高炉煤气余压透平发电装置

高炉煤气余压透平发电装置
高炉煤气余压透平发电装置

高炉煤气余压透平发电装置(TRT)

TRT——(Blast Furnace Top Gas Recovery Turbine Unit,以下简称TRT) 高炉煤气余压透平发电装置(即TRT)是利用高炉冶炼的副产品——高炉炉顶煤气具有的压力能及热能,使煤气通过透平膨胀机做功,将其转化为机械能。

工艺过程介绍

高炉产生的煤气经重力除尘、净化除尘后,两级文氏管,压力为140kPa左右,温度低于200℃。含尘量小于10mg/Nm3的带一定能量的煤气,经过TRT的进口蝶阀、启动阀、全封闭液压入口插板阀、紧急切断阀和可调静叶进入透平膨胀做功,透平带动发电机发电。膨胀后的煤气经过全封闭液压出口插板阀,送到减压阀组后的煤气主管道上,进入低压管网。这样,TRT与减压阀组就形成并联关系,实现对高炉顶压的控制。在入口插板阀之后、出口插板阀之前,与TRT 并联的地方,有一旁通管及快开慢关旁通阀(简称旁通快开阀),作为TRT紧急停机时TRT与减压阀之间的平稳过渡之用,以确保高炉炉顶压力不产生大的波动,从TRT和减压阀组出来的低压煤气再送到高炉煤气柜和用户。

TRT的运行工况有启动、正常运行、电动运行、正常停机、紧急停机,能量回收方式分为部分回收方式、平均回收方式和全部回收方式,操作方式分为手动、自动(半自动)、全自动。

发电机出线断路器,接于10KV系统母线上,经当地变电所与电网相连,当TRT运行时,发电机向电网送电,当高炉短期休风时,发电机不解列作电动运行。

TRT装置由透平主机,大型阀门系统,润滑油系统,液压伺服系统,给排水系统,氮气密封系统,高,低发配电系统,自动控制系统八大系统部分组成。

控制系统工作原理

高炉炉顶压力不稳,会引起炉内反应的剧烈波动。炉压高于额定值时,会使炉内煤气气流分布不均,引起崩料,严重时会损坏设备。而当炉内压力低于额定值时,会引起炉内煤气体积增大,气流压力损失增大,煤气流速上升,使“炉喉”磨损严重。因此,作为能量回收的TRT设备,投入运行的先决条件是在任何情况下均能保证炉压稳定,即在TRT设备启动、运行和紧急停车时都不能引起炉压过大的波动。

1.炉顶压力调节及控制

高炉炉顶压力控制系统从控制系统的结构上来看,可分为TRT设备启动时、运行时和紧急停车时的控制系统。

正常投运过程———压阀组控制回路,只在原有系统上并联一个调节回路来控制TRT系统中的可调静叶,在不改变高炉操作的情况下,利用可调静叶实现自动控制炉顶压力。正常机组投运-并网-升功率过程中的炉顶压力,由高炉煤气侧计算机控制;升功率结束后,TRT与减压阀组并列运行时,送入TRT侧的炉顶压力测量值与高炉顶压控制回路的测量值为同一信号;将高炉顶压控制回路的设定值减去一个允许的偏差(0~3kPa)后,作为TRT炉顶压力调节回路能自动跟踪高炉的设定值,高炉顶压的设定权仍在高炉,高炉操作同往常一样。高炉炉顶压力可由TRT控制,也可由减压阀组控制。

正常停机过程———正常停机时,与启动过程相反,TRT侧炉顶压力调节回

炉的设定值为高炉顶压设定值加上一个偏差(0~3kPa),这样该控制系统将控制可调静叶慢慢关小。由于高炉侧炉顶压力调节回路始终处于自动控制等待状态,在让可调静叶缓慢关闭的同时,迫使减压阀组逐渐打开。TRT正常停机既为炉顶压力控制,又为减负荷控制,随着可调静叶慢慢关小,减压阀组慢慢打开,当发电机功率达到工艺要求的解列值时,发出解列信号,经人工确认后,使发电机与电网解列,同时自动关闭紧急切断阀和可调静叶,系统停机结束。

2.转速控制

转速关系到发电机与电网的同步和安全运行,也关系到其他辅机的启停问题。为可靠起见,莱钢TRT安装了3套转速测量系统,选择出其中较高信号,作为转速测量信号送入计算机专用调节系统。

转速控制分自动控制和手动控制两种方式,控制对象为静叶。

自动控制———自动升速的控制过程是一个转速PID调节器的设定值随时间不断增大的过程。这个过程的实现是通过互为反函数的静叶控制时间曲线和转速设定升速曲线来实现的。当顶压的测量值和设定值的偏差超过2kPa的时候,转速不允许上升,需要的操作是在画面上将转速自动控制按钮按下、将升速按钮按下。

手动控制———手动升速方式运行时,通过画面设定来控制转速。1号、2号1880m3高炉TRT各带有一套自动准同期并网系统,属于电气控制。当自动准同期装置投入运行的时候,它会在并网过程中,通过对转速的微调实现自动并网。当转速升到2850rpm的时候,PLC发出自动准同期装置投入运行的信号。只有转速控制在自动方式的时候,自动准同期装置对转速的调节才会起作用。如果画面上按下升速按钮(RISESP%000173),自动准同期装置以±5rpm进行升降速控制;当画面上没有按下升速按钮时,自动准同期装置会以±1rpm进行升降速控制。

3.升功率控制

功率控制:功率控制分手动和自动两种方式,控制对象为静叶。当发电机并网后,透平转速与电网频率同步,经人工确认后,系统进入升功率阶段,此时控制系统打开入口蝶阀,关闭启动阀,功率调节系统的输出用于控制可调静叶的开度。功率调节器的设定值以一定的上升速率增大,其上升速率应保证高炉顶压波动不超过±3kPa。随着可调静叶的开度不断增大,发电机输出功率不断增加,减压阀组的开度不断减小,当减压阀组全关后,发电机输出功率不可能再增大,系统就进入了顶压调节阶段。

4.快开旁通阀控制

快开旁通阀共有2个,为液压伺服驱动的阀门。当机组发生重故障停机的时候,计算机发出停机指令,快切阀立刻动作进行快切,然后打开快开旁通阀控制顶压。快开旁通阀在机组停机后的前3秒内,通过煤气流量计算相应的阀门开度,3秒钟后转入顶压自动调节,稳定顶压。一定时间以后,人为设定顶压设定值与顶压测量值有个较大的正偏差,当高炉有所准备,控制快开旁通阀自动关闭,完全由高炉减压阀组来控制顶压。这样就可以实现自动和手动控制。

