一文解析微流控技术原理及起源

一文解析微流控技术原理及起源

一文解析微流控技术原理及起源

微流控技术的起源微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。MEMS技术全称Micro Electromechanical System ,MEMS设想是由诺贝尔物理学奖获得者Richard Feynman教授于1959年提出,其基本概念是用半导体技术,将现实生活中的机械系统微型化,形成微型电子机械系统,简称微机电系统。

1962年全球第一款微型压力传感器面世,这一创新产品后来被应用于汽车安全(轮胎压力检测)和医疗(有创血压计),开启了MEMS时代。今天MEMS技术在军事、航天航空,生物医药、工业交通及消费领域扮演核心技术的角色,智能手机中就嵌入了多个MEMS 芯片,如麦克风,加速度计,GPS定位等。

微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。

微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。

基于微流控芯片的代表性关键技术1、微流控分析芯片是新一代床旁诊断(Point of care

微流控技术平台在IVD中的运用

一、微流控平台的定义和特点 微流控是一项融合了微电子学、材料科学、生物科学、制药以及临床医学等众多领域的综合性技术,需要跨领域跨学科的深入交流和合作。什么是微流控芯片?微型+集成+自动化。微流控芯片顺应分析仪器的发展趋势(微型化/集成化与便携化),很大程度缩短样本处理时间,并通过精密控制液体流动,实现试剂耗材的最大利用效率,把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用。 微流控芯片的发展正呈现三个基本特征:1)平台研究多学科交叉,2)应用研究多领域渗透,3)产业迅速崛起将成为新一代即时诊断(POCT)的主流技术;微流控反应筛选芯片在高通量药物筛选、材料合成、模拟和单细胞测序等领域显示了巨大潜力;而微流控细胞/器官芯片则有望应用于药物毒理和药理作用研究,部分替代医药研究试验动物,是细胞及微环境操控最重要的技术平台。 微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。微流控芯片内部集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。 原则上,微流控芯片作为一种“微全分析技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。目前来看,体外诊断是微流控技术的最大的应用场景,而在体外诊断中,微流控技术应用的重点在于化学发光(免疫诊断)和分子诊断中。 二、微流控的研究及产业化 微流控的理论研究兴起于20多年前,目前,理论研究准备已经非常成熟,在此,不再赘述。下面我们主要看看产业化之路 对比国内外商业化的微流控产品,国外在生化免疫、分子领域均有相对成熟的产品,其中不乏重磅级代表品种(雅培的i-STAT、Illumina的测序仪系列等);国内微流控产品的商业化相对落后,最早上市的微点生物mlabs系列等。 在产业化中,微流控一般分为以下几大类型:气压推动式微流控,离心力推动式微流控,液滴微流控,数字化微流控,纸质微流控等。 气压推动式微流控主要利用气压来推动流体在芯片中的运动,在微流控产业化中出现的最多,像生物梅里埃的filmarray, 罗氏诊断的cobas Liat PCR System,Atlas Genetics的io,博晖创新的HPV分子诊断全自动分析仪,华迈兴微的M2微型化学发光分析系统等等都是。 离心微流控是利用离心力来实现微流控芯片中的芯片的推动,在微流控产业中也占据着重要地位,比如美国爱贝斯(Abaxis)Piccolo Xpress?即时生化检测仪,天津微纳芯科技的pointcare M,杭州霆科生物的微流控芯片农残速测仪等等。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁和声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、和激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等. 光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

传感器原理与检测技术复习题(DOC)

