视频信息处理与传输课题研究报告

视频信息处理与传输课题研究报告
视频信息处理与传输课题研究报告

西南科技大学

课程研究报告

课程名称:视频信息处理与传输

班级:

姓名:

学号:

指导老师:

2016年11月日

课程学习目的:

《视频信息处理与传输》是数字媒体技术方向中的一门专业必选课,学习的目的是让我们系统地理解和掌握视频信息的采集、压缩编码视频信息传输等数字视频技术,并灵活应用。为我们补充TCP/IP,UDP,RTP等视频信息在网络中传输所必需的协议。老师为我们讲解了视频信息处理与传输概述,视频信息采集技术,以及传输协议。我将分别叙述我从中学习到的知识。

第一部分视频信息处理与传输概述

随着科学技术,视频信息处理与传输的技术也成了人们关注的一个热点。从采集到应用系统,每步都在提升。信息安全与信息垃圾就如人们的生活中的隐私与生活垃圾一样重要,如何维护信息的安全和如何处理信息垃圾已成为一个热点。

信息安全是指信息网络硬件、软件及其系统中的数据受到保护,不受偶然或者恶意的原因而遭到破坏、更改、泄露。系统连续可靠正常地运行,信息服务不中断。信息安全主要包括以下五方面:保证信息的保密性、真实性、完整性、未受权拷贝和所寄生系统的安全性。信息安全的根本目的就是使内部信息不受外部威胁,因此信息通常要加密。为保障信息安全,要求有信息源认证、访问控制,不能有非法软件驻留,不能有非法操作。信息垃圾就是那些混在大量有用信息中的无用信息、有害信息,以及对人类社会的各个方面带来危害的信息。它对信息安全应用和转播构成了威胁。

这一部分就是老师讲的关于这个课程的一些概述,也没用从中获取太多的知识。

第二部分视频信息采集技术

从这一部分,我从中学到了视频是怎么样组成的,以及视频的采集技术。

我们所看到的视频信息都是由一帧一帧的静态图像构成的,再加上每一帧图像的时间信息,通过连续播放而成.。

视频分为模拟视频和数字视频,而数字视频是模拟视频的数字化。模拟信号对应于时间轴有连续的无穷多个值,它完全准确地表示信号电平,如话音、图像等均是模拟信号。以模拟信号传输或处理的电视称为模拟电视。模拟电视的讯号广播公司通常是使用NTSC、PAL或SECAM的模拟制式把它们的信号进行调频后,调节这些信号并放进VHF或者UHF的载波上。数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过PC,特定的播放器等播放出来。为了存储视觉信息,模拟视频信号的山峰和山谷必须通过模拟/数字(A/D)转换器来转变为数字的“0”或“1”。这个转变过程就是我们所说的视频捕捉(或采集过程)。如果要在电视机上观看数字视频,则需要一个从数字到模拟的转换器将二进制信息解码成模拟信号,才能进行播放。模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

可见光是波长在380 nm~780 nm 之间的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的光组合成的。如果光源由单波长组成,就称为单色光源。该光源具有能量,也称强度。实际中,只有极少数光源是单色的,大多数光源是由不同波长组成,每个波长的光具有自身的强度。这称为光源的光谱分析。

研究表明,人的视网膜有对红、绿、蓝颜色敏感程度不同的三种锥体细胞。红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感知程度也不同。自然界中的任何一种颜色都可以由R,G,B 这3 种颜色值之和来确定,以这三种颜色为基色构成一个RGB 颜色空间,基色的波长分别为700 nm(红色)、546.1nm(绿色)和435.8 nm(蓝色)。颜色=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比),只要其中一种不是由其它两种颜色生成,可以选择不同的三基色构造不同的颜色空间,即三基色原理。

模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV 信号方式,而计算机工作在RGB 空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV 或YIQ 分量,然后用三个模/数转换器对三个分量分别采样并进行数字化,最后再转换成RGB 空间。对彩色电视图像进行采样时,可以采用两种采样方法。一种是使用相同的采样频率对图像的亮度信号(Y)和色差信号(Cr,Cb)进行采样,另一种是对亮度信号和色差信号分别采用不同的采样频率进行采样。如果对色差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(subsampling)。由于人的视觉对亮度信号的敏感度高于对色差的敏感度,这样做利用人的视觉特性来节省信号的带宽和功率,通过选择合适的颜色模型,可以使两个色差信号所占的带宽明显低于Y 的带宽,而又不明显影响重

显彩色图像的观看。

目前使用的子采样格式有如下几种:

(1) 4:4:4 这种采样格式不是子采样格式,它是指在每条扫描线上每4 个连续的采样点取4个亮度Y 样本、4个红色差Cr 样本和4个蓝色差Cb 样本,这就相当于每个像素用3个样本表示。

(2) 4:2:2 这种子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y 样本、2个红色差Cr 样本和2个蓝色差Cb 样本,平均每个像素用2个样本表示。

(3) 4:1:1 这种子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y 样本、1个红色差Cr 样本和1个蓝色差Cb 样本,平均每个像素用1.5个样本表示。

(4) 4:2:0 这种子采样格式是指在水平和垂直方向上每2个连续的采样点上取2个亮度Y 样本、1个红色差Cr 样本和1个蓝色差Cb 样本,平均每个像素用1.5个样本表示。

等间隔量化适合像素灰度值在黑白范围较均匀分布的图像。非等间隔量化(非均匀量化)——对图像中像素灰度值频繁出现的灰度值范围,量化间隔取小一些,而对那些像素灰度值极少出现的范围,则量化间隔取大一些。在数字图像处理技术上,亮度信号的取样频率为13.5MHz,理由如下:

①按照奈奎斯特取样定理,取样频率至少应为信号上限频率的2倍,为获得满意的图像质量,在PAL制中亮度信号要求5.8--6MHz的带宽。因此,取样频率应大于12MHz 。

②为了取样后保证产生足够小的混叠噪声,要求取样频率是信号宽带的2.2-2.7倍。因此对PAL制信号,取样频率应大于13.2MHz。

我们使用的图像传感器主要有CMOS与CCD两种。下面就是我学习到的知识。

CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和复现。其显著特点是,体积小重量轻,功耗小,工作电压低,抗冲击与震动,性能稳定,寿命长,灵敏度高,噪声低,动态范围大,响应速度快,有自扫描功能,图像畸变小,无残像,应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确,商品化生产成本低。因此,许多采用光学方法测量外径的仪器,把CCD器件作为光电接收器。

CMOS图像传感器是一种典型的固体成像传感器,与CCD有着共同的历史渊源。CMOS图像传感器通常由像敏单元阵列、行驱动器、列驱动器、时序控制逻辑、AD 转换器、数据总线输出接口、控制接口等几部分组成,这几部分通常都被集成在同一块硅片上。其工作过程一般可分为复位、光电转换、积分、读出几部分。CMOS 图像传感器具有以下几个优点:随机窗口读取能力,抗辐射能力。,系统复杂程度和可靠性,非破坏性数据读出方式。

第三部分视频信息压缩编码及标准

视频信息压缩的必要性与可行性,必要性:以较少的数据来表示图像;节约储存器空间;节省传输信道带宽;加快处理速度。可行性:冗余越大,可压缩的程度就越高。①由于相邻像素之间存在关联而产生大量的空间冗余。②由于彩色元素间存在相互关联而产生大量频谱冗余。③由于人类视觉系统特点而引起的大量心理视觉冗余。

视频信息压缩的评价指标,衡量一种数据压缩技术的重要性能指标有压缩比、压缩速度、压缩质量和计算量等。

典型的视频信息压缩编码方法,常见的视频信息压缩编码方法有:K-L变换编码、DCT变换编码、子带编码、预测编码、小波变换编码、模型基编码、分形编码、基于对象的视频编码。通常变换编码的基本思想:先将空间域图像通过某种正交变换,获得一系列变换系数,在变换过程中,使图像变换系数能量相对集中,再对其变换系数进行区域量化等,按其所含能量大小,分配以不同的数据量去描述,从而达到压缩的目的。