5.报警及安全联锁控制

通过软件编程,使各种参数的超限及设备的故障诊断都能发出报警信号,并将超限的参数和故障发生的部位显示出来。在紧急停机情况下,该控制系统能实现自动停机,并记录、打印停机事故原因。不管是什么原因引起的停机,其信号都不会自动消除,要等操作工或技术人员排除故障并复位后,才会消除停机信号。

除上述由计算机实现的安全联锁外,还设计了独立于计算机的安全联锁系

统,并能实现自动和手动操作。

TRT采用计算机控制具有的特点:

1.可靠性提高———由于整个控制系统采用三电一体化设计、编程、调试,减少了控制元件及接线,避免了不必要的中间环节给系统带来的故障。

2.操作方便———操作方式比以前大为简化,减少了由于操作失误导致事故的可能性;在计算机上的每一步操作均有提示。

3.投资少———由于整个控制系统采用三电一体化设计的方式,因此减少了控制元件和备品备件。另外,控制方式的修改、改进,只需修改软件,不需要增加设备和投资。

4.系统可扩展性强———由于整个软件系统基于WindowsNT操作系统,遵循TCP/IP协议,为将来系统的扩展留下了空间,同时也便于该系统与其他控制系统及企业的MIS系统交换信息。

5.收益大———TRT正常发电量为8000~10000kW/h,按年发电7000h、每度电0.35元计算,则TRT投资一年左右就可收回投资。

监控功能

根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。在各个不同监控系统画面下方均显示TRT机组的重要实时参数,确保重要参数的实时监控,确保正常运行。其主要画面及其功能如下:

1.主煤气系统画面———可显示TRT的整个工艺生产流程及相关的主要参数值,以及相关试验操作、盘车、发电机、操作画面的调用情况。

2.氮气、水系统监控画面———对氮封差压设定,对循环水、氮气等各具体参数监测。

3.轴系统监控画面———对透平机和发电机的各个参数监控,包括轴振、轴位移、轴温、瓦温、线圈温度等实时监控。

4.动力油站监控画面———对油站的各个参数监控,包括主管压力和油箱温度、油泵运行状况、过滤差压等。

5.润滑油站监控画面———对油站的各个参数监控,包括主管压力和油箱温度、油泵运行状况、过滤差压等。

6.启动画面———包括监控机组启动条件,登入按钮,进行操作员和系统维护的登入退出。

7.升速监视画面———对静叶、转速的设定、手动升降速的手动操作面板和各选择按钮、参数监测。

8.功率控制画面———对功率、顶压的设定、手动升降功率的手动操作面板和各选择按钮、参数监测。

9.报警画面———在线报警显示监控。按工艺要求,当过程值超过报警上下限时,发出报警,操作员在报警画面中可以完成报警确认、报警信息过滤、消音等任务,并在报警表上显示报警发生时间、报警值、报警等级、报警点等报警信息。

TRT的优点

1、能量回收,原本的高炉煤气通过洗涤和除尘,再经过减压阀组,将170KPa 左右的压力减弱到合适水平送至用户,这个过程使高炉煤气余压白白消耗掉了。

通过TRT机组,可以将煤气余压转换成电能,然后再送至最终用户,把原本没有用的余压转换成了电能,可以获得一定的经济效益。

2、更好的控制顶压,一般来说,通过TRT机组的静叶来调整高炉顶压,比减压阀组控制得更好,这样可以带来更稳定的高炉顶压,而稳定的顶压可以使高炉更加易于控制,对产量有着积极的作用(如:陕鼓的“3H技术”)。

3、降低噪音,由于减压阀组全部关闭,煤气由透平通过,噪音和振动以作功的形式转化为电能,因此可以有效的减低减压阀组的噪音。

TRT工艺流程(百度文库)

高炉产生的煤气,经重力除尘器,两级文氏管,进入TRT装置。经入口电动碟阀,入口插板阀,调速阀,快切阀,经透平机膨胀作功,带动发电机发电,自透平机出来的煤气,进入低压管网,与煤气系统中减压阀组并联。

发电机出线断路器,接于10KV系统母线上,经当地变电所与电网相连,当TRT运行时,发电机向电网送电,当高炉短期休风时,发电机不解列作电动运行。

TRT装置由透平主机,大型阀门系统,润滑油系统,液压伺服系统,给排水系统,氮气密封系统,高,低发配电系统,自动控制系统八大系统部分组成。

1、高炉煤气透平机

特点;高炉煤气透平主机,通过的煤气和压力均不高,但流量颇大,虽然多次除尘,仍含有不少炉灰粒子,并且水蒸汽呈饱和状态。据此透平设计不能完全衔用燃气轮机方法,而是采用大通流面积,底圆周速度,平直粗壮叶型等新设计方法而特殊设计。

结构:由定子、转子、静叶可调、轴承、底座等组成。

部件功能:

轴承:支撑轴承四油叶滑动轴承制供油润滑推力轴承金斯贝雷式强制供油润滑

调节:二级全静叶可调伺服调节

密封:充气氮气密封根据顶压波动自动连续调节

清洗:低压喷雾水间断或连续喷水

定子:由静叶可调扩压器盘车装置等机构组成

转子:由主轴二级动叶珊危急保安器盘车装置等组成

方向:从进口方向看,转子旋转方向为顺时针

盘车:电动盘车超6r/min时自动脱开

超速保护:超10%转速

电气系统:先迅速打开调压阀组快开阀,同时关快速切断阀、调速阀及静叶。

机械系统:危急保安器油门动作,关闭快速切断阀。

2.大型阀门系统

2.1 入口电动二次偏心阀 D947H-3

公称通经 DN1800mm

公称压力 PN0.3MPa

介质温度≦250℃

适用介质高炉煤气

结构原理

结构:主要由阀门、电动机、一级电动装置、二级传动装置和控制器等部分组成。

原理:本阀动作时通过控制器或点动按纽启动发电机,驱动一、二级传动装置并带动阀杆转动,使蝶阀实现0~90℃范围内的旋转,从而完成阀门的起闭或在某一角度上停止,从而达到隔断管道内介质或调节截止流量的目的,由于阀体采用了弹性阀座及偏心密封结构,使得阀门在关闭状态越关越紧,保证了阀座虽有少量磨损而仍能可靠密封条件。

2.2 入口液压插板阀 YZG749AX—2c

公称通径:DN 1800mm

公称压力 PN 0.2MPa(G)

适用介质高炉煤气

介质温度 250℃

驱动方式全液压

结构原理:

阀门由主阀体和左`右侧阀体形成骨架,在主阀体内设有阀板及阀板执行机构(包括阀板夹紧、松开机构和阀板运行机构)。

在主阀体顶部设有放散管及取样管,底部设有N2管,排水管及清灰孔,左右侧与左右侧阀体用螺栓固定在设定位置上

液压传动系统的组成

由球塞马达、弹簧返回缸、离合器用油缸、齿轮油泵、控制调节装置、单向阀、顺序阀、溢流阀。三位四通阀、油箱、冷却器、滤油器、电加热器、压力表等组成。

出口电动二次偏心阀 YZG749AX—0.3

公称通经 DN2400mm

公称压力 PN0.03MPa

介质温度≦250℃

适用介质高炉煤气

驱动方式:全液压

阀门结构及原理同入口插板阀油站,阀门液控装置各自自成系统,独立操纵。

2.3快速切断阀 KD743—2

公称通经 DN(mm)1800

公称压力 PN(bar)2

泄漏量:(Nm/h)5000

阻损:

快关时间:

适用温度:

适用介质:含尘烟气、空气、煤气。

结构及原理

结构:快速切断阀主要由阀门、传动装置‘液控箱、电控箱组成。阀门采用双偏心碟阀型式,阀座堆焊有不锈钢。耐腐,耐磨,提高了密封付的寿命,液控箱用高压胶管与传动装置连接,

控制油使油缸活塞动作达到阀门开启和关闭,液压元件安装在液控箱

内。

电控部分设就地手操和控制室远控分别在两地独立地实现慢开、慢关、快关、游动功能操作。

原理:采用弹簧液压衡型、双偏心碟阀、工作状态液压油压紧弹簧,阀门打开,在TRT装置异常时(动作信号一路来自系统控制信号,一路来自透平机危机保安器的液压信号)电磁阀动作,快速泄油弹簧松开,阀门紧急关门,切断时间0.5~1sec可调。

3.润滑油系统

3.1系统的作用

大型透平机,压缩机都是靠轴承支撑进行旋转工作的,要保证机的组安全可靠的运,其重要的一个环节,就是要给个各轴承润滑点及时提供一定量的稀油循环润滑,以满足机组在正常工况下及事故状态下润滑油供给,这种系统就是润滑油系统。

3.2系统的构成

系统由润滑油站、高位油箱、油泵、阀门及检侧仪表等组成。

润滑油站,是把一定压力、一定流量

的润滑油,经过油箱冷却器散热、滤油器过滤干净后的润滑油送到轴承各润滑油点润滑。

高位油箱,是在停电、紧急事故状态下、停车时,靠自然位差维持机化组惰走油流时间润滑油的供给。

检测仪表,分就地仪表及远传仪表。就地表在现场设控制盘,显示各测点的压力、温度值。远传表,在重要的测点处安装变送器,把测量信号值送到主控室记录、显示、报警连锁满足透平机组正常运行时的控制需要。

3.3系统的控制原理

当机组在正常运行中,操作员只需观控制盘上各测点的温度、压力显示数值,就可掌握油系统的运行情况。

当油泵阀门元件有小故障时,或油脏虑油器压差超限时,润滑油供给的压力逐渐将降低,当最远点的压力降低时78.4KPa时,主控室表盘上光字牌灯亮,蜂鸣器响,不管操作员是否观察到,此时已提醒他开始检查并

处理,同时另一台油泵自动投入供油。当短时期故障排除,辅泵可自动或手动停,若短时期故障无法排除,即系统将转入重故障的处理方式。

当报警、辅泵投入后,操作员不能及时排除设备问题,但油压仍降继续下降,压力达到49KPa时自动报警、停机,来保证机组的安全,避免重故障的发生。

当设备停电或油泵发生重故障不能供油时,机组的停机,靠高位油箱自然位差维护机组的供油,即旋转惯性所需的油流润滑。

4. 电液伺服控制系统

4.1 系统的作用

电液伺服控制系统,在TRT装置中,属于八大系统之一的分系统。根据主控室的指令,来实现TRT的开,停,转速控制,功率控制,炉顶压力以及过程检测等系统控制,要实现以上系统的功能控制,最终将要反映在控制透平机的转速上,就要控制透平静叶的开度,而控制静叶开度的手段就是电液位置伺服系统。控制系统的精度,误差,直接影响TRT系统各阶段过程的控制。由此可见,该系统在TRT中的地位,作用是十分重要的。

4.2系统的构成

系统由液控单元、伺服油缸、动力油站三大部分组成。

液控单元包括调速阀控制单元和透平静叶控制两单元,每一单元均由电液伺服阀、电动用电磁阀、快关用电磁阀、油路块及底座等组成。

伺服油缸为双活塞杆结构,摩擦力很小,密封性能好。

动力油站由油箱、变量油泵、滤油器、冷却器、管道阀门、检测器表等组成。

4.3系统原理

经过方案设计,确定由机、电、液共同构成电液伺服控制系统,其控制方框见图

油源

液压锁

伺服控制器

伺服阀

油缸

曲柄机构

阀板

位置传感器

由自控系统发出的指令信号,在伺服控制器中与油缸的实际位置信号相比较,成为误差信号放大后,送入电液伺服阀,伺服阀按一定的比例将电信号转变成液压油流量推动油缸运动,由位置传感器发出的反馈信号不断改变,直至与指令信号相等时,油缸停止运动,即停在指定的位置上,是透平静叶稳定在此开度上。

油缸的直线运动,通过一套曲柄转变成阀板的旋转运动,改变阀板或静叶的工作角度。

通过以上的分析说明,随着系统信号的不断变化,透平静叶的开度也将不断改变,并通过静叶开度的变化,达到控制转数、控制煤气流量、控制透平出力的目的。

5.给排水系统

给排水系统由排水密封罐、排水器、阀门及各油站水冷却器组成。(干式TRT也需保留湿法的给排水系统设备)

排水密封罐和排水器均匀钢板焊接而成,其它油、水冷却器为外购选配。

系统原理

为了防止透平积灰、堵塞,设有软水喷雾设施。喷水点在调速阀体前及透平主机一级静叶前。根据透平入口煤气含尘量的高低及透平积灰情况,可选择连续喷水还是间断喷水。

在紧急快切阀前及调速阀体设有定期冲洗喷嘴。

为了将透平主机前、后管道及主机内的机械水、冷凝水安全排放,设有一个排水密封罐和三级排水器(有效水封4800mmH2O)。各不同压力点的排水通过排水管上和节流孔板流入排水密封罐(随排水漏泄的煤气经密封罐顶的气相管返回透平出口管)。然后污水经三级排水器外排。排水密封罐底部设有定期冲洗喷嘴,起搅拌、防止积灰作用,也可以通过这些喷嘴补