《传感器原理及检测技术》复习题 一、选择题 1、传感器中直接感受被测量的部分是(B) A.转换元件 B.敏感元件 C.转换电路 D.调理电路 2、属于传感器静态特性指标的是(D) A.幅频特性 B.阻尼比 C.相频特性 D.灵敏度 3、属于传感器时域动态特性指标的是(A) A.阶跃响应 B.固有频率 C.临界频率 D.阻尼比 4、属于传感器动态特性指标的是(C) A.量程 B.灵敏度 C.阻尼比 D.重复性 5、传感器能感知的输入变化量越小,表示传感器的(D) A.线性度越好 B.迟滞越小 C.重复性越好 D.分辨力越高 6、衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标是(A) A.重复性 B.稳定性 C.线性度 D.灵敏度 7、一般以室温条件下经过一定的时间间隔后,传感器的输出与起始标定时输出的差异来表示传感器的(C) A.灵敏度 B.线性度 C.稳定性 D.重复性 8、传感器的线性范围愈宽,表明传感器工作在线性区域内且传感器的(A) A.工作量程愈大 B.工作量程愈小 C.精确度愈高 D.精确度愈低 9、表示传感器或传感检测系统对被测物理量变化的反应能力的量为(B) A.线性度 B.灵敏度 C.重复性 D.稳定性 10、在明确传感器输入/输出变换关系的前提下,利用某种标准器具产生已知的标准非电量输入,确定其输出电量与输入量之间关系的过程,称为(C) A.校准 B.测量 C.标定 D.审核 11、按传感器能量源分类,以下传感器不属于能量转换型的是(D) A.压电式传感器 B.热电式传感器 C.光电式传感器 D.压阻式传感器 12、某温度计测量范围是-20℃~+200℃,其量程为(B) A. 200℃ B. 220℃ C. 180℃ D. 240℃ 13、某温度测量仪的输入—输出特性为线性,被测温度为20℃时,输出电压为10mV,被测温度为25℃时,输出电压为15mV,则该传感器的灵敏度为(D) A. 5mv/℃ B. 10mv/℃ C. 2mv/℃ D. 1mv//℃ 14、热电偶的T端称为(C) A.参考端 B.自由端 C.工作端 D.冷端 15、随着温度的升高,NTC型热敏电阻的电阻率会(B) A.迅速增加 B.迅速减小 C.缓慢增加 D.缓慢减小 16、有一温度计,测量范围为0~200o C,精度为0.5级,该表可能出现的最大绝对误差为(A) A.1 o C B.0.5 o C C.10 o C D.200 o C 17、热电偶式温度传感器的工作原理是基于(B) A.压电效应 B.热电效应 C.应变效应 D.光电效应

微流控芯片的发展及制造工艺介绍

微流控芯片的发展及制造工艺介绍 微流控芯片的发展微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy 公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管电泳分离为核心分析技术发展到液液萃取、过滤、无膜扩散等多种分离手段。其中多相层流分离微流控系统结构简单,有多种分离功能,具有广泛的应用前景。已有多篇文献报道采用多相层流技术实现芯片上对试样的无膜过滤、无膜参析和萃取分离。同时也有采用微加工有膜微渗析器完成质谱分析前试样前处理操作的报道。流控分析系统从以电渗流为主要液流驱动手段发展到流体动力气压、重动、离心力、剪切力等多种手段。 直至今日,各国科学家在这一领域做出更加显着地成绩。微流控技术作为当前分析科学的重要发展前沿,在研究与应用方面都取得了飞速的发展。 微流控芯片的原理 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等。其中电压驱动的毛细管电泳(Capillary Electrophoresis ,CE)比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理与技术课程教案(学生)

《传感器原理与技术》 绪论 0.1 传感器 1、定义: 广义定义:

能够把特定的被测量信息(如物理量、化学量、生物量等)按一定规律转换成某种可用信号的器件或装置。 狭义定义: 所谓“可用信号”,是指便于传输、便于处理的信号。就目前而言,电信号最为满足便于传输、便于处理的要求。因此,传感器的狭义定义为:能把外界非电量信息转换成电信号输出的器件或装置。 2、组成:传感器通常由敏感元件(sensing element)和转换元件(transduction element)组成。 图0.1 传感器组成框图 敏感元件指传感器中能直接感受(或响应)与检测出被测对象的待测信息(非电量)的元件。如:机械类传感器中的弹性元件。 转换元件指传感器中能将敏感元件所感受(或响应)的信息直接转换成电信号的部分。如:应变式压力传感器由弹性膜片和电阻应变片组成,其中电阻应变片就是转换元件。 3、分类: (1)按工作原理分类: (2)按输入信号分类:位移传感器,速度传感器,加速度传感器,力/压力传感器,温度传感器,湿度传感器,磁传感器,色传感器,等。 (3)按应用范围分类:工业用、农业用、民用、军用、医用、科研用、家电用传感器等;计测用、监视用、检查用、诊断用、控制用、分析用等; 。 0.2 传感器技术 传感器技术是关于传感器的研究、设计、试制、生产、检测和应用的综合技术。 传感器技术的特点: (1)内容的离散性:物理、化学、生物学中的“效应”、“反应”、“机理”等,多而彼此独立; (2)知识的密集性; (3)技术(工艺)的复杂性:微电子/机械加工技术,特种加工技术,智能化技术; (4)品种的多样性与用途的广泛性。

