制动电阻选用

ABB 800系列变频器制动电阻的选定 1、制动电阻的必要性 如应用中减速时及下降时所产生的再生能量过大,则有变频器部的主电路电压上升导致损坏的可能。 因为通常变频器中置有过电压保护功能,检测出主电路过电压(OV)后则停止,不会造成损坏。但是,因在检测出异常后电机 会停止,所以就难于进行稳定的持续运行。 有必要应用制动电阻器/制动电阻器单元/制动单元,将再生能量释放到变频器外部。 (1)再生能量 连接在电机上的负载,在旋转时有动能、在高位置时有势能。电机减速、或负载减小时,该能量会返回到变频器。这种现象称为再生,该能量即称为再生能量。 (2)制动电阻的避免方法 避免制动电阻连接的方法有以下的方法。因为避免方法必定会增加减速时间,请研究确认即使减速时间延长也没有问题。

·减速时,防止失速功能生效(出货时的设定中,已设为有效)(为防止主电路过电压的发生,自动地增加减速时间)。 ·将减速时间设定得更长。(每单位时间的再生能量减少)。 ·选择自由旋转停止。(再生能量不会返回到变频器)。 2、制动电阻的简单选定 根据平常的动作模式中的再生能量产生的时间比率进行简单设定的方法。请按照下述的动作形式计算使用率。 (1)使用率3%ED以下的情况 请选定制动电阻器。与变频器容量相对应的制动电阻器的一览表记载在使用说明书·产品样本中。请根据所使用的变频器连接相应的制动电阻器。(如变频器的容量变大,则可在变频器的散热风扇上安装制动电阻器)。 (2)使用率10%ED以下的情况 请选定制动电阻器。与变频器容量相对应的制动电阻器的一览表记载在使用说明书·产品样本中,请根据所使用的变频器相应的制动电阻器单元。 3、制动电阻的简易选定

膜面电阻的测试

膜面电阻的试验 1、测试原理 由于离子交换膜的本质是高分子聚电介质,交换基团在水中能自由解离成为带电荷的固定离子和自由离子,能发挥负载和传递电流的作用。因此,可通过一定仪器和装置测定其电化学性能。膜面电阻是膜导电性能的一种表示方法。 2、仪器设备 a)流量计,15ml/min,一支; b)电导率仪,DDS-11AT,一台; c)电导池装置:主要是由两个完全相同的半槽组合一体而成。半槽是带铂电极,通常用有机玻璃加工而得。为计算方便,通常设计半槽圆孔的直径为 1.13cm(即电极有效面积为 1.0cm2),电极间距1.0cm。 3、化学试剂:氯化钠(AR级)。 4、溶液配制 0.1mol/L氯化钠标准溶液:取适量试样于105℃烘箱中干燥至恒量,精确称量5.8450g,加纯水溶解,然后在1L的容量瓶中稀释至刻度。 5、膜的预处理 取经过4.3.2程序处理后的膜,剪成直径约为30mm的圆片,放入0.1mol/L氯化钠溶液中浸泡平衡,每3h更换溶液一次,注意阳膜需增加几次,直到平衡(用PH试纸检测中性),待测。

6、测试方法 6.1 测试条件 a )温度恒定:25±2℃; b )流量稳定,流速均匀,大约为10L/h 。 6.2 操作步骤 a )溶液电阻测定:将两个半槽吻合一体,用对位螺杆旋紧,不使溶液外漏。开启流量计阀门,使氯化钠溶液从高位槽流下,穿过电极,形成搅拌状态,注意排除管内和电导池内的气泡。记录电导率仪读数,其倒数即为溶液电阻Rs 。 b )溶液加膜的电阻测定:把膜夹在两个半槽圆孔的中间,操作方法同4.5.6.2a )。记录读数,即为溶液和膜的合电阻Rm+s 。 7、结果计算 7.1 计算原理 通过电导池可测知溶液的空白电阻和有膜时的电阻,两者之差正是膜电阻值。膜面电阻是单位膜面积具有的膜电阻,数值等于膜电阻与测定时膜的有效面积(即电极面积)的乘积。 7.2 计算公式 膜电阻计算 m m s s R R R +=- .................(3) A m R R A ?=. (4) 式中:R m ——膜电阻,Ω; R m + s :——膜加溶液合电阻,Ω;