充水量。

供水:透平喷雾水——工业新水

快切阀、调速阀、油冷却器——高炉净环水

6.氮气密封系统

透平工作、工质为高炉煤气、属于可燃有毒气体,绝对不能让其外泄,其密封介质为氮气。

由两个支路组成

透平机轴端密封(低压密封支路)

气源氮气压力一般为0.3~0.4MPa,然后经气动薄膜调节阀调节后至密封处的氮气压力高于被密封的煤气压力0.02~0.03MPa 左右,以保证煤气不外泄。氮气耗量以较低为宜。无备用气源,原则上无氮气时停机。

高压密封支路

供紧急快切阀轴封、调速阀轴封用氮气。

7.高低压发配电系统

高炉煤气余压透平发电装置,是利用高炉煤气压力能,通过透平膨胀作功驱动发电机的回收装置,是高炉系统的一项附属设备。由余压发电的特点决定了发电机的出力不能根据负荷的需要调节,而只能根据高炉工况变化进行调节,在保证高炉炉顶压力稳定的前提下,尽可能多发电,u出力随着高炉炉顶压力波动而变化。

7.1 系统的构成

同步发电机:发电机选用北京这重型发电厂无刷励磁通步发电机。由于使用现场多灰尘,发电机采用封闭自循环同风、水冷却通风的方案。发电机采用带永励磁方式,能满足自动和手动励磁调节及灭磁、强砺磁的要求状态下运行5分钟,以便卸掉负荷,并且能从发电机运行状态过渡到电动运行状态,同时也能满足在运行中由同步电动机状态恢复到发电机状态,砺磁装置也同样具有自动适应的能力,而发电机在电机运行状态下输出的无功功率可以根据电网的需要进行调节。

7.2 高低配电系统:由4台手车式高压柜组成。并网设置有手动准同期并网、自动准同期并网;保护功能设置有:纵联差动保护、过电流保护、

低电压保护、失磁、低周波、逆功率等项保护功能。

7.3 低压电控系统

液压油站电气控制:

两台油泵互为备用,当系统压力低于11MPa时(110kgf/c㎡)备用油泵自动投入,故障排除后手动停止。油温低于20℃,油泵不能自启动。此时必须加温,待温度上升至25℃时,加热器自动断开,方可启动油泵。

润滑油站电气控制:

加热器控制。手动操作加温,温度到25℃时,自动断开,加热器停止工作。

两台油泵互为备用:当润滑油管、最远处油压低于约0。08MPA(0。8KGF/CM2)时,辅助油泵自动投入,系统油压高于约0。2MPA(2KGF/CM2)时,手动停止。

阀门联锁

喷雾水电动球阀的启闭操作可在控制室及现场两地操作。运行方式可连续喷水或间断喷水,通过时间继电器,整定延时,定时对喷雾水电动球阀开启和关闭,达到间断喷水,当密封罐水位超限,联锁动作,关闭该阀门。

冲洗水电动球阀,开启与关闭可在控制室及现场操作箱进行。同时当密封罐水位超限,联锁动作,关闭该阀门。

排水电动球阀,开启与关闭可以控制及现场操作箱进行。同时于紧急快切阀启、闭互锁,当紧急快切阀全关时,经整定延时约120秒后,排水阀自动全开。当紧急快切阀全开时,自动系统触点闭合,排水阀自动关闭。

泄压旁通,启闭可在控制室及现场两地手动操作,同时与入口液压插板阀互锁。当液压插板阀全开时,泄压旁通阀关闭。当液压插板阀全关时,泄压旁通阀自动开启。

电动盘车可在现场就地手操,启动盘车电机。起动时,挂上盘车装置,当超6R/MIN时,行程开关动作,自动停电机。

8.自动控制系统

本系统仪表,主要采用日本横河株式会社UXL中小型集散型控制系统,

美国HONEY WELLG公司TDC3000集散控制系统。

透平轴运动的测控仪表采用BENTLY公司的3300仪表。

电液伺服控制器,选用航天部609所研制的产品。

系统组成

由反馈控制系统、转数调节系统、功率调节系统、高炉顶压复合调节系统、超驰控制系统、电液位置伺服控制系统、氮气密封压差调节系统、顺序逻辑控制系统等组成。

由以上系统对TRT机组进行启动运行,过程检测控制。在保证高炉正常生产、顶压波动不超限的前提下,顺利完成TRT装置的启动、升速、并网、升功率、顶压调节、正常停机、紧急停机、电动运行、正常运行等项操作及控制。

TRT与减压阀组的关系

减压阀组是高炉顶压控制的重要手段,根据高炉炉容大小的不同,减压阀组中阀门的口径和数量亦有区别,但其作用是相同的。减压阀组一般由一台自动阀、两台或三台手动阀等组成。

TRT装置与高炉减压阀组在煤气管网配置中既有串联也有并联的。

TRT串联在减压阀组之后,正常运行时,减压阀组全开。

优点:适合泄漏量大,不易改造的减压阀组。

缺点:整个系统的安全性较并联来说较差。

将TRT与减压阀组进行并联,正常运行时,减压阀组全关。

并联运行对减压阀组进行改造

为配合TRT工程,对减压阀组进行如下改造:

设置一台自动阀,接受来自顶压调节器的控制信号,自动调整炉顶压力。

设置一台量程阀,根据自动阀阀位进行自动调整,保证自动阀在线性区工作。

设置两台快开阀,一用一备,当TRT发生故障紧急停机时,该阀能够自动开启,保证炉顶压力的波动范围在允许值之内。

减压阀组一般归炼铁使用,TRT一般划归动力厂,为简化两所属单位之间的关系,可不对减压阀组进行改造,采用透平机并联旁通快开阀的方案。我厂TRT机组即采用此方式。

TRT对高炉的顶压控制

减压阀组是高炉顶压控制的重要手段,根据高炉炉容大小的不同,减压阀组中阀门的口径和数量亦有区别,但其作用是相同的。5#高炉配套TRT 装置与高炉减压阀组属于并联配置,在正常运行时,减压阀组全关。

高炉炉顶压力的控制

高炉炉顶压力的调节系统主要由顶压调节系统和前馈控制组成。

TRT正常运行时的顶压调节原理: TRT对高炉顶压的调节以TRT侧的高炉顶压设定值为目标值,采用PID调节控制TRT静叶开度,达到控制高炉炉顶压力稳定的目的。静叶比高炉减压阀组调节目标值低3kPa左右,以保证静叶调节的优先性。TRT运行时,静叶在自动状态,高炉减压阀组自动阀同样保持自动状态,减压阀组各阀门全部关闭。正常运行时,机组两旁通快开阀全部关闭,一在自动位置(调节目标值比静叶高3kPa,以保证静叶调节的优先性),一在手动位置,一旦静叶调节出现问题,顶压波动超出正常范围,在自动位置的旁通快开阀会自动参与顶压调节。