传感器原理与检测技术

河南工程学院 2017年秋《传感器原理与检测技术》试卷 批次专业:2016年春季-电气工程及其自动化(专升本)课程:传感器原理与检测技术(专升本)总时长:180分钟 1. ( 单选题 ) 仪表的精度等级是用仪表的( )来表示的。(本题分) A、相对误差 B、绝对误差 C、引用误差 D、使用误差 学生答案: 标准答案:C 解析: 得分:0 2. ( 单选题 ) 下列不是电感式传感器的是( )。(本题分) A、变磁阻式自感传感器 B、电涡流式传感器 C、差动变压器式互感传感器 D、霍尔元件式传感器 学生答案: 标准答案:D 解析: 得分:0 3. ( 单选题 ) 常用于制作超声波探头的材料是( )(本题分)

A、应变片 B、热电偶 C、压电晶体 D、霍尔元件 学生答案: 标准答案:C 解析: 得分:0 4. ( 单选题 ) 下列不可以直接测量温度的传感器是( )。(本题分) A、金属应变片式传感器 B、红外线传感器 C、光纤传感器 D、热电偶传感器 学生答案: 标准答案:A 解析: 得分:0 5. ( 单选题 ) 压电式传感器目前多用于测量( )。(本题分) A、静态的力或压力 B、动态的力或压力 C、速度 D、加速度 学生答案: 标准答案:D 解析: 得分:0

6. ( 单选题 ) 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量( )。(本题分) A、增加 B、减小 C、不变 D、不能判断 学生答案: 标准答案:A 解析: 得分:0 7. ( 单选题 ) 在车间用带微机的数字式测温仪表测量炉膛的温度时,应采用( ) 较为妥当。(本题分) A、计算修正法 B、仪表机械零点调整法 C、冰浴法 D、冷端补偿器法(电桥补偿法) 学生答案: 标准答案:D 解析: 得分:0 8. ( 单选题 ) 下列几种误差中,属于随机误差的有( )。(本题分) A、仪表未校零所引起的误差 B、测频时的量化误差 C、测频时的标准频率误差 D、读数错误

一文解析微流控技术原理及起源

一文解析微流控技术原理及起源 微流控技术的起源微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。MEMS技术全称Micro Electromechanical System ,MEMS设想是由诺贝尔物理学奖获得者Richard Feynman教授于1959年提出,其基本概念是用半导体技术,将现实生活中的机械系统微型化,形成微型电子机械系统,简称微机电系统。 1962年全球第一款微型压力传感器面世,这一创新产品后来被应用于汽车安全(轮胎压力检测)和医疗(有创血压计),开启了MEMS时代。今天MEMS技术在军事、航天航空,生物医药、工业交通及消费领域扮演核心技术的角色,智能手机中就嵌入了多个MEMS 芯片,如麦克风,加速度计,GPS定位等。 微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。 微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 基于微流控芯片的代表性关键技术1、微流控分析芯片是新一代床旁诊断(Point of care