数字图像包含的冗余信息一般有以下几种:空问冗余、时间冗余、信息熵冗余、统计冗余、结构冗余、视觉冗余以及知识冗余等。图像压缩算法就是要在保证图像一定的熏建质量的同时,尽可能多的去除这些冗余信息.以达到对图像压缩的目的。随着科学技术的发展,图像压缩编码技术越来越引起人们的关注。所谓的图像压缩编码技术就是对要处理的图像数据按一定的规则进行变换和组合, 从而达到以尽可能少的数据流来表示尽可能多的数据信息。

DCT变换后具有绝对的去相关性,并且变换后的矩阵从左上角到右下角频率规律的渐高。有损压缩方法利用了人类视觉对图像中的某些频率成分不敏感的特性,允许压缩过程中损失一定的信息;虽然不能完全恢复原始数据,但是所损失的部分对理解原始图像的影响较小,却换来了大得多的压缩比。因此舍弃高频分量保留低频分量的做法对于图像压缩具有绝对的优势。只要损失的数据不太影响人眼主观接收的效果,就可采用。

首先将输入图像颜色空间转换后分解为8×8大小的数据块,然后用正向二维DCT把每个块转变成64个DCT系数值,其中1个数值是直流(DC)系数,即8×8空域图像子块的平均值,其余的63个是交流(AC)系数,接下来对DCT系数进行量化,最后将变换得到的量化的DCT系数进行编码和传送,这样就完成了图像的压缩过程。

DCT编码过程

现在主要的视频信息压缩编码标准有MPEG-1、H.261、MPEG-2、H.262、

H.263/H.263+/H.264、MPEG-4、MPEG-7、MPEG-21。这里介绍MPEG系列标准。

1、MPEG-1标准

MPEG-1标准于1993年8月公布,是针对1.5Mbps以下数据传输率的数字存储媒

质运动图像及其伴音编码的国际标准。它提供的重要特性包括基于帧的视频随机访问,通过压缩比特流的快进/快退搜索,视频的倒放,以及压缩比特流的可编辑性。MPEG-1对色差分量采用4∶1∶1的二次采样率。MPEG1旨在达到VRC质量,其视频压缩率为26∶1。

该标准包括五个部分:第一部分说明了如何根据第二部分(视频)以及第三部分(音频)的规定,对音频和视频进行复合编码。第四部分说明了检验解码器或编码器的输出比特流符合前三部分规定的过程。第五部分是一个用完整的C语言实现的编码和解码器。

2、MPEG-2标准

MPEG组织于1994年推出MPEG-2压缩标准,以实现视/音频服务与应用互操作的可能性。MPEG-2标准是针对标准数字电视和高清晰度电视在各种应用下的压缩方案和系统层的详细规定,编码码率从每秒3兆比特~100兆比特,特别适用于广播级的数字电视的编码和传送,被认定为SDTV和HDTV的编码标准。MPEG-2还专门规定了多路节目的复分接方式。

MPEG-2的编码码流分为六个层次。为更好地表示编码数据,MPEG-2用句法规定了一个层次性结构。它分为六层,自上到下分别是:图像序列层、图像组(GOP)、图像、宏块条、宏块、块。

MPEG-2标准目前分为9个部分,统称为ISO/IEC13818国际标准。各部分的内容描述如下:

一部分-ISO/IEC13818-1,System:系统,描述多个视频,音频和数据基本码流合成传输码流和节目码流的方式。

二部分-ISO/IEC13818-2,Video:视频,描述视频编码方法。

三部分-ISO/IEC13818-3,Audio:音频,描述与MPEG-1音频标准反向兼容的音频编码方法。

四部分-ISO/IEC13818-4,Compliance:符合测试,描述测试一个编码码流是否符合MPEG-2码流的方法。

五部分-ISO/IEC13818-5,Software:软件,描述了MPEG-2标准的第一、二、三部分的软件实现方法。

六部分-ISO/IEC13818-6,DSM-CC:数字存储媒体-命令与控制,描述交互式多媒体网络中服务器与用户间的会话信令集。

上六个部分均已获得通过,成为正式的国际标准。此外,MPEG-2标准还有三个部分:第七部分规定不与MPEG-1音频反向兼容的多通道音频编码;第八部分现已停止;第九部分规定了传送码流的实时接口。

3、MPEG-4标准

MPEG-4标准专家组成立于1993年,该标准的目标为:支持多种多媒体应用(主要侧重于对多媒体信息内容的访问),可根据应用的不同要求现场配置解码器。MPEG-4于2000年年初正式成为国际标准。该标准旨在为视音频数据的通信、存取与管理提供一个灵活的框架与一套开放的编码工具。这些工具将支持大量的应用功能(新的和传统的)。尤为引人注目的是,MPEG-4提供的多种视音频(自然的与合成的)的编码模式使图象或视频中对象的存取大为便利。这种视频、音频对象的存取,常被称作基于内容的存取。基于内容的检索是它的一种特殊形式。

它分为以下27个部分:

第一部分(ISO/IEC 14496-1):系统:描述视讯和音频数据流的控制、同步以及混合方式(即混流 Multiplexing,简写为MUX)。

第二部分(ISO/IEC 14496-2):视讯:定义了一个对各种视觉讯息(包括自然视讯、静止纹理、计算机合成图形等等)的编译码器。(例如XviD编码就属于MPEG-4 Part2)

第三部分(ISO/IEC 14496-3):音讯:定义了一个对各种音频讯号进行编码的编译码器的集合。包括高阶音频编码(AdvancedAudio Coding,缩写为AAC)的若干变形和其他一些音频/语音编码工具。

第四部分(ISO/IEC 14496-4):一致性:定义了对本标准其他的部分进行一致性测试的程序。

第五部分(ISO/IEC 14496-5):参考软件:提供了用于演示功能和说明本标准其他部分功能的软件。

第六部分(ISO/IEC 14496-6):多媒体传输整合框架(DMIF for Delivery Multimedia IntegrationFramework)

第七部分(ISO/IEC 14496-7):优化的参考软件:提供了对实作进行优化的例子(这里的实作指的是第五部分)。

第八部分(ISO/IEC 14496-8):在IP网络上传输:定义了在IP网络上传输MPEG-4内容的方式。

第九部分(ISO/IEC 14496-9):参考硬件:提供了用于演示怎样在硬件上实作本标准其他部分功能的硬件设计方案。

第十部分(ISO/IEC 14496-10):进阶视讯编码或称高阶视讯编码(Advanced Video Coding,缩写为AVC):定义了一个视讯编译码器(codec)。AVC和XviD 都属于MPEG-4编码,但由于AVC属于MPEG-4 Part10,在技术特性上比属于MPEG-4Part2的XviD要先进。另外,它和ITU-T H.264标准是一致的,故又称为H.264。

第十二部分(ISO/IEC 14496-12):基于ISO的媒体文件格式:定义了一个储存媒体内容的文件格式。

第十三部分(ISO/IEC 14496-13):知识产权管理和保护(IPMP for Intellectual Property Management andProtection)拓展。

第十四部分(ISO/IEC 14496-14):MPEG-4文件格式:定义了基于第十二部分的用于储存MPEG-4内容的视讯文件格式。

第十五部分(ISO/IEC 14496-15):AVC文件格式:定义了基于第十二部分的用于储存第十部分的视讯内容的文件格式。

第十六部分(ISO/IEC 14496-16):动画框架扩充功能(AFX : Animation Framework eXtension)。

第十七部分(ISO/IEC 14496-17):同步文字字幕格式。

第十八部分(ISO/IEC 14496-18):字型压缩和串流传输(针对开放字型格式 Open Font Format)。

第十九部分(ISO/IEC 14496-19):合成材质流(Synthesized Texture Stream)。

第二十部分(ISO/IEC 14496-20):简单场景表示(LASeR for Lightweight Scene Representation。

第二十一部分(ISO/IEC 14496-21):用于描绘(Rendering)的MPEG-J拓展。

第二十二部分(ISO/IEC 14496-22):开放字型格式(Open Font Format)。

第二十三部分(ISO/IEC 14496-23):符号化音乐表示(Symbolic Music

Representation)。

第二十四部分(ISO/IEC 14496-24):音频与系统互动作用(Audio and systems interaction)。

第二十五部分(ISO/IEC 14496-25):3D图形压缩模型(3D GraphicsCompression Model)。

第二十六部分(ISO/IEC 14496-26):音讯一致性检查:定义了测试音频数据与ISO/IEC 14496-3是否一致的方法(Audioconformance)。