变频器制动电阻选择

在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电

正确选型制动单元和制动电阻

正确选型制动单元和制动电阻 1、变频器能耗制动工作原理 在同一个电力拖动系统中,当电机转速高于变频器输出频率所对应的同步转速时,处于发电状态的电动机及负载的惯性能量将反馈到变频器中 (这种情况一般发生在电机被拖着走的时候,如起重机重物下降)。但通用变频器大多没有设计使再生能量反馈到三相电源的功能, 因此所有变频器从电机吸收的能量都会保存在电解电容中,最终导致变频器中的直流母线电压因电容充电升高。如处理不当,变频器就会报警停机。 对于通用变频器通常采用的方法是为变频器配备制动单元和制动电阻,制动单元通过电平检测确定直流母线电压Ud是否超过规定的限值时(如660V或710V),如过压就可以通过短时间接通电阻,使电能以热能方式消耗掉。所以准确地计算制动功率、制动电阻阻值和功率容量等参数,对于变频器的正常工作是至关重要的。 2、起重变频器制动功率的简便计算 对于制动功率的计算通常是采用计算制动转矩的方法,但针对于起重变频器的制动功率的计算此方法不太适用且计算太复杂。 国内外的变频器厂家也没有针对起重变频器制动功率给出方便的计算方法,如果仅依据其选型手册按一般停车工况进行选型, 通常不能正常使用。如安川G7系列45KW变频器,如按手册选型最大选择制动单元为CDBR-4045B 1台,制动功率9.6KW,如果此变频器用于提升机构, 制动功率就会差的太多而无法工作。ABB变频器制动单元选型手册也都是针对停车工况选型的计算,无法完成在起重领域应用时的选型。 对于起重变频器停车工况所需的制动功率容量较小, 而重物下降时所需的制动功率容量较大,故选型时应满足最大下降重量、最大下降行程、最快下降速度的要求。 在起重机重荷下降时电动机作为发电机产生电能,而电动机的驱动是来自于重物的势能,根据能量守恒定律, 产生的电能应等于重物势能的释放,又等于电阻的热能耗(在不考虑功率损耗)。所以只需计算重物势能产生的功率就是所需的制动功率。 对于下降物体势能产生的功率很容易计算。 PE = GM ╳ VM PW = PE ╳ (1-η) PE 下降势能产生的功率单位:瓦 PW 制动功率单位:瓦

微型薄膜电阻的制备及研究

电子器件 Chinese Journal of Electron Devices 第38卷第6期2015年12月 Vol 38 No.6 Dec.2015 Preparation and Research of Micro Film Resistor * ZHAO Long ,DUAN Junping ,ZHANG Binzhen *,CUI Jianli (Science and Technology on Electronic Test &Measurement Laboratory ,North University of China ,Taiyuan 030051,China ) Abstract :Composite was mixing with the carbon nanotubes (CNTs )and negative photosist (SU -82002).The carbon nanotubes of different proportions were dispersed into SU -82002,by means of using ultrasound ,the means was found to prepare the micro resistor quickly through UV -LIGA ,processing technic and hot -pressed.Resistor perfor?mance was tested of the composite membrane.The experimental results show that resistivity increased with the in? crease of ratio of carbon nanotubes ,when the concentration of CNTs in the composite was reduced below 12%,the resistivity reducing to 0.06Ω?m ,percolation threshold was occurred of the composite ,the change of resistor with frequency under 1.2GHz is less than 5%.Provide a new method for quick preparation of a simple micro resistor.Key words :composite ;micro -resistor ;hot -pressed ;resistivity EEACC :2120;0520 doi :10.3969/j.issn.1005-9490.2015.06.006 微型薄膜电阻的制备及研究* 赵 龙,段俊萍,张斌珍*,崔建利 (中北大学电子测试技术重点实验室,太原030051) 摘 要:将具有优异特性的碳纳米管(CNTS )与负性感光胶(SU-82002)混合得到复合材料,将不同比例的碳纳米管通过超声 工艺分散到SU -82002感光胶中,通过UV-LIGA 加工工艺,热压处理后实现了微型电阻的快速制备。对复合薄膜电阻的性能进行测试,测试结果表明复合薄膜电阻率随着碳纳米管比例的增加而减小,当碳纳米管的比例为12%时,电阻率减小到0.06 Ω?m ,复合材料达到逾渗阈值,频率小于1.2GHz 时,电阻值的变化范围小于5%,为快速制备微型电阻提供了新的方法。 关键词:复合材料;微型电阻;热压;电阻率中图分类号:TB332 文献标识码:A 文章编号:1005-9490(2015)06-1240-05 日本科学家20多年前在制备碳纤维的实验过 程中首次发现了碳纳米管(Carbon Nanotube )[1] ,碳 纳米管不仅具有高的电导率和大的长径比[2],同时还具有高导热性、高机械强度、低质量密度以及高拉伸模量等特点[3-4]。由于碳纳米管的尺寸比较小,只有均匀分散于高分子基体材料中其优良性质才能体现出来[5-10]。利用碳纳米管优异的导电性来填充高分子材料的研究已经成为当今的热点之一,填充后的复合材料尤其在电磁波传输和力学性能等方面表现优异[11-13],同时碳纳米管和各种聚合物材料混合制造也逐渐应用到了MEMS 领域。 常用的电阻制备方法有薄膜蒸发沉积法、磁控溅射法和浆料法[14-16],前两种方法对设备和温度要 求较高,工艺相对复杂,而浆料法制备的电阻体积较大,大都在毫米级别。市场上可以购买到的贴片电阻最小为0201,尺寸为200μm×400μm ,该尺寸大大限制了其在微型器件上的广泛使用。 1微型电阻的制备 SU-8是美国MICRO CHEM 公司生产的一种环 氧树脂,SU-82002是粘稠度较低的负性光刻胶,易 于与碳纳米管混合;SU-82150是粘稠度很高的环氧树脂,适用于制作高深宽比主模结构,交联的SU-8(紫外曝光或热固化)具有高度耐化学腐蚀和热稳定性,用SU-82002作为填充材料混合有碳纳米管的复合材料制备微型电阻工艺流程如图1所示。 ———————————— 项目来源:国家自然基金项目(61401405);国家自然基金项目(51475438);山西省基础研究项目(2014011021-4)收稿日期:2015-01-17 修改日期:2015-03-04

相关文档
最新文档