微流控芯片检测方法及其在畜牧兽医上的应用

动物医学进展,2019,40(5):115G119 P r o g r e s s i nV e t e r i n a r y M e d i c i n e 微流控芯片检测方法及其在畜牧兽医上的应用 一收稿日期:2018G02G27 一基金项目:国家重点研发计划项目(2016Y F D 0500707);河南省科技厅基础与前沿研究项目(162300410166 )一作者简介:陈凯丽(1991-) ,女,河南郑州人,硕士研究生,主要从事动物寄生虫学研究.?通讯作者陈凯丽,刘珍珍,王朋林,郑一玲,菅复春? (河南农业大学,河南郑州450002 )一一摘一要: 微流控芯片是以微米尺度对被检测流体样品进行操作为特点的技术,与传统的检测方法相比,具有样品消耗少二速度快二效率高等优势.近年来,基于该技术已开发出很多方便快捷的检测方法,例如毛细管电泳二质谱检测二免疫检测二电化学检测二光学检测等.随着畜牧养殖业的规模化和集约化发展,动物疾病对畜牧业的影响日益加大.因此,早期快速检测动物疫病病原具有重要的社会效益和经济价值.论文就几种常用微流控芯片检测方法及其在畜牧兽医领域的应用进行综述,以期为动物疾病诊断提供参考.一一关键词: 微流控芯片;检测方法;畜牧兽医;应用中图分类号:S 853.21 文献标识码:A 文章编号:1007G5038(2019)05G0115G05 一一人类基因组计划的提前完成在很大程度上有赖于美国P EB i o s y s t e m s 公司研制出的高效毛细管自动测序仪,同时也向人们展示了先进检测技术的重要性.微流控芯片(m i c r o f l u i d i c c h i p )检测技术与传统的分析仪器比较,具有使用成本低二样品体积小二 灵敏度高二易于和其他技术设备集成以及良好的兼 容性等显著优势[ 1] .该技术是在数平方厘米的芯片上对化学或者生物样品进行操作和检测的一种生物芯片技术,可以完成样品的预处理二分离二稀释二混 合二化学反应二检测以及产品的提取等所有步骤[ 2G3 ].因其独特的优势,无论在基础研究还是产品的开发方面都受到国际上的广泛关注,目前在生命科学等诸多领域都得到了广泛的应用,本文主要概述了几种常用的微流控芯片检测方法及其在畜牧兽医检测中的应用. 1一微流控芯片技术的发展简介 微流控芯片技术也叫芯片实验室(l a bo na c h i p ,L O C ),是一种以在微米尺度空间完成对化学或生物样品的常规化学和生物实验室功能为主要特 征的技术平台[4] ,简单地说就是在便携设备上甚至 是邮票大小的芯片上实现常规分析实验室所能承担 的功能.该技术是由瑞士学者在1990年提出[5] , 但是当时并没有得到人们的关注,发展前景不是十分明朗.直到1994年美国橡树岭国家实验室对芯片 毛细管电泳的进样方法进行改进[6] ,使其性能和实 用性得到了很大的提高,这在很大程度上促进了微流控芯片技术的发展.在2004年被美国B u s i n e s s 2.0杂志列为 改变未来的7种技术之一 .微流控芯片检测技术虽然在我国的研究起步较 晚,由于科研工作者的不断探索,也得了一定的成就.方肇伦院士率先在国内开展微流控分析系统的研究,发起并组织的 沈阳国际微流控学学术论坛 显著推动了微流控学在我国的发展.林炳承作为我国微流控芯片领域的推动者,其所著的?图解微流控芯片实验室?一书为该领域的研究提供了相应的参考依据. 2一微流控芯片不同检测方法及其在畜牧兽 医中的应用 一一微流控芯片的检测方法主要涵括毛细管电泳二质谱检测二免疫检测二电化学检测及光学检测.2.1一毛细管电泳 毛细管电泳(c a p i l l a r y e l e c t r o p h o r e s i s ,C E )又称高效毛细管电泳(h i g h p e r f o r m a n c ec a p i l l a r y e l e c Gt r o p h o r e s i s ,H P C E ),是依据样品中各种组分的浓度不同和分配行为上的差异来实现分离的继高效液相 色谱之后又一新型的液相分离技术[ 7] .雄性激素是调控动物繁殖行为的主要因子,而睾酮作为雄激素中最重要的激素不仅能够促进副性腺功能还能刺激 精子,对于多胎动物具有十分重要的作用.H u a n g Y 等[8] 将微流控芯片毛细管电泳与化学发光检测器 相结合,在最佳条件下仅需30s 即可准确的检测出 睾酮,这为调控动物的繁殖行为提供了快速有效的