第二十七部分(ISO/IEC 14496-27):3D图形一致性检查:定义了测试3D

图形数据与ISO/IEC14496-11:2005, ISO/IEC 14496-16:2006, ISO/IEC

14496-21:2006, 和 ISO/IEC14496-25:2009是否一致的方法(3D Graphicsconformance)。

4.MPEG-7标准

随着Internet的普及和网络带宽的增加,产生了大量的多媒体数据,如何在浩如烟海的信息中快速、准确地获得自己所需的内容则成为当前必须解决的问题。在此需求下,MPEG-7应运而生。规定一个用于描述各种不同类型多媒体信息的描述符的标准集合被称为“多媒体内容描述接口”。该标准于1998年10月提出,于2001年最终完成并公布。

MPEG-7的目标是支持多种音频和视觉的描述,包括自由文本、N维时空结构、统计信息、客观属性、主观属性、生产属性和组合信息;是根据信息的抽象层次,提供一种描述多媒体材料的方法以便表示不同层次上的用户对信息的需求;是支持数据管理的灵活性、数据资源的全球化和互操作性。最终的目的是把网上的多媒体内容变成文本内容,具有可搜索性。

MPEG-7由以下几部分组成:

(1)MPEG-7系统:它保证MPEG-7描述有效传输和存储所必须的工具,并确保内容与描述之间进行同步,这些工具有管理和保护的智能特性;

(2)MPEG-7描述定义语言:用来定义新的描述结构(说明成员之间的结构和语义)的语言;

(3)MPEG-7音频:只涉及音频描述的描述子(定义特征的语法和语义)和描述结构;

(4)MPEG-7视频:只涉及视频描述的描述子和描述结构;

(5)MPEG-7属性实体和多媒体描述结构;

(6)MPEG-7参考软件:实现MPEG-7标准相关成分的软件;

(7)MPEG-7一致性:测试MPEG-7执行一致性的指导方针和程序。

5、MPEG-21标准

MPEG-21的正式名称是多媒体框架,又称数字视听框架(Digital

Audio-Visual Framework)。它的目标就是理解如何将不同的技术和标准结合在一起,需要什么样的新标准以及完成不同标准的结合工作。简言之,制定MPEG-21标准的目的是:(1)将不同的协议、标准、技术等有机地融合在一起;(2)制定新的标准;(3)将这些不同的标准集成在一起。MPEG-21标准其实就是一些关键技术的集成,通过这种集成环境就对全球数字媒体资源进行透明和增强管理,实现内容描述、创建、发布、使用、识别、收费管理、产权保护、用户隐私权保护、终端和网络资源抽取、事件报告等功能。

第四部分视频信息传输网络及协议

这一部分我学到OSI 7层模型标准(ISO7498),ip、tcp、udp、rtcp协议,电话系统等知识,下面的内容就是我就得这一部分最有用的内容

OSI7层模型标准(ISO7498)

网络通信系统

主要有电话系统、N-ISDN、B-ISDN、ATM、移动电话系统、有线电视系统、通信卫星、无线网络。它的特点:基础通信平台,提供计算机网络的数据传输信道,但又独立于计算机通信;逐步吸收融合计算机网络的许多思想,越来越复杂。

这里简单介绍一下电话系统PSTN:公共交换电话网络,一种常用旧式电话系统。即我们日常生活中常用的电话网。工作原理公共交换电话网络是一种全球语音通信电路交换网络,包括商业的和政府拥有的。所谓公用电话交换网(PSTN ——Public Switched Telephone Network),即我们日常生活中常用的电话网。众所周知,PSTN是一种以模拟技术为基础的电路交换网络。在众多的广域网互连技术中,通过PSTN进行互连所要求的通信费用最低,但其数据传输质量及传输速度也最差,同时PSTN的网络资源利用率也比较低。统计时分复用(按需分配带宽) 基本原理是把时间划分为不等长的时间片,长短不同的时间片就是传送不同长度分组所需要的时间,每路通信按需分配时间片,当通信需要传送的分组多时,所占用时间片的个数就多,反之,所占用时间片的个数就少,不传输信息时不分配带宽。由此可见,统计时分复用是按需分配带宽(动态分配带宽)的。标志化信道:在统计时分复用中,靠分组头中的标志来区分不同的通信分组。具有相同标志的分组属于同一个通信,也就构成了一个子信道,识别这个子信道的标志也叫做信道标志,该子信道被称为标志化信道。而同步时分复用靠时间位置来识别每路通信的分组,被称为位置化信道。信息传送有差错控制,分组交换是专门为数据通

信网设计的交换方式,为保证数据信息的可靠性,在分组交换中设有CRC校验、重发等差错控制机制。信息传送不具有透明性。分组交换对所传送的数据信息要进行处理。

视频信息传输协议

IP协议

是用于将多个包交换网络连接起来的,它在源地址和目的地址之间传送一种称之为数据包的东西,它还提供对数据大小的重新组装功能,以适应不同网络对包大小的要求。

IP实现两个基本功能:寻址和分段。IP可以根据数据包包头中包括的目的地址将数据报传送到目的地址,在此过程中IP负责选择传送的道路,这种选择道路称为路由功能。如果有些网络内只能传送小数据报,IP可以将数据报重新组装并在报头域内注明。

IP使用四个关键技术提供服务:服务类型,生存时间,选项和报头校验码。服务类型指希望得到的服务质量。服务类型是一个参数集,这些参数是Internet 能够提供服务的代表。这种服务类型由网关使用,用于在特定的网络,或是用于下下一个要经过的网络,或是下一个要对这个数据报进行路由的网关上选择实际的传送参数。生存时间是数据报可以生存的时间上限。它由发送者设置,由经过路由的地方处理。如果未到达时生存时间为零,抛弃此数据报。对于控制函数来说选项是重要的,但对于通常的通信来说它没有存在的必要。选项包括时间戳,安全和特殊路由。报头校验码保证数据的正确传输。如果校验出错,抛弃整个数据报。IP不提供可靠的传输服务,它不提供端到端的或(路由)结点到(路由)结点的确认,对数据没有差错控制,它只使用报头的校验码,它不提供重发和流量控制。如果出错可以通过ICMP报告,ICMP在IP模块中实现。

TCP、UDP协议

UDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在第四层——传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。UDP用来支持那些需要在计算机之间传输数据的网络应用。包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。UDP协议从问世至今已经被使用了很多年,虽然其最初的光彩已经被一些类似协议所掩盖,但是即使是在今天UDP仍然不失为一项非常实用和可行的网络传输层协议。

TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能,用户数据报协议(UDP)是同一层内另一个重要的传输协议。在因特网协议族中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。

UDP报文格式

Tcp报文格式

RTP/RTCP/RSVP协议

RTP全名是Real-time Transport Protocol(实时传输协议)。它是IETF提

出的一个标准,对应的RFC文档为RFC3550(RFC1889为其过期版本)。。RTP用来

为IP网上的语音、图像、传真等多种需要实时传输的多媒体数据提供端到端的实

时传输服务。RTP为Internet上端到端的实时传输提供时间信息和流同步,但并

不保证服务质量,服务质量由RTCP来提供。

RTP报文格式

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|V=2|P|X| CC |M| PT | sequence number

|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| synchronization source (SSRC) identifier

|

+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

| contributing source (CSRC) identifiers

|

| .... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

上图引自rfc3550,由上图中可知道RTP报文由两个部分构成--RTP报头和RTP

的负载:

RTP报文由两部分组成:报头和有效载荷。RTP报头格式如图所示,其中:

1.V:RTP协议的版本号,占2位,当前协议版本号为2。

2. P:填充标志,占1位,如果P=1,则在该报文的尾部填充一个或多个额外

的八位组,它们不是有效载荷的一部分。

3. X:扩展标志,占1位,如果X=1,则在RTP报头后跟有一个扩展报头。

4. CC:CSRC计数器,占4位,指示CSRC 标识符的个数。

5. M: 标记,占1位,不同的有效载荷有不同的含义,对于视频,标记一帧

的结束;对于音频,标记会话的开始。

6. PT: 有效载荷类型,占7位,用于说明RTP报文中有效载荷的类型,如GSM

音频、JPEM图像等,在流媒体中大部分是用来区分音频流和视频流的,这样便于

客户端进行解析。

7. 序列号:占16位,用于标识发送者所发送的RTP报文的序列号,每发送一

个报文,序列号增1。这个字段当下层的承载协议用UDP的时候,网络状况不好的

时候可以用来检查丢包。同时出现网络抖动的情况可以用来对数据进行重新排序,

在helix服务器中这个字段是从0开始的,同时音频包和视频包的sequence是分别

记数的。

8. 时戳(Timestamp):占32位,时戳反映了该RTP报文的第一个八位组的采

样时刻。接收者使用时戳来计算延迟和延迟抖动,并进行同步控制。

9. 同步信源(SSRC)标识符:占32位,用于标识同步信源。该标识符是随机

选择的,参加同一视频会议的两个同步信源不能有相同的SSRC。

10. 特约信源(CSRC)标识符:每个CSRC标识符占32位,可以有0~15个。每

个CSRC标识了包含在该RTP报文有效载荷中的所有特约信源。

如果扩展标志被置位则说明紧跟在报头后面是一个头扩展,其格式如下:

0 1 2 31

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| defined by profile | length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| header extension |

....

学习心得体会:

通过这门课程的学习,首先让我知道了视频信息应用系统包含了哪些内容,以及它的发展历史和未来趋势,还知道了信息安全与信息垃圾所涉及的信息识别。对于视频信息的采集技术,我对它有了一个初步的了解,知道了数字视频格式,和视频采样结构的原理,还有CCD图像传感器与CMOS的相关知识。在,我学习了有关于信息压缩编码和相关标准,并且知道了视频信息压缩的评价指标,还有关于预测编码的知识。在最后一章视频信息传输网络及协议涉及到了网络传输协议,包括协议体系结构、数据通信理论、传输介质和网络通信系统,最后还讲了一些通信协议。

整个学习过程中,我觉得第一章还是很好理解的,就是一些基本知识的掌握,但在学习第二章数字视频格式时,在学习数字电视原理,很多都已经学习了,但是当时没怎么明白,在老师进一步讲解下,进一步理解了他们的原理。在学习DCT 变换码以及小波变换感觉好难,因为这些知识没掌握好所以做实验时感觉好吃力,但好在最后有同学的帮助,慢慢也把这些知识给懂透了,所以后面一些实验也容易上手多了。我感觉整个课程最有价值的就是第四章中的TCP/IP、UDP、RTP、协议了,它补充了我对网络通信协议的空白。

参考文献

[1].《数字电视原理》卢宫明宗昉编第二版

[2].余兆明,李晓飞,陈春来.MPEG标准及其应用北京[M].北京邮电大学出版社,2002.

《CMOS图像传感器与CCD的比较及发展现状》[J]才智期刊:239—240

[3].康厚俊:

[4].程灏,聂雪.视频实时传输的研究与实现[J].西安文理学院学报(自然科学版).2005(03)

[5]IP协议.https://www.360docs.net/doc/193537603.html,/item/IP%E5%8D%8F%E8%AE%AE.

[6]TCP协

议.https://www.360docs.net/doc/193537603.html,/link?url=rwGWipcLzmMFIWFUeZk8zdgAaBa1VzmKCD uHxcSeJHgw-2RZ9pPzHBf6QadLzxebYYv254ru0lyXL_il7ZzT0_BIZtpFZyQ1WpHYeUa eaT5c6MG3gpXdyjzsqHol-U4d3_tAlH59al6ls8bVcZ96A5kmEB3Faxxk3bQ3LI-qjsu.

[7]王继刚,顾国昌,徐立峰,王陈. 可靠UDP数据传输协议的研究与设计[J]. 计

算机工程与应用,2006,15:113-116.

[8]李一鸣,任勇毛,李俊. 基于UDP的传输协议性能比较与分析[J]. 计算机应用研究,2010,10:3906-3910.

[9]刘喜作,周晶,梁德清. 基于UDP的大数据包可靠传输[J]. 电讯技

术,2012,01:96-100.

[10]周丽娟. 基于UDP协议的Socket网络编程[J]. 电脑知识与技

术,2008,34:1867-1868.

[11]MPEG.

https://www.360docs.net/doc/193537603.html,/link?url=usrPwZ_DJ0IrxD3K12zVfy-mywElnx4rOowPK jjSScm5wvw_lRDgEiuAJBZCH28N_TF89BNh7RCFvajn9on1ma.

[16] 雷国平,周琨,吉吟东.MPEG 标准发展和研究综述[A]. 清华大学自动化

系.2003.7.

视频信息的处理

第四章视频信息处理 思考与练习 1.什么是隔行扫描?什么是逐行扫描? 答: 1).隔行扫描:即把一幅图像(位图)分成两步(按分割的行)扫描,第一步先扫 1、3、5…行,第二步扫 2、4、6…行,每两步扫完一个完整的画面。最后使眼睛 感觉到是连续活动的景象。对于我国电视制式(PAL)来说,帧频为25Hz,即每秒放送25幅图像,如果逐幅播放,人眼会感受到光亮度的闪烁,眼睛容易疲劳。 但再增加幅频,则电视发射和接受的结构变化太复杂,故而把每幅图分先后两次来放送,这样,光亮度变化的次数就增加到50次/秒,人眼看上去就舒服多了。 2).逐行扫描:当电视摄像管或显像管中的电子束沿水平方向从左到右、从上到下以均匀速度依照顺序一行紧跟一行的扫描显示图像时(仅一步完成图像扫描),称为逐行扫描。从上到下扫描一幅完整的画面,称为一帧。 2.什么是分离电视信号?什么是全电视信号? 答: 1).分离电视信号S-Video:是一种两分量的视频信号,他把亮度和色度信号分成两路独立的模拟信号,一条用于亮度信号,另一条用于色差信号,这两个信号称为Y/C信号。这种信号不仅其亮度和色度都具有较宽的带宽,而且由于亮度和色度分开传输,可以减少其互相干扰。与复合视频信号相比,可以更好地重现色彩。 2).全电视信号:在无线或有线电视中,将视频的亮度信号、色度信号、同步信号和伴音信号复合在一起,称为全电视信号。为了在空中传播,需要将它们调制成高

频信号,也叫射频信号。 11.试讨论不同的MPEG标准,具体应用在何种场合? 答:MPEG运动图像专家小组研究数字视频及其与音频的同步进行压缩。 1).MPEG—1标准名称为“信息技术—用于数据速率高达大约1.5Mbps的数字存储媒体的电视图像和伴音编码”。由以下五部分组成: i.MPEG—1系统,规定电视图像数据、声音数据及其他相关数据的同步。 ii.MPEG—1电视图像,规定电视数据的编码和解码。 iii.MPEG—1声音,规定声音数据的编码和解码。 iv.MPEG—1一致性测试,详细说明了如何测试比特数据流和解码器是否满足MPEG—1前3个部分中所规定的要求。测试可由厂商和用户实施。 v.MPEG—1软件模拟,实际上是一个技术报告,给出了用软件执行MPEG—1标准前3个部分的结果。 由于数据速率较低,可用于高质量视音频存储,以及通过高带宽的媒体传输播放。 2).MPEG—2标准是针对标准数字电视和高清晰度电视在各种应用下的压缩方案和系统层的详细规定,编码码率从每秒3~100Mbps。较MPEG—1在系统和传 送方面做了更加详细的规定和进一步的完善。特别适用于广播级的数字电视的编码 和传送,专门规定了多路节目的复分接方式。目前分为9个部分。 MPEG—2的编码码流分为6个层次。为更好地表示编码数据,MPEG—2用句法规定了一个层次型结构,自上到下分别是:图像序列层、图像组、图像、宏块 条、宏块、块。MPEG—2标准的主要应用包括: i.视音频资料的保存。 ii.非线性编辑系统及非线性编辑网络。

信息技术课题研究报告(1)