高炉顶压的前馈控制:对通过TRT的高炉煤气流量进行测量和温压补偿校正,以此信号控制旁通快开阀的开度。在机组正常运行时,旁通快开阀全关;当机组发生重故障时,两旁通快开阀快速打开相应开度(本机组两旁通快开阀无论在手动位置还是在自动位置,有重故障时均能快速打开),在静叶及快切阀快速关闭对高炉产生作用之前,快速打开,使高炉煤气形成畅通,消除这一不安全因素。

重故障跳机后对顶压的控制:当TRT机组发生重故障时,由两旁通快开阀进行顶压控制。两旁通快开阀同时打开同样开度,两阀门同步对顶压进行自动调节。在高炉接到TRT跳机信号后,TRT运行人员可将旁通快开阀转为手动,并逐步关闭旁通快开阀,将顶压控制全部交给高炉控制室。

按除尘工艺情况分类

根据除尘工艺的不同,有湿式除尘和干式除尘,TRT也分为两类:湿式

TRT和干式TRT.

高炉煤气余压发电TRT初步设计

1 总论 1.1 企业概况 山西安泰集团股份有限公司经过十几年的发展,已成为集科工贸、产供销于一体,跨洗煤、焦化、冶炼、建材、发电等产业的国家级乡镇企业集团,公司被认定为山西省高新技术企业,获得ISO14001环境管理体系认证,主导产品获得ISO9002国际质量体系认证。炼铁厂现有3座450m3高炉、1座1080m3高炉,高炉煤气均采用干法布袋除尘工艺,目前生产正常。 1.2工程概况及建设进度 为了节能降耗和提升经济效益,山西安泰集团股份有限公司委托思安新能源有限公司出资为3座450m3高炉配套建设高炉煤气余压发电装置,本项目在建设、运行和转让(EMC)的基础上实施。思安新能源有限公司提供项目设计、设备采购、建设、运行管理所需资金。山西安泰集团股份有限公司为余压发电项目提供项目建设所需的场地、余压资源、电站的生产生活用水、氮气等;计划自2011年12月开始,1年内建设完成。 1.3 设计依据 (1)山西安泰集团股份有限公司3×450m3高炉的相关设计、运行资料; (2)山西安泰集团股份有限公司提供的建设地址区域的地形图; (3)国家现行的规程、规范及有关标准。 1.4 工程建设的意义 冶金企业是全国最大的能源用户。单以用电来说,约占全国总用量的13~15%,而高炉又是冶金企业中的能耗大户,约占冶金企业用电的40%左右。因此充分利用冶金企业的副产煤气(如高炉煤气),对节约能源具有重大意义。

高炉煤气的化学能一般工厂均能较好的利用(如作燃料使用),而对高炉煤气的余压和余热却未充分利用。常规的工艺流程是:高炉炉顶出来的高温(150~250℃)、高压(0.1~0.15MPa)煤气,经除尘处理后就送往减压阀组,在减压阀组里将煤气压力降至10kPa(0.01 MPa)左右。这样,不仅浪费了煤气大量的压力能,还在减压阀组附近产生非常大的噪音(可达120分贝以上),污染了周围环境。 为了充分回收高炉煤气的压力能和潜热能,冶金企业采用高炉煤气余压透平发电机组(简称TRT),TRT的工作原理是:用透平膨胀机将原来损耗在减压阀组上的高炉煤气的压力能和潜热能转换成机械能,再通过发电机将机械能变成电能输送给厂内电网。这样既回收了高炉煤气的压力能和潜热能,又减少了噪声对环境的污染。另外采用TRT同时也改善了炉顶压力的调节品质,有利于稳定高炉生产。 目前全国电力供应紧张,TRT发电符合国家能源政策。国家发展改革委发布的《产业结构调整指导目录》中,“高炉炉顶压差发电(TRT)”列为钢铁行业鼓励建设项目。由此可见,山西安泰集团股份有限公司新建高炉煤气余压透平发电(TRT)机组,是节能降耗和提升经济效益的好项目,既有企业的经济效益又有良好的社会效益,也合乎国家的建设方针。 1.5 工程建设的有利条件 1.5.1承办单位经验丰富 思安新能源有限公司总部位于国家级西安高新技术产业开发区,主要从事新能源技术和产品研发、生产与工程项目实施,是集开发、设计、工程建设、运营服务与投资于一体的技术服务型企业。基于长期的发展积累,针对性地开发了多套余热余压资源回收利用系统,形成了余热余压利用工程总承包、设备成套、技术服务等多种业务运营模式。 思安新能源有限公司秉承凝聚智慧,追求卓越的理念,以携手并

2020高炉煤气干法设计规范

精选范文、公文、论文、和其他应用文档,希望能帮助到你们! 2020高炉煤气干法设计规范 目次 1 总则 2 术语 3 工艺流程与设备 3.1 一般规定 3.2 工艺流程 4 本体设备 4.1一般规定 4.2 设计与制造 5 袋料型与滤袋规格 6 卸、输灰工艺 6.1 一般规定

6.2 卸、输灰工艺 7 电气、自动化控制与检测 7.1 电气 7.2自动化控制与检测 高炉煤气干法设计规范 1 总则 1.0.1为在高炉煤气干法布袋除尘设计中贯彻执行国家法律法规和有关技术经济政策,做到设计先进、经济合理、安全适用,特制定本规范。 1.0.2本规范适用于低压脉冲布袋除尘和反吹风大布袋除尘两种高炉煤气布袋除尘。 1.0.3本标准适用于高炉煤气干法布袋除尘的新建、扩建和改造设计。 1.0.4高炉煤气干法布袋除尘设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1气体的标准状态温度为0℃, 大气压力为101.325kPa时的气体状态。 2.0.2工况气体流量 在实际工作温度、湿度、压力下进入除尘器的气体流量。