微传感器原理与技术

一、名词解释: MEMS:其英文全称为Micro-Electro-Mechanical System,是用微电子,即microelectronic 的技术手段制备的微型机械系统。第一个M也代表器件的特征尺寸为微米量级,如果是纳米量级,相应的M这个词头就有nano来替代,变为NEMS,纳机电。MEMS及NEMS是在微电子技术的基础上发展起来的,融合了硅微加工、LIGA技术等的多种精密机械微加工方法,用于制作微型的梁、隔膜、凹槽、孔、反射镜、密封洞、锥、针尖、弹簧及所构成的复杂机械结构。(点击)它继承了微电子技术中的光刻、掺杂、薄膜沉积等加工工艺,进而发展出刻蚀、牺牲层技术、键合、LIGA、纳米压印、甚至包括最新的3D打印技术SOI: SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。 SOC:SOC-System on Chip,高级的MEMS是集微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统,这样的系统也称为SOC,即在一个芯片上实现传感、信号处理、直至运动反馈的整个过程。 LIGA:LIGA是德文光刻、电镀和模铸三个词的缩写。它是在一个导电的基板上旋涂厚的光刻胶,然后利用x射线曝光,显影后形成光刻胶的模具,再用电镀的方法在模具的空腔中生长金属,脱模后形成金属的微结构。特点:该工艺最显著的特点是高深宽比,若用于加工一个细长杆,杆的直径只有1微米,而高度可达500微米,深宽比大于500,这是其他技术无法比拟的。其次,它还具有材料广泛的特点,可加工金属、陶瓷、聚合物和玻璃。但传统的LIGA采用的x射线曝光工艺极其昂贵,近年来采用SU-8光刻胶替代PMMA光刻胶,紫外曝光代替x射线曝光的准LIGA技术获得了更广泛的发展和应用。 DRIE:反应离子深刻蚀(Deep RIE)。干法刻蚀的典型工艺是DRIE深槽刻蚀。刻蚀分为两步,第一步,通入SF6刻蚀气体进行反应离子刻蚀,刻蚀是各向同性的,即槽底不仅要被刻蚀,槽壁也会被刻蚀。如果就一直这样刻下去,刻蚀的图形和掩模定义的图形将完全不一样,很难控制微结构的尺寸。解决此问题的方法是分步刻蚀,逐次推进。在刻蚀进行10多秒钟转入第二步,快速地将刻蚀气体切换成保护气体C4F8,C4F8在等离子的作用下进行聚合,生成类似于特氟龙这种不粘锅材料,沉积在槽底和槽壁上。10多秒钟后,又切换成SF6刻蚀气体,等离子体中的正离子在电场加速作用下只轰击槽底,而不怎么轰击槽壁,优先将槽底的聚合物保护膜打掉,暴露出硅片表面,从而使得化学刻蚀反应能够再次进行。刻蚀时,由于槽壁上仍然保留有保护膜,而不会被刻蚀。重复这样的刻蚀-保护过程,就能在硅片上刻蚀出垂直的深槽。深槽在宏观上的垂直度能达到88-92°,但微观上其侧壁是有多段小弧形连接而成。干法刻蚀不再象湿法腐蚀那样需要晶向的对准,因此可以制备出齿轮、弹簧等复杂的图形。 二、多项选择题 第一章、 1、MEMS器件的尺寸范围是:(1) (1)从1um到1mm (2)从1nm到1um (3)从1mm到1cm 3、微系统部件的“深宽比”被定义为(1)之比 (1)高度方向尺寸和表面方向尺寸(2)表面方向尺寸和高度方向尺寸(3)宽度方向尺寸和长度方向尺寸 4、目前为止,商品化最好的MEMS器件是(2)

微流控技术的起源和展望

微流控技术的起源和展望 George M. Whitesides 摘要:微流控技术用在几十微米尺度的管道中操控流体。它已逐渐发展成为全新的领域,其影响延伸到化学合成、生物分析、光学、甚至信息技术。但是,微流控领域依然处在早期发展阶段。即使作为基础科学和技术示范,有些问题也必须得到解决:选择和关注最初的应用,制定循环发展的策略,也包括商业化。这些问题的解决还需要想象和创新。 什么是微流控?微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10-9至10-18升,1立方毫米至l立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小[1]。微流控既利用了它最明显的特征——尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 作为一项技术,微流控似乎好的不真实:至少在分析领域的主要应用中,它表现出太多的优点和太少的缺点。但是微流控还没有发展成为广泛使用的技术。为什么呢?为什么不是每个生物化学实验室都贴上“芯片实验室”的标签呢?为什么不是每个病人都用微流控家用检测系统监测自己的病情呢?答案还不明确。微流控的优势令人信服难以错过,我相信微流控技术将成为分子分析的主流方式,也许分子合成也是这样。话虽如此,微流控发展成为一项主流的新技术还需要时间和大环境的支持,这个问题的解答不仅对微流控领域是重要的,对那些正在努力去争取成功的新技术也同样重要。 微流控技术从四个领域发展而来:分子分析、生物防御、分子生物学和微电子学。首先来看分子分析。微流控技术最早起源于微量分析方法——气相色谱法,高压液相色谱法,以及用毛细管形式彻底革新了化学分析的毛细电泳法。这些方