“运用信息技术,提高学生自主学习水平” 课题研究报告 北京市大成学校徐朝辉李英一、研究背景 我校从2002年开展了《利用信息技术,培养学生思维品质的研究》课题的研究,作为北京教育网络和信息中心的市级课题《运用现代信息技术促进学习过程优化的研究》的子课题,我们得到了总课题的帮助和指导,课题研究工作取得了有效的成果。老师们感觉最深的是,信息技术的使用营造了学习环境,教师的信息素养提高了,教学水平和研究能力提高了。利用信息技术,在培养学生思维的深刻性、灵活性、独创性等方面取得了较好的成效。 但在课题的研究过程中也存在一些问题,比如很多老师对“信息技术与学科教学整合”的内涵实质缺乏了解,有的老师把信息技术与学科教学整合与计算机辅助教学完全等同起来,认为只要在课堂上运用了多媒体课件,提高了课堂效率和容量,就是在进行信息技术与学科教学的整合。还有的老师一味追求“技术”,做出的课件追求动画效果,求花哨,把学生的注意力吸引到了与课堂重点难点无关的地方,并没有达到好的教学效果。针对我校在教育信息化研究中存在的问题,我校开展“运用信息技术,提高学生自主学习水平”课题的研究,目的是探索整合的实质和方法,提高信息技术在课堂教学中应用的实效性,提高教师整合信息技术与学科知识的能力,提高课堂教学的质量和效益,促进学生的发展和教学质量的全面提高。 二、课题研究的内涵 信息技术与学科教学整合,不是把信息技术仅仅作为辅助教或辅助学的工具,而是强调要利用信息技术来营造一种新型的教学环境,该环境应能支持实现情景创设、启发思考、信息获取、资源共享、多重交互、自主探究、协作学习等多方面要求的教学方式与学习方式—也就是实现一种既能发挥教师主导作用又能充分体现学生主体地位的以“自主、探究、合作“为特征的教与学方式,这样就可以把学生的主动性、积极性、创造性较充分地发挥出来,使传统的以教师为中心的课堂教学结构发生根本性变革,从而使学生的创新精神与实践能力的培养真正落到实处。 信息技术与学科教学整合包括三个基本属性:营造新型教学环境,实现新的教与学方式、变革传统的教学结构,整合的实质是变革传统的教学结构,即改变“以

多媒体信息处理技术的发展现状

摘要:随着现在科学技术的发展,信息化时代已经成为现在社会的主流。信息化时代的实现主要来自于多媒体的发展。多媒体在给我们的生活带来便利的同时,也加快了社会发展的进程。多媒体具有更新快、系统复杂的特点。因此,要想适应现在社会的发展,跟上时代的脚步,必须对多媒体信息处理的技术进行探究,了解当代社会多媒体信息处理技术的发展现状。 关键词:多媒体;信息处理;发展现状 中图分类号:tp37 文献标识码:a 文章编号:1009-3044(2016)15-0214-02 当代社会已经进入信息化时代,信息化的发展离不开多媒体技术的进步。为了进一步了解多媒体的作用,最大限度的发挥多媒体的作用。我们就要对当前多媒体信息技术的发展现状进行研究。多媒体具有识别声、像、图的功能。多媒体是由单媒体组成的,主要包括感觉媒体、表示媒体、显示媒体、储存媒体和传输媒体五个部分。本文主要从多媒体的功能角度出发,探讨当代社会多媒体信息处理技术的发展。 1 多媒体与图像合成和编辑 图像合成是多媒体常用的一个信息处理技术。通过对多媒体的设置编程,构建出二维的图像空间。在实际的应用中,主要分为四个步骤。 1)要根据客户的需要,制定好图像的大小、颜色、版式。这一部分主要需要专业美术人员的参与制作。 2)采集图片素材。使用数码相机或摄影机,对所需的图片内容进行选景拍照。整个过程最好由专业的摄影人员进行操作。然后将所得到的素材传入到计算机中,并对多媒体图片素材进行筛选。 3)进行图片处理,合成和编辑。对筛选出的图片进行合成修饰和编辑。按照客户的需求,将二维的图片进行处理。 4)在图片中加入特效文字。图片处理完成后,可以按照客户的需要,加入一些特效的文字。特效的文字可采用透明、火焰等二维文字,也可采用立体的形象生动的三维文字。 利用多媒体进行图像合成与编辑可以应用在摄影图片、宣传广告和商业用途上。具有很高的应用价值。 2 多媒体与三维动画 现代动画的制作都离不开多媒体的制作合成。动画的制作过程主要包括二维或三维的动画图像、配音、字幕和背景音乐。通过动画制图软件,构建立体的三维动画,使其运用到商业广告、宣传片或动画片制作中。动画对于多媒体来说是一个不小的挑战。因为它所需要的素材内容信息量较大。而且现在对动画的需求越来越多,尤其是三维动画,让三维动画的虚拟空间更加接近现实空间,是现在多媒体动画制作的目标。为了实现这一目标,了解多媒体信息处理技术的发展现状成为了现在社会不可忽视的问题。 3 多媒体与教学 4 多媒体与管理信息系统 多媒体的发展给社会带来了许多的便利条件。多媒体给当代的许多管理方面带来了不小的价值。例如,利用多媒体,我们安装了电子监控系统。在刑事案件的破案中,这些系统发挥着重要的作用,是破案的关键。我们在出行时,各种售票服务窗口都与多媒体有着千丝万缕的联系。在办理银行业务时,金钱的存入与输出都离不开多媒体的服务。所以说,在信息化时代的今天,我们离不开多媒体,因此,了解多媒体信息处理技术的发展现状,是当近社会不可小觑的问题。 5 多媒体与经济发展 6 多媒体与科技的发展 众所周知,多媒体是促进科技发展的主要推动力,科技的发展也离不开多媒体的支持与运用。现在的一些科学技术,如航空航天的应用操作技术,都是是多媒体为基础的。多媒体

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

信息技术课题研究报告

信息技术课题研究报告 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

信息技术课题研究的资料 一、研究背景 随着经济建设的日益发展,学校在各级教育主管部门的支持和推动下,教育现代化设施不断完美:计算机在学校中的数量逐渐增多,日渐能满足学生学习信息技术和教师在教育教学中应用的需要;“校校通”工程逐步推开,不少学校建起了校园网,接入城域网,连上因特网,为信息沟通、资源共享提供了有利条件;教师信息技术培训与考核的全面实施,为信息技术在教育教学中的普及应用打下了扎实的基础。信息技术从一门单独的学科逐渐进入学校的各学科的教学过程中,学科教学的面貌产生了很大变化。 信息技术虽然在不少方面有着强大的效能,但是如何使信息技术融入学科教学之中,更有效地激发学生的学习兴趣,提高教学效益,改变教学风貌,就成了一个值得研究的课题。 二、理论思考 (一)有关概念的界定 1、初中课程:在这里指学校根据上级课程计划而开出的各门学科。 2、课程与信息技术整合:是教师和学生在课程中恰当地运用信息技术来促进教学。主要有三个关键点:(1)教师要在自己的教学工作中恰当地应用信息技术;(2)不仅教师使用,更重要的是要让学生在学习活动中使用信息技术;(3)使用技术的目的是为了提高学生的学业成就。(二)理论假设在学校开设的各门学科的教学中,根据教学内容有选择地适当地运用信息技术,充分调动学生在学习过程中运用多种知觉通道来感知学习内容,主动积极地进行探索,能提高课堂教学的质量和效益。二、课题的研究目标1、学生的教育目标通过在各科教学中实施学科与信息技术的整合,提高学生的学习兴趣,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,同时培养学生的现代科学意识和创新意识,使学生更加热爱学习,更加善于学习。2、师资队伍的建设目标通过实验课题的研究,建立新型的教学模式和学习方式,使教师运用信息技术的能力得以提高,能创造性地使用教材组织教学,使教师向现代化、信息化、科研型转化。 3、学校的发展目标