2.0.3工况系数 工况体积与标况体积的比值称为工况系数。 2.0.4过滤负荷;气布比单位是m3/m2 h。 单位时间内单位有效过滤面积上通过的含尘气体量 2.0.5过滤风速 含尘气体流过滤布有效面积的表观速度,单位是m/min。 2.0.6荒煤气 未经净化的煤气,又称粗煤气。 2.0.7净煤气 经过净化后、含尘量达到国家标准的清洁煤气。 2.0.8 干法除尘 不用水的烟气、煤气净化除尘工艺,和其相对应的是湿法除尘。干法除尘工艺有布袋除尘,电除尘,重力除尘,旋风除尘,颗粒层除尘等工艺。流程只有干法而无湿法除尘备用,称为干法除尘。 2.0.9干法布袋除尘 布袋除尘过滤净化烟气、煤气的除尘工艺。 2.0.10 脉冲布袋除尘器 采用气体喷射方法清除滤袋积灰的一种布袋除尘器。 2.0.11反吹风布袋除尘 采用反吹风机逆向反吹方式清除滤袋表面积灰的布袋除尘器。

高炉煤气

高炉煤气 科技名词定义 中文名称:高炉煤气 英文名称:blast furnace gas 定义:高炉炼铁过程中产生的含有一氧化碳、氢等可燃气体的高炉排气。 应用学科:电力(一级学科);燃料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 定义 成分 高炉煤气密度 高炉煤气加热时的特点 编辑本段定义 高压鼓风机(罗茨风机)鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是二氧化碳和一氧化碳,二氧化碳又和炙热的焦炭产生一氧化碳,一氧化碳在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学过程。铁水在炉底暂时存留,定时放出用于直接炼钢或铸锭。 这时候在高炉的炉气中,还有大量的过剩的一氧化碳,这种混和气体,就是“高炉煤气”。 这种含有可燃一氧化碳的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等。也可以供给民用,如果能够加入焦炉煤气,就叫做“混和煤

高炉 气”,这样就提高了热值。 编辑本段成分 高炉煤气为炼铁过程中产生的副产品,主要成分为:CO、、N2、H2、CH4等,其中可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2、 N2 的含量分别占15%、55 %,热值仅为3500KJ/m³左右。高炉煤气的成 分和热值与高炉所用的燃料、所炼生铁的品种及冶炼工艺有关,现代的炼 铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺, 采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤 气热值更低,增加了利用难度。高炉煤气中的CO2, N2既不参与燃烧产生 热量,也不能助燃,相反,还 罗茨风机 吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。 高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的 稳定性。高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导 致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。 燃烧反应能够发生的另一条件是气体分子间能够发生有效碰撞,即拥 有足够能量的相互之间能够发生氧化反应的分子间发生的碰撞,大量的C02、N2的存在,减少了分子间发生有效碰撞的几率,宏观上表现为燃烧速度慢,燃烧不稳定。 高炉煤气中存在大量的CO2L、N2,燃烧过程中基本不参与化学反应, 几乎等量转移到燃烧产生的烟气中,燃高炉煤气产生的烟气量远多于燃煤。编辑本段高炉煤气密度

常见透平机械工作原理图解

常见透平机械工作原理图解 风机包括通风机、透平鼓风机、罗茨鼓风机和透平压缩机,详细划分为离心式压缩机、轴流式压缩机、离心式鼓风机、罗茨鼓风机、离心式通风机、轴流式通风机和叶氏鼓风机等7大类 一、离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。

有些化工基础原料,如丙烯、乙烯、丁二烯、苯等,可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式压缩机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式压缩机也是极为关键的设备。我国在五十年代已能制造离心式压缩机,从七十年代初开始又以石油化工厂,大型化肥厂为主,引进了一系列高性能的中、高压力的离心式压缩机,取得了丰富的使用经验,并在对引进技术进行消化、吸收的基础上大大增强了自己的研究、设计和制造能力。 性能特点: 优点: 离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。 1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。 2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。 3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。 4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。 缺点: 1、离心式压缩机还不适用于气量太小及压比过高的场合。 2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。 3、离心式压缩机效率一般比活塞式压缩机低。 二、轴流式压缩机 轴流式压缩机是属于一种大型的空气压缩机,最大的功率可以达到 150000KW,排气量是20000m3每分钟,它的压缩机能效比可以达到百分之90左右,比离心机要节能一些。它是由3大部分组成,一是以转轴为主体的可以旋转的部分简称转子,二是以机壳和装在机壳上的静止部件为主体的简称定子(静子),三是壳体、密封体、轴承箱、调节机构、联轴器、底座和控制保护等组成。轴流式压缩机也属于透平式或速度式压缩机,炼油厂多选用作催化裂化装置的主风机。 轴流压缩机的结构简图

膨胀机的原理,基本构造,主要参数控制及意义。

膨胀机的原理,基本构造,主要参数控制及意义。 膨胀机的原理 气体的绝热膨胀,并对外做功,是获得低温的重要方法,透平膨胀机就是利用压缩气体在高压下进入膨胀机内膨胀到低压。由高压低速气体变为低压高速气体,在这个过程中与外界不发生热交换,因此,整个过程是绝热的。气体通过膨胀机后能量要减少,减少的能量就以功的形式输送出去,因而降低了膨胀机出口工质的内能和温度。 透平膨胀机的分类 1按工作原理分,可以分为反动式和冲动式 透平膨胀机的工作是低速高压的气体,经过流道膨胀形成高速低压,即具有大动能的气流来推动叶轮,如果膨胀过程完全在静止的导流器中进行,叶轮所受的完全是气流的冲动。那么就是冲动式。如果气流在叶轮流通中还继续膨胀,这时在叶轮中除去接受从静止导流器中出来的动能外,在在叶轮流道还利用反作用原理产生向前的推力,这种透平膨胀机称为反动式。 2 按压力来分,可分为高压,中压,低压及超低压透平膨胀机。高压19---22兆帕膨胀到0.6----1.5兆帕[绝压] 中压2---5兆帕膨胀到0.6兆帕 低压0.5---1.0兆帕膨胀到0.13----0.14兆帕 超低压0.2---0.3兆帕膨胀到0.12兆帕 3 按级数来分可分为单级,双级,和多级 4 按制动方式分

[1] 风机制动 [2] 透平增压机制动 [3] 电机制动 [4] 油制动-------制动器为一系列位于转子和定子之间的油腔。 5万空分装置所配置的膨胀机,一台是杭氧的,另一台是阿特拉斯。杭氧膨胀机组组成示意图 换热器轴 过滤器膨胀端增压机供油装置透平膨胀机 透平膨胀机由---膨胀机蜗壳,-膨胀机轴,叶轮,轴承,轴封组成。膨胀端增压机----叶轮,扩压器,和蜗壳组成。 透平膨胀机流量调节----是通过一执行机构改变喷嘴角度来改变的。主要控制参数-----透平膨胀机进口温度,-透平膨胀机出口温度。 膨胀气量。