传感器原理与技术(A卷带答案的)

传感器原理与技术(A卷带 答案的) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

厦门大学《传感器原理与技术》课程试卷 物理与机电工程学院机电系12年级测控技术与仪器专业 主考教师:王凌云试卷类型:(A卷) 一、填空题(本大题共12小题,共20个填空,每空1分,共20分,请在每小题的横线上填上正确答案,填错或不填均不得分。) 1.传感器一般由敏感元件、转换元件和基本转换电路三部分组成。 2.要实现不失真测量,检测系统的幅频特性应为常数,相频特性应为线 性。 3.某传感器为一阶系统,当受阶跃信号作用时,在t=0时,输出为10mV; t→∞时,输出为100mV;在t=5s时,输出为50mV,则该传感器的时间常数为: 8.5s。 4.产生电阻应变片温度误差的主要因素有电阻温度系数的影响和试件材料和 电阻丝材料的线膨胀系数的影响。 5.应变式传感器是由弹性元件和电阻应变片及一些附件组成的。 6.直线的电阻丝绕成敏感栅后长度相同但应变不同,圆弧部分使灵敏度K下 降了,这种现象称为横向效应。 7.电感式传感器是利用线圈自感系数或互感系数的变化实现测量的一 种装置。 8.电容式传感器从原理上可分为变极距型、变面积型和变介质型三种基本 类型。 9.霍尔元件的零位误差主要包括不等位电势及寄生直流电动势。 10.按照工作原理的不同,可将光电式传感器分为光电效应传感器、红外热 释电探测器、固体图像传感器、光纤传感器等四大类。

11.光电式传感器由光路及电路两部分组成。 二、选择题(本大题共12小题,每小题1.5分,共18分,在每小题列出的答案中有一个或多个选项符合题目要求,请将正确地字母填在题后的括号内,错选、多选和未选均不得分。) 1.传感器按其敏感的工作原理,可以分为物理型、化学型和( A )三大类。 A. 生物型 B. 电子型 C. 材料型 D. 薄膜型 2.传感技术的地位和作用主要体现在:( ABCD ) A.传感技术是产品检验和质量控制的重要手段 B. 传感技术在系统安全经济运行监测中得到广泛应用 C.传感技术及装置是自动化系统不可缺少的组成部分 D. 传感技术的完善和发展推动着现代科学技术的进步 3.传感技术的发展趋势主要表现在以下哪几个方面:( ABCD ) A.提高与改善传感器的技术性能B.开展基础理论研究 C.传感器的集成化 D.传感器的智能化 4.传感器的下列指标全部属于其静态特性的是( C )。 A. 线性度、灵敏度、阻尼系数 B. 幅频特性、相频特性、稳态误差 C. 迟滞、重复性、漂移 D. 精度、时间常数、重复性 5.根据传感器的构成分类,下列属于物性传感器的有:( ABD ) A.水银温度计 B.电阻应变式力传感器 C、变介质型电容式传感器 D.压电式加速度传感器 6.无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频 率时,该系统的位移与激振力之间的相位差必为( B )