多媒体-名词解释及填空

◆多媒体:指信息表示媒体的多样化,常见的多媒体有文本、图像、图形、声音、音乐、视频、动画等多种形式。 ◆多媒体技术:是利用计算机技术把文本、声音、视频、动画、图形和图像等多种多媒体进行综合处理,使多种信息之间建立逻辑连接,集成一个完整的系统。 ◆多媒体(从本质上)的重要特征:多维化、继集成性、交互性、实时性。 ◆多媒体及多媒体技术产生于20世纪80年代 ◆多媒体计算机(MPC)标准:MPC1 1990年诞生;MPC2 1993年5月;MPC 1995年6月 ◆多媒体的核心任务:获取、处理、转发或分发多媒体信息,使多媒体信息之间建立逻辑链接 ◆多媒体信息处理的最终目标:能跨越各种网络和设备,透明的、强化的使用多媒体资源 ◆多媒体系统的关键技术:多媒体数据的处理、多媒体数据的存储、多媒体数据的传输、多媒体输入/输出技术 ◆多核处理器:指将多个运算核封装在一个芯片内部。 ◆多媒体信息以3种模式相互集成:制约式、协作式、交互式 ◆超媒体:是超文本和多媒体信息浏览坏境下的结合。它采用面向对象的信息组织与管理形式。 ◆超媒体信息网络:将多媒体各个信息单元组成一个由节点和各种链构成的网络。

◆虚拟现实(UR)就是采用计算机技术生成一个逼真的视觉、听觉、触觉及嗅觉的感觉世界,用户可以用人的自然技能对这个生成的虚拟实体进行交互考察 ◆人机界面设计目的:通过对用户需求的解释大道一种人机之间较好的通信能力 ◆高速多媒体通信技术:指为满足新一代信息系统中实时多媒体信息传输的需要。 ◆多媒体技术的应用:①音频/视频流点播;②电子出版物;③医疗卫生;④游戏与娱乐;⑤计算机视频会议;⑥多媒体展示和信息查询系统;⑦管理信息系统(MIS)和办公自动化系统(OA);⑧传媒、广告;⑨教学管理系统;⑩移动卫星。 ◆多媒体技术未来将朝着智能化和多维化方向发展 ★多媒体计算机硬件组成:主机、音频/视频处理设备、光盘驱动器、媒体输入/输出设备 ★CPU(central processing unit)中央处理器,其内部结构可分为控制单元、逻辑单元、存储单元 ★多媒体I/O设备可分为:输入设备、输出设备、用于网络通信的通信设备 ★触摸屏分类:电阻式、电容式、红外线式、声表面波式 ★视频捕捉卡:把输入的模拟视频信号通过内置芯片提供的捕捉功能转换成数字信号设备

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

信息技术课题研究报告范文

信息技术课题研究的资料 一、研究背景 随着经济建设的日益发展,学校在各级教育主管部门的支持和推动下,教育现代化设施不断完美:计算机在学校中的数量逐渐增多,日渐能满足学生学习信息技术和教师在教育教学中应用的需要;“校校通”工程逐步推开,不少学校建起了校园网,接入城域网,连上因特网,为信息沟通、资源共享提供了有利条件;教师信息技术培训与考核的全面实施,为信息技术在教育教学中的普及应用打下了扎实的基础。信息技术从一门单独的学科逐渐进入学校的各学科的教学过程中,学科教学的面貌产生了很大变化。 信息技术虽然在不少方面有着强大的效能,但是如何使信息技术融入学科教学之中,更有效地激发学生的学习兴趣,提高教学效益,改变教学风貌,就成了一个值得研究的课题。 二、理论思考 (一)有关概念的界定 1、初中课程:在这里指学校根据上级课程计划而开出的各门学科。 2、课程与信息技术整合:是教师和学生在课程中恰当地运用信息技术来促进教学。主要有三个关键点:(1)教师要在自己的教学工作中恰当地应用信息技术;(2)不仅教师使用,更重要的是要让学生在学习活动中使用信息技术;(3)使用技术的目的是为了提高学生的学业成就。 (二)理论假设 在学校开设的各门学科的教学中,根据教学内容有选择地适当地运用信息技术,充分调动学生在学习过程中运用多种知觉通道来感知学习内容,主动积极地进行

探索,能提高课堂教学的质量和效益。 二、课题的研究目标 1、学生的教育目标 通过在各科教学中实施学科与信息技术的整合,提高学生的学习兴趣,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,同时培养学生的现代科学意识和创新意识,使学生更加热爱学习,更加善于学习。 2、师资队伍的建设目标 通过实验课题的研究,建立新型的教学模式和学习方式,使教师运用信息技术的能力得以提高,能创造性地使用教材组织教学,使教师向现代化、信息化、科研型转化。 3、学校的发展目标 通过课题的实践研究,使学校的教育现代化水平得到整体提高,培养一个现代化科研型群体,使学校向教育信息化示范学校、先进学校迈进。 三、课题研究的方法 主要采用问卷调查法、实验法、观察法等研究方法。研究的途径主要有:学习理论文章,参加媒体培训,上好实验课,撰写论文小结等。其中最常用的就是实验法。通过一堂堂实验课来探索媒体与课堂教学的很好整合,来观察教师的教与学生的学,来研究怎样合理有效在运用信息技术提高各门学科的教学质量和教学效益。 四、课题实验内容 (一)完善组织机构,加强课题实验管理 为使课题研究真正落到实处,学校实验课题由分管教学的副校长负责。在学校实验课题之下,又根据学科教研的特点,分解出几个下级课题,主要有语文组

视频传输方式优缺点

传输方式优缺点 常见的有视频基带传输、光纤传输、网络传输、微波传输、双绞线平衡传输、宽频共缆传输方式,且还有一种CDMA监控。 ①视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差。 ②光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能最好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 ③网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,有Internet网络安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 ④微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:省去布线及线缆维护费用,可动态实时传输广播级图像。其缺点是:由于采用微波传输,频段在1GHz以上常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间很容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;Ku波段受天气影响较为严重,尤其是雨雪天气会有严重雨衰。 ⑤双绞线传输(平衡传输):是解决监控图像1Km内传输,电磁环境复杂场合的解决方式之一,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输;双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 ⑥宽频共缆传输:是解决几公里至几十公里监控信号传输的最佳解决方案,采用调幅调制、伴音调频搭载、FSK数据信号调制等先进技术,可将四十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,四十路音视频及控制信号在同一根电缆中双

信息技术课题工作报告

信息技术对于培养学生创新思维能力的研究工作报告 在基础教育中如何培养学生的创新精神、创新意识和创新思维习惯,如何实施素质教育,提高青少年的综合素质以应对知识经济的挑战,已成为基础教育工作者必须思考探究的问题。培养具有创新能力的高素质人才,是现代科技、经济和社会发展的需要,是时代赋予教育的重任,培养创新能力的关键就是培养创造思维能力,而现代信息技术却能从多方面为培养学生创造性思维提供支持,为此,我们申报了省级课题“信息技术对于培养学生创新思维能力的研究”经过努力,该课题得以顺利实施。现将工作总结如下: 一、工作回顾 (一)加强领导,健全机构 各课题组成员分工明确,又加强合作。在分管主任的带领下,经过多次讨论研究,不断调整思路,对实施方案进行修改和完善后,制定出了具体细致而又切实可行的课题实验方案和工作计划。 (二)调查研究,了解现状 进行本课题研究伊始,我们广泛查阅各种关于创造性思维能力的资料,并向一些专家请教,然后集体商量,有针对性的设计了检测表,分别用于检测学生的创新思维能力现状及教师运用现代教育媒体的现状。 (三)完善制度,规范管理 为了促进课题研究的有序发展,我们制定了一套比较完善的课题研究制度,为课题研究工作的正常开展提供了有力保障。

(1)理论学习制度 学校订阅了多种电教刊物,并在阅览室安置了阅览书架,便于教师及时阅读。 (2)课题组成员例会制度 为加强对课题开展过程的管理力度,我们每个学期都会定期召集课题组成员开会(一般是一月一次),通报情况,讨论分析研究进展情况,总结经验,安排下一步的工作等。 (3)教学观摩制度 课题活动与教研活动相结合,开展各种各样的教学研究活动,要求每位教师每期至少上一堂(课题)研究课,形成较为科学合理的教学案例,以便为课题研究提供个案。 (4)检查考核制度 科研室每期都对每位课题组成员进行考核,考核内容主要包括以下几方面:参加课题活动次数、学习笔记内容、论文及赛课获奖情况等方面,并将考核结果作为各级各类评优评先的依据。 (四)强化培训,提高能力 教育的发展永无止境,没有最好,只有更好。要有效利用现代信息技术,培养学生创新思维的研究的关键,在于拥于一大批具备良好信息素养的教师。而教师素养的提升必须依靠自身的学习以及有关培训才能实现。为了确保课题研究的顺利开展,我们主要从理论和技术两方面对课题组成员进行了培训。 二、研究的成果