高炉煤气烟气处理

一、烟气除尘——高炉煤气干法布袋除尘 高炉煤气净化分为湿法除尘和干法除尘两类,目前我国500m3级及以下高炉的煤气净化基本上全部采用干式布袋除尘,而1000m3级及以上高炉的煤气净化采用干法布袋除尘技术的较少。 高炉煤气干法布袋除尘技术是钢铁行业重要的综合节能环保技术之一,以其煤气净化质量高、节水、节电、投资省、运行费用低、环境污染小等优点,优于传统的湿法洗涤除尘工艺, 属于环保节能项目,位于国家钢铁行业当前首要推广的“三干一电”(高炉煤气干法除尘、转炉煤气干法除尘、干熄焦和高炉煤气余压发电)之首。是国家大力推广的清洁生产技术。 1、工艺流程与设备 1.1系统组成 1 干法除尘由布袋除尘器、卸、输灰装置(包括大灰仓)、荒净煤气管路、阀门及检修设施、综 合管路、自动化检测与控制系统及辅助部分组成。 2 炉顶温度长期偏高的高炉宜在布袋除尘之前增设降温装置,有热管换热器和管式换热器两类, 应优先选用热管式换热器。 1.2过滤面积 1 根据煤气量(含煤气湿分,以下同)和所确定的滤速计算过滤面积 计算公式: V 60Q F = 其中 F ——有效过滤面积 m 2 Q ——煤气流量m 3/h (工况状态) V ——工况滤速 m/min 2 工况流量。 在一定温度和压力下的实际煤气流量称为工况流量。以标准状态流量乘以工况系数即为工况流量。 3工况系数 工况体积(或流量)和标况体积(或流量)之比称为工况系数,用η表示。 计算公式: ()()0 000P P P T t T Q Q ++==η 其中 η——工况系数 Q 0——标准状态煤气流量m 3/h Q ——工况状态煤气流量m 3/h T 0——标准状态0℃时的绝对温度273K t —— 布袋除尘的煤气温度℃ P —— 煤气压力(表压)MPa P 0——标准状态一个工程大气压,为0.1 MPa

高炉炉顶余压发电技术

高炉炉顶余压发电技术 作者:admin 日期:2009-05-26 字体大小: 小中大 高炉炉顶余压发电技术 炼铁生产中,高炉炉顶煤气压力大于0.03兆帕时,称为高炉高压*作。高炉煤气在高压*作下具有一定的压力能。采用煤气余压发电技术装备(TRT)可将这部分压力能回收,其设备的工作原理是煤气的余压使煤气在透平机内进行膨胀做功,推动透平机转动,进而带动发电机转动,发出一定的电量。TRT装置所发出的电量与高炉煤气的压力和流量有关,一般吨铁发电量为30千瓦时~40千瓦时。高炉煤气采用干法除尘可以使发电量提高36%,且温度每升高10℃,会使透平机出力提高10%,进而使TRT装置最高发电量可达54 千瓦时/吨铁。 高炉炉顶余压发电的工艺流程 高炉荒煤气经重力除尘器后的半净煤气管道进入布袋除尘器的进气总管。在布袋除尘器进气总管和布袋除尘器之间设有一个旁路,在旁路上设有冷热交换器,用于煤气的升温和降温。布袋除尘器的布袋是氟美斯化纤制品,其工作温度为80℃~250℃,瞬间不允许超过500℃。煤气温度低于80℃易产生结露现象,布袋内有露水会与灰尘结球,造成布袋除尘的除尘效果下降,严重时会导致煤气流流动不畅;煤气温度高于250℃会使布袋变脆,甚至烧损。所以,设置旁路冷热交换器来应对煤气温度的变化,是干式布袋除尘器能够正常工作的条件。 下一步,从干式布袋除尘器出来的净煤气将进入透平机。这时的净煤气温度在120℃~180℃之间,含尘量为1.2~4.6毫克/立方米。从透平机出来的净煤气进入企业的净煤气管网。一些炼铁企业高炉煤气采用湿式除尘方法,即在重力除尘器之后采用文式管除尘设备,出来的净煤气仍可进入透平机去发电。 从工作原理上看,TRT装置代替了原来煤气系统的高压阀组,不同的是,原煤气系统的高压阀组将煤气的压力能白白泄漏掉了,而TRT装置可以回收高炉鼓风能量的30%左右。 高炉煤气干法除尘的优点 一般来说,采用高炉煤气干法除尘,设备投入为湿法除尘的60%~70%,从工艺上来讲完全可以取代湿法除尘设备。除此之外,干法除尘还具有以下优势:不耗新水,不会产生污水和污泥,吨铁可节水0.7~0.8立方米;除尘效果好,可以实现煤气含尘量小于3毫克/立方米;煤气温度高和含水量低,可使煤气发热值提高,同时使TRT发电能力增强36%,减轻煤气管道锈蚀;干法除尘装置占地少,

透平机及工作原理

透平机及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

透平机及工作原理 透平是将流体工质中蕴有的能量转换成机械功的机器,又称涡轮或涡轮机。透平是英文turbine的音译,源于拉丁文turbo一词,意为旋转物体。透平的工作条件和所用工质不同,所以它的结构型式多种多样,但基本工作原理相似。透平的最主要的部件是一个旋转元件,即转子,或称叶轮,它安装在透平轴上,具有沿圆周均匀排列的叶片。流体所具有的能量在流动中,经过喷管时转换成动能,流过叶轮时流体冲击叶片,推动叶轮转动,从而驱动透平轴旋转。透平轴直接或经传动机构带动其他机械,输出机械功。透平机械的工质可以是气体,如蒸汽、燃气、空气和其他气体或混合气体,也可以是液体,如水、油或其他液体。以水为工质的透平称为水轮机;以蒸汽为工质的透平称为汽轮机;以燃气为工质的透平称为燃气透平。 水轮机--水从高水位水库沿通道流向处于低水位的水轮机的过程中,高水位水的势能变成动能,推动水轮机旋转。流过水轮机的尾水沿水道流去。现代水轮机的唯一用途是作为水电站的动力源,带动发电机发电。 汽轮机--它的工质是蒸汽,具有热能。蒸汽来自燃用矿物燃料的锅炉,或是来自核动力装置加热的蒸汽发生器。它们产生的高温高压蒸汽以高速度经喷管送到蒸汽透平,驱动转子旋转,输出动力。蒸汽流速很高,透平转子尺寸较小,所以转速可达10000转/分。汽轮机主要用于火力发电厂,驱动发电机发电;也用于远洋大型船舶和潜水艇作为主机驱动螺旋桨,推进船舶。