微流控技术

微流控技术及其应用 摘要:微流控技术广泛应用于生化分析、疾病诊断、微创外科手术、环境检测等领域。微通道结构设计与制造、微纳尺度流体的驱动与控制、微流控器件及系统的集成与封装是该领域的3大关键技术。本文综述了微流控技术在这3个方面的发展现状及在不同领域中的应用,展望了微流控技术的发展前景,指出多相微流体的介观传输理论及跨尺度流体的性质将是今后研究的重点与热点。 1、微流控技术简介: 微流控技术是指在至少有一维为微米甚至纳米尺度的低维通道结构中控制体积为皮升至纳升的流体进行流动并传质、传热的技术,可广泛应用于生化分析、免疫分析、微创外科手术、环境监测等众多领域。根据美国两院院士、哈佛大学乔治·怀特塞兹(George Whitesides)教授2006年刊登在国际顶级科学期刊《科学》上的文章中的定义,微流控(Microfluidics)是指针对极微量体积流体(10-9L~10-18L)进行操控的科学与技术。实现微流体操控的主要方法就是将流体限制在一个微米甚至纳米尺度的通道中,而这些通道的制作手段起源于制作微电子处理芯片的半导体工艺流程。最早提出微流控这个概念的是1990年在瑞士Ciba-Geigy公司做研究的Andreas Manz教授,他最初的设想是将微机电(MEMS)与分析化学相结合,从而做出一个类似芯片能将各种功能集成在一起的微型分析仪器。当时,这样的系统被称为微全分析系统,英文是Miniaturized totalanalysis systems,简称为MicroTAS或μTAS。1998年,微流控技术被评为世界十大科技进展之一,发展至今,微流控已经演变成一个十分独特的前沿科学领域。微流控技术还有另一个十分形象化的名字,芯片实验室(Labonachip),就好比将实验室里对样品的各种操作流程都集成在一块小芯片上。 2001年,英国皇家化学学会为此专门推出了《芯片实验室》(LabonChip)期刊,如今该期刊已经成为国际微流控领域的顶级期刊。 2、微流控技术应用 微流控芯片的显著特点:所需样品试剂量很小,分析速度快,易于阵列化从而能够实现高通量检测、系统集成化、微型化、自动化和便携式;在单细胞或单分子研究领域,微流控芯片有着明显的优势。此外,由于样品在微纳尺度下的特殊效应,使用微流控芯片也能够开展一些独特的前沿研究。其被用于航空航天、医学、农业、生物工程、材料加工、化工工业等众多领域。 2.1 生物医学领域的应用 微纳尺度下,流体间的传质、传热和反应过程高效、易控,主要是因为: 1)短程分子扩散有利于控制化学反应进程并且能够快速达到平衡状态; 2)相对较大的界面有利于促进界面反应; 3)反应发生时只需要少量热能,散热和加热过程都容易实现,能精确控制反应温度; 4)待分析的溶液或物质需求量极微小,可以节省贵重药品消耗或有毒物质的挥发。这些特点使微流控技术应用于萃取提纯口“、病毒及细胞或大分子的分离与检测以及疾病的快速诊断口方面具有显著的优势。 2.2层流微加工技术 层流微加工是利用微流体的层流特性,通过精确地控制化学反应试剂在微通道中的传输过程,在微通道中特定区域加工或合成化学物质的新型微加工技术。

人体微波感应传感器工作原理

人体微波感应传感器工作原理 1。工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。 输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图

微流控芯片研究进展与应用

“Lab‐on‐a‐Chip” 二十一世纪的分析测试平台 分析测试无疑是人类最频繁的科学技术活动之一。在人类发展的历史上,分析测试技术对科学技术的进步和经济的发展起到了至关重要的作用。在以生命科学为主导的21世纪,分析测试技术集中体现了当今世界各项高新技术的综合水平,总的发展方向是更加微型化、自动化、快速化与便携化。20世纪90年代出现的微全分析系统(Miniaturized Total Analysis Systems, μ-TAS)完全符合这一战略目标。 μ-TAS又称为芯片实验室(Lab-on-a-chip),是指通过微电子领域已经发展成熟的微型机电技术(Micro-electromechanical Systems, MEMS)在一块几平方厘米(甚至更小)的芯片上构建微型实验室分析平台,该平台集成了生物和化学分析领域中所涉及各种基本操作单位,如样品制备、反应、分离、检测及细胞培养、分选、裂解等,可取代常规生物或化学实验室的各种功能。芯片实验室的优势在于分析化学、微机电加工(MEMS)、计算机、电子学、材料科学与生物学、医学和工程学的交叉,有利于实现分析检测从试样处理到检测的整体微型化、自动化、集成化与便携化这一目标。 计算机芯片使计算微型化,而芯片实验室使实验室微型化,因此,在生物医学领域它可以使珍贵的生物样品和试剂消耗降低到微升甚至纳升级,而分析速度成倍提高,成本成倍下降;在化学领域它可以使以前需要在一个大实验室花大量样品、试剂和很多时间才能完成的分析和合成,将在一块小的芯片上花很少量样品和试剂,以很短的时间同时完成;在分析化学领域,它可以使以前大的分析仪