多媒体信息处理教学大纲

多媒体信息处理教学大纲 课程名称:多媒体信息处理 适用专业: 学时:44 学分: 开课学期:第二学期 课程类别:限定选修 先修课程:计算机应用基础 一、课程性质与任务 多媒体信息处理课程分为两大块:音视频处理技术(premiere)以及多媒体综合技术(Authorware)。课程的特点是概念多、实践性强、涉及面广,并有极广泛的实用性,其应用渗透到各个领域。本课程的目的与任务是使学生通过本课程的学习,理解音视频和多媒体综合技术的基本概念和主要功能,掌握相关软硬件的使用方法,具备音视频和多媒体处理的能力,从而为学生以后的学习和工作打下基础。 1、多媒体综合技术(Authorware): Authorware是多媒体信息处理中的重要综合技术。本课程基本任务是使学生掌握Authorware的具体设计方法。主要包括:基本操作,编辑功能,文件和图片的创建,显示效果,动画设计,声音、视频,流程管理,变量、函数和表达式的应用等,要求掌握有关概念,必要的理论,掌握具体操作,解决实际应用问题。 2、音视频处理技术(premiere) 主要讲授利用Premiere进行数码视频捕捉,并通过使用多轨的影像与声音合成来制作Microsoft Video for Windows(.avi)和QuickTime Movies(.mov)等动态影像格式的基础知识和基本技巧,使学生不仅使能全面地掌握Premiere软件的各

个知识点,还能运用这些知识点制作出实用的作品或实现某些较复杂视频、音频处理目的。其主要任务是为计算机多媒体技术人员进行多媒体视频处理奠定必要的理论基础和实际处理能力,并最终提高分析问题、解决问题的能力。 本课程注重讲解基本知识,训练基本技能,强化实践开发环节,使学生熟练运用Premiere环境进行简单视频处理,培养学生独立分析问题和解决问题的能力。为最终适应实际较复杂的工作奠定坚实的基础。 二、课程的教学内容与教学要求 第一部分:多媒体综合技术(Authorware) (一)Authorware基础 , 教学要求:熟悉Authorware编辑环境的各个组成部分,掌握流程设计的基本操作、程序设 计、运行和调试的具体步骤。 , 主要内容: (1) Authorware的运行环境,编辑环境 (2) 流程线的编辑和设计 (3) 窗口 (4) 程序的运行和调试 1 (二)文本和图片的创建 , 教学要求:熟练掌握文本和图形的创建。 , 主要内容: (1) 绘图工具箱 (2) 文本对象的创建 (3) 外部文本文件的引入 (4) 图形对象的创建

视频信息处理与传输课题研究报告

西南科技大学 课程研究报告 课程名称:视频信息处理与传输 班级: 姓名: 学号: 指导老师: 2016年11月日

课程学习目的: 《视频信息处理与传输》是数字媒体技术方向中的一门专业必选课,学习的目的是让我们系统地理解和掌握视频信息的采集、压缩编码视频信息传输等数字视频技术,并灵活应用。为我们补充TCP/IP,UDP,RTP等视频信息在网络中传输所必需的协议。老师为我们讲解了视频信息处理与传输概述,视频信息采集技术,以及传输协议。我将分别叙述我从中学习到的知识。

第一部分视频信息处理与传输概述 随着科学技术,视频信息处理与传输的技术也成了人们关注的一个热点。从采集到应用系统,每步都在提升。信息安全与信息垃圾就如人们的生活中的隐私与生活垃圾一样重要,如何维护信息的安全和如何处理信息垃圾已成为一个热点。 信息安全是指信息网络硬件、软件及其系统中的数据受到保护,不受偶然或者恶意的原因而遭到破坏、更改、泄露。系统连续可靠正常地运行,信息服务不中断。信息安全主要包括以下五方面:保证信息的保密性、真实性、完整性、未受权拷贝和所寄生系统的安全性。信息安全的根本目的就是使内部信息不受外部威胁,因此信息通常要加密。为保障信息安全,要求有信息源认证、访问控制,不能有非法软件驻留,不能有非法操作。信息垃圾就是那些混在大量有用信息中的无用信息、有害信息,以及对人类社会的各个方面带来危害的信息。它对信息安全应用和转播构成了威胁。 这一部分就是老师讲的关于这个课程的一些概述,也没用从中获取太多的知识。

第二部分视频信息采集技术 从这一部分,我从中学到了视频是怎么样组成的,以及视频的采集技术。 我们所看到的视频信息都是由一帧一帧的静态图像构成的,再加上每一帧图像的时间信息,通过连续播放而成.。 视频分为模拟视频和数字视频,而数字视频是模拟视频的数字化。模拟信号对应于时间轴有连续的无穷多个值,它完全准确地表示信号电平,如话音、图像等均是模拟信号。以模拟信号传输或处理的电视称为模拟电视。模拟电视的讯号广播公司通常是使用NTSC、PAL或SECAM的模拟制式把它们的信号进行调频后,调节这些信号并放进VHF或者UHF的载波上。数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过PC,特定的播放器等播放出来。为了存储视觉信息,模拟视频信号的山峰和山谷必须通过模拟/数字(A/D)转换器来转变为数字的“0”或“1”。这个转变过程就是我们所说的视频捕捉(或采集过程)。如果要在电视机上观看数字视频,则需要一个从数字到模拟的转换器将二进制信息解码成模拟信号,才能进行播放。模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。 可见光是波长在380 nm~780 nm 之间的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的光组合成的。如果光源由单波长组成,就称为单色光源。该光源具有能量,也称强度。实际中,只有极少数光源是单色的,大多数光源是由不同波长组成,每个波长的光具有自身的强度。这称为光源的光谱分析。 研究表明,人的视网膜有对红、绿、蓝颜色敏感程度不同的三种锥体细胞。红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感知程度也不同。自然界中的任何一种颜色都可以由R,G,B 这3 种颜色值之和来确定,以这三种颜色为基色构成一个RGB 颜色空间,基色的波长分别为700 nm(红色)、546.1nm(绿色)和435.8 nm(蓝色)。颜色=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比),只要其中一种不是由其它两种颜色生成,可以选择不同的三基色构造不同的颜色空间,即三基色原理。 模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV 信号方式,而计算机工作在RGB 空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。 模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV 或YIQ 分量,然后用三个模/数转换器对三个分量分别采样并进行数字化,最后再转换成RGB 空间。对彩色电视图像进行采样时,可以采用两种采样方法。一种是使用相同的采样频率对图像的亮度信号(Y)和色差信号(Cr,Cb)进行采样,另一种是对亮度信号和色差信号分别采用不同的采样频率进行采样。如果对色差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(subsampling)。由于人的视觉对亮度信号的敏感度高于对色差的敏感度,这样做利用人的视觉特性来节省信号的带宽和功率,通过选择合适的颜色模型,可以使两个色差信号所占的带宽明显低于Y 的带宽,而又不明显影响重