基于微流控技术的功能型量子点的合成及应用

目录 摘要 ABSTRACT 目录 第一章绪论 (1) 1.1微流控芯片的简介 (1) 1.2微流控芯片的国内外研究进展概述 (1) 1.3微流控芯片在纳米合成上的应用研究发展现状 (2) 1.4量子点纳米材料简介 (8) 1.5量子点在生物光子学中的应用 (11) 1.5.1 与生物分子连接 (11) 1.5.2 量子点生物标记应用 (13) 1.5.3 量子点生物成像应用 (14) 1.5.4 在免疫学中的应用 (15) 1.5.5 其他应用 (15) 1.5.6 前景展望 (16) 第二章量子点的相关理论 (18) 2.1量子点的常用制备方法 (18) 2.1.1 有机相合成 (18) 2.1.2 水相合成 (18) 2.2微流控制备量子点方法的相关理论 (19) 2.3量子点的表征 (21) 2.3.1 透射电子显微镜 (21) 2.3.2 吸收光谱 (22) 2.3.3 荧光光谱 (22) 2.3.4动态光散射粒径分析 (23) 2.4量子点物化特性 (23) 2.4.1量子点的物理效应 (23) 2.4.2量子点的光学特性 (25) 2.4.3量子点的发光原理 (26) 2.4.4量子点的能级结构 (27) 第三章应用于量子点合成的微流控芯片的设计与制作 (29) 3.1引言 (29) 3.2微流控芯片的制作技术概述 (29) 3.2.1 微流控芯片的结构及特点介绍 (29) 3.2.2 微流控芯片的材料选取 (30) 3.2.3微流控芯片的成型方法 (31) 3.3微流控芯片的模拟仿真理论概述 (32) 3.4应用于合成量子点的微流控芯片的制作 (35) I

传感器原理与检测技术复习题

传感器原理与检测技术复习题标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

《传感器原理及检测技术》复习题 一、选择题 1、传感器中直接感受被测量的部分是(B) A.转换元件 B.敏感元件 C.转换电路 D.调理电路 2、属于传感器静态特性指标的是(D) A.幅频特性 B.阻尼比 C.相频特性 D.灵敏度 3、属于传感器时域动态特性指标的是(A) A.阶跃响应 B.固有频率 C.临界频率 D.阻尼比 4、属于传感器动态特性指标的是(C) A.量程 B.灵敏度 C.阻尼比 D.重复性 5、传感器能感知的输入变化量越小,表示传感器的(D) A.线性度越好 B.迟滞越小 C.重复性越好 D.分辨力越高 6、衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标是(A) A.重复性 B.稳定性 C.线性度 D.灵敏度 7、一般以室温条件下经过一定的时间间隔后,传感器的输出与起始标定时输出的差异来表示传感器的(C) A.灵敏度 B.线性度 C.稳定性 D.重复性 8、传感器的线性范围愈宽,表明传感器工作在线性区域内且传感器的(A) A.工作量程愈大 B.工作量程愈小 C.精确度愈高 D.精确度愈低 9、表示传感器或传感检测系统对被测物理量变化的反应能力的量为(B) A.线性度 B.灵敏度 C.重复性 D.稳定性 10、在明确传感器输入/输出变换关系的前提下,利用某种标准器具产生已知的标准非电量输入,确定其输出电量与输入量之间关系的过程,称为(C) A.校准 B.测量 C.标定 D.审核 11、按传感器能量源分类,以下传感器不属于能量转换型的是(D) A.压电式传感器 B.热电式传感器 C.光电式传感器 D.压阻式传感器 12、某温度计测量范围是-20℃~+200℃,其量程为(B) A. 200℃ B. 220℃ C. 180℃ D. 240℃ 13、某温度测量仪的输入—输出特性为线性,被测温度为20℃时,输出电压为10mV,被测温度为25℃时,输出电压为15mV,则该传感器的灵敏度为(D) A. 5mv/℃ B. 10mv/℃ C. 2mv/℃ D. 1mv考端 B.自由端 C.工作端 D.冷端 15、随着温度的升高,NTC型热敏电阻的电阻率会(B) A.迅速增加 B.迅速减小 C.缓慢增加 D.缓慢减小 16、有一温度计,测量范围为0~200o C,精度为级,该表可能出现的最大绝对误差为(A) o C o C o C o C 17、热电偶式温度传感器的工作原理是基于(B) A.压电效应 B.热电效应 C.应变效应 D.光电效应

相关文档
最新文档