信息技术课题研究报告

《信息技术环境下教学模式和教学方法的创新研究》 课题研究报告 摘要本课题由中央电教馆与有关专家在充分论证的基础上,于2006年12月被批准为中央电化教育馆全国教育技术“十一五”专项课题。在中央电教馆组织下,课题研究得到了省、市、区电教馆领导的重视与支持。在课题组全体成员的共同努力下,经过三年多的实验研究,目前基本完成预期的研究工作。在师生信息技术培训、教师教学理念、教学方式的转变、完善学校教育信息化设施建设、建立学科资料库、整理汇总典型研究成果并探索形成适合我校学情、校情的教学模式和教学方法等方面取得了一些成绩。 关键词信息技术环境教学模式教学方法创新 正文 一、课题的提出 21世纪信息技术对教育的影响是不可估量的,它不仅带来教育形式和学习方式的重要变化,更重要的是对教育的思想、观念、模式、内容和方式产生深刻影响。随着信息技术的快速发展,信息技术与课程的整合已在中小学教育中有很普遍的应用。信息技术学习环境,给现代教育提供了崭新的平台。为建立以学生为主体,教师为主导,信息技术为媒介的新型高效的课堂教学模式,提供了硬件和软件上的支持,为切实实现教师“教”与学生“学”的变革,提供了研究的土壤。信息技术有着强大的信息承载功能,可以满足学生多样化的学习需求;信息技术的呈现形式的活泼新颖,可以激发学生自主探索的欲望;利用信息媒体强大的交互功能,可以完成知识的自我建构过程;利用信息技术无可比拟的网络优势,可以让学生自我调控、自主发展。目前,很多地方都在如火如荼地开展信息技术与课程整合的实践和实验,力图从自身实际出发,将信息技术融入课程内容、课程结构、课程教学中去。在全国教育科学“十五”规划课题中,也开展了不少相应的课题研究。为了更好的利用我校现有的信息技术资源,更好的更新全校老师的教学观念,更好的运用先进的教育教学模式,培养学生的学习兴趣和首创精神,促进学校教学教育方法和手段的更新。我们申请了《信息技术环境下教学模式和教学方法的创新研究》课题。探索在信息技术环境下的新型教学模式和教学方法,是信息技术与课堂教学整合的需要,是现代信息技术社会对基础教育的要求,更是教育适应21世纪挑战的需要,是当前基础教育改革与发展的要求,是教学方法改革的一个重要突破口,是实施素质教育的有效途径。开展信息技术环境下教学模式和教学方法的创新课题研究,对于推进新课程的实施,提高课堂教学质量具有十分重要的意义。 二、课题的界定 (一)信息技术环境:广义而言是多种媒体组合技术、计算机多媒体技术与计算机网络技术的设计、开发与综合运用。具体来说是借助现代科学技术 ,特别是多媒体技术

多媒体信息处理技术(5)教学文稿

多媒体信息处理技术 (5)

多媒体信息处理技术 1 多媒体数据的分类 媒体是承载信息的载体,是信息的表示形式。信息媒体元素是指多媒体应用中可以显示给用户的媒体组成元素,目前主要包括文本、图形、图像、声音、动画和视频等媒体。 一、多媒体数据的特点 多媒体数据具有数据量巨大、数据类型多、数据类型间差别大、数据输入和输出复杂等特点。多媒体数据类型多,包括图形、图像、声音、文本和动画等多种形式,即使同属于图像一类,也还有黑白、彩色、高分辨率和低分辨率之分,由于不同类型的媒体内容和格式不同,其存储容量、信息组织方法等方面都有很大的差异。 二、多媒体数据的分类 1.文字 在计算机中,文字是人与计算机之间信息交换的主要媒体。文字用二进制编码表示,也就是使用不同的二进制编码来代表不同的文字。 文本是各种文字的集合,是人和计算机交互作用的主要形式。 文本数据可以在文本编辑软件里制作,如Word编写的文本文件大都可以直接应用到多媒体应用系统中。但多媒体文本大多直接在制作图形的软件或多媒体编辑软件时一起制作。 2.音频 音频泛指声音,除语音、音乐外,还包括各种音响效果。将音频信号集成到多媒体中,可提供其他任何媒体不能取代的效果,从而烘托气氛、增加活力。 3.图形、图像

凡是能被人类视觉系统所感知的信息形式或人们心目中的有形想象都称为图像。 图形文件基本上可以分为两大类:位图和向量图。 位图图像是一种最基本的形式。位图是在空间和亮度上已经离散化的图像,可以把一幅位图图像看成一个矩阵,矩阵中的任一元素对应于图像的一个点,而相应的值对应于该点的灰度等级。 图形是指从点、线、面到三维空间的黑白或彩色几何图形,也称向量图。图形是一种抽象化的图像,是对图像依据某个标准进行分析而产生的结果。 向量图形文件则用向量代表图中的文件,以直线为例,在向量图中,有一数据说明该元件为直线,另外有些数据注明该直线的起始坐标及其方向、长度或终止坐标, 图形文件保存的不是像素点的值,而是一组描述点、线、面等几何图形的大小、形状、位置、维数等其他属性的指令集合,通过读取指令可以将其转换为屏幕上显示的图像。由于大多数情况下不需要对图形上的每一个点进行量化保存,所以,图形文件比图像文件数据量小很多。图形与图像是两个不同的概念。 4.动画 图像或图形都是静止的。由于人眼的视觉暂留作用,在亮度信号消失后亮度感觉仍可保持1/20s~1/10s。利用人眼视觉惰性,在时间轴上,每隔一段时间在屏幕上展现一幅有上下关联的图像、图形,就形成了动态图像。任何动态图像都是由多幅连续的图像序列构成的,序列中的每幅图像称为一帧,如果每一帧图像是由人工或计算机生成的图形时,称为动画;若每帧图像为计算机产生的具有真实感的图像时,称为三维真实感动画;当图像是实时获取的自然景物图像时就称为动态影像视频,简称视频。 用计算机制作动画的方法有两种:一种称为造型动画,另一种称为帧动画。帧动画由一幅幅连续的画面组成图像或图形序列,是产生各种动画的基本方法。造型动画则是对

信息技术在课堂教学中的有效应用课题实施方案

信息技术在课堂教学中的有效应用课题实施方案

《信息技术在课堂教学中的有效应用》 课题实施方案 ——来宾市兴宾区城厢镇中心小学莫方平 一、课题提出的背景: 新一轮基础教育课程改革,突出强调要把信息技术与课程改革有机地结合起来,使新课程在一个比较高的水准上推进。在课堂教学中应用信息技术不但仅是一种手段,而是一种学习方式的根本变革;信息技术不再仅仅作为辅助教或学的工具,而是利用信息技术所提供的自主线索、多重交互、合作学习、资源共享等学习环境,把学习的主动性、积极性充分调动起来,使学生的创新思维与实践能力得到有效的锻炼。 当前,在中小学各学科教学实践中,广大教师已经进行了信息技术应用于学科教学的尝试,信息技术在教学中的应用,促进了各学科课程改革的深化,给教学带来了诸多好处,信息技术的开发与应用已成为教师的重要职责,但在教学实施过程中还存在不少问题: 1、教学设计中具体怎样利用信息技术优化教学过程,也就是怎样在信息技术条件下,改变传统的教学模式,设计出在新课程背景下的教学方案。 2、怎样避免应用信息技术可能带来的消极影响。 3、怎样组建教学资源库,使教师从繁重的搜集素材、整理素材、甚至制作教学课件的劳动中解脱出来,有更多时间和精力投入到课程

改革实践中。 4、研究怎样解决硬件设备和软件资源匮乏的问题。 当前,我校已开通了校园网,建起了计算机教室、多媒体教室、现代远程教育资源教室和光盘播放室,同时计划建立教师电子备课室。随着计算机的普及和多次培训,教师的计算机操作能力及基本知识也得到大幅度的提高,为我们所进行“信息技术在课堂教学的有效应用的研究”奠定了坚实基础。我们的教师在先进的教育理念指导下,能充分发挥多媒体网络教学的优势,在学科教学中有效地应用信息技术,变革和建构多媒体学科课堂教学结构,使教师经过自身的课堂教学研究,讨论和相互观摩评议,增强教师的教育科研意识和动机,掌握研究方法,促使教师由“教书型”向“研究型”转变。 二、研究目标: 1、更新学科教师教育教学理念,树立信息技术整合于课程的教育信息技术观,提高教师的信息素养。 2、在国家新一轮基础教育课程改革的过程中,指导教师在学科教学中运用信息技术,改变教(学)方式,探索适合本学科特点的教学模式。 3、指导教师搜集教育教学素材,开发教学软件,组建教学资源库,利用校园网,达到资源共享;学科教师具有自己能够制作简单课件的能力。 4、改进学校的硬件环境,创设出适合信息化的教(学)环境,尝试在网络环境下信息技术与学科的整合。

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

相关文档
最新文档