燃气透平--它与压气机、燃烧室成为燃气轮机装置的三大主要部件。空气供入压气机,压缩成较高压力和温度的压缩空气,流入燃烧室与燃料混合、燃烧,形成高温、高压、高速的燃气流,流入燃气透平并推动燃气透平旋转,经透平轴输出机械功。燃气透平转速高达每分钟数万转。现代燃气透平应用最广泛的是作为喷气式飞机的推进动力,有的用作舰船动力、发电厂、尖峰负荷用小型电站,也作为远距离输送天然气的气泵的动力。用作机车、汽车动力的燃气透平还在研制试验中。 还有一种燃气透平用于火箭发动机,它作为压送火箭推进剂(燃料和氧化剂)的输送泵的动力,由一个气体发生器利用化学作用产生所需要的高温气体,吹动透平旋转,带动输送泵运转。 另外,还有以压缩空气为工质推动透平旋转的,只能作为微小动力用,这种透平称为空气透平。

透平膨胀机简介

膨胀机简介 透平膨胀机制冷的基本原理根据能量转换和守恒定律可知,气体在透平膨胀机内进行绝热膨张对外作功时,气体的能量焓值一定要减少,从而使气体本身强烈地冷却,而达到制冷的目的。 透平膨胀机的实际制冷量总比理论制冷量要小,因此,膨胀机的效率总是小于1。膨胀机的效率越低,则在相同进、出口压力和进口温度下,膨胀机的单位工质制冷量越小,反映出膨胀机的温降效果越小。在实际操作中,应该了解哪些因素影响膨胀机的效率,以便尽可能保证膨胀机在高效率下运转。 膨胀机的效率高低取决于膨胀机内的各种损失的大小。由于各种损失的存在,使气体对外做功的能力降低。而这些损失(如摩擦、涡流等)又以热的形式传给气体本身,使气体的出口温度升高,温降效果减小。其损失主要有以下几种: 1)流动损失。气流流过导流器和工作轮时,由于流道表面的摩擦、局部产生漩涡、气流撞击等产生的损失属于流动损失。 流动损失的大小与流道形状是否与气流流动方向相适应、表面光洁程度等因素有关。流道除了与设计、制造技术水平有关外,膨胀机内流道的磨损、杂质在表面积聚、转速变化而使气流进入叶轮时产生的撞击等,都会增加流动损失。一般情况下,导流器内的流动损失约占总制冷量的5%,工作轮内的流动损失约占总制冷量的6%。 2)工作轮轮盘的摩擦鼓风损失。工作轮在旋转时,轮盘周围的气体对叶轮的转动有一摩擦力,轮盘将带动气体运动。由此产生的摩擦热将使气体的温度升高,这种损失称为摩擦鼓风损失。它与工作轮的直径及转速等因素有关,一般占总制冷量的3%~4%。 3)泄漏损失。泄漏损失包括内泄漏和外泄漏两种,如图71所示。内泄漏是指一部分气体经过导流器后不通过叶轮膨胀,而直接从工作轮与机壳之间的缝隙漏出,与通过叶轮膨胀的气体汇合。这小股泄漏气体未经过叶轮的进一步膨胀,温度较高,因而使膨胀机的制冷量减小,降低了膨胀机的效率。内泄漏量的大小取决于转子与机壳之间的间隙,因此在安装时必须严格控制在规定公差范围之内。外泄漏是指通过轮盘后部沿轴间隙向外泄漏出的气体。这部分气体的泄漏对膨胀机的效率没有影响,但是将减少总的制冷量。同时外漏气体的冷量也无法回收,所以它对产冷的影响是很大的。外泄漏量的大小与密封装置结构、间隙以及是否通压力密封气有关。 4)排气损失。通过膨胀机的气体在出口还具有一定的速度,叫做余速。余速越高,能量损失也越大,这部分损失叫做排气损失或余速损失。排气损失不仅与设计有关,在运转过程中当转速变化偏离设计工况时,也会使气流出口速度增加,效率降低。

最新高炉煤气干法设计规范

精选范文及其他应用文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意! 精选范文、公文、论文、和其他应用文档,希望能帮助到你们! 最新高炉煤气干法设计规范 目次 1 总则 2 术语 3 工艺流程与设备 3.1 一般规定 3.2 工艺流程 4 本体设备 4.1一般规定 4.2 设计与制造

5 袋料型与滤袋规格 6 卸、输灰工艺 6.1 一般规定 6.2 卸、输灰工艺 7 电气、自动化控制与检测 7.1 电气 7.2自动化控制与检测 高炉煤气干法设计规范 1 总则 1.0.1为在高炉煤气干法布袋除尘设计中贯彻执行国家法律法规和有关技术经济政策,做到设计先进、经济合理、安全适用,特制定本规范。 1.0.2本规范适用于低压脉冲布袋除尘和反吹风大布袋除尘两种高炉煤气布袋除尘。 1.0.3本标准适用于高炉煤气干法布袋除尘的新建、扩建和改造设计。 1.0.4高炉煤气干法布袋除尘设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语

2.0.1气体的标准状态温度为0℃, 大气压力为101.325kPa时的气体状态。 2.0.2工况气体流量 在实际工作温度、湿度、压力下进入除尘器的气体流量。 2.0.3工况系数 工况体积与标况体积的比值称为工况系数。 2.0.4过滤负荷;气布比单位是m3/m2 h。 单位时间内单位有效过滤面积上通过的含尘气体量 2.0.5过滤风速 含尘气体流过滤布有效面积的表观速度,单位是m/min。 2.0.6荒煤气 未经净化的煤气,又称粗煤气。 2.0.7净煤气 经过净化后、含尘量达到国家标准的清洁煤气。 2.0.8 干法除尘 不用水的烟气、煤气净化除尘工艺,和其相对应的是湿法除尘。干法除尘工艺有布袋除尘,电除尘,重力除尘,旋风除尘,颗粒层除尘等工艺。流程只有干法而无湿法除尘备用,称为干法除尘。 2.0.9干法布袋除尘 布袋除尘过滤净化烟气、煤气的除尘工艺。

高炉煤气转炉煤气混合比计算

高炉煤气转炉煤气混合比计算 一、原始条件: 1、 空气、混合煤气预热180℃ 2、 理论燃烧温度为1530℃ 3、 除尘方法选择干式除尘 4、 混合煤气为高炉煤气混入转炉煤气。 二、理论计算 煤气成分 设混合煤气中高炉煤气为X ,则转炉煤气为1-X 1、理论空气需要量2222010]2 32121[76.4-?-++=O S H H CO L m 3/m 3 =4.76[0.5×23X+60(1-X )+0.5×2.4X]/100 =1.428-0.823X m 3/m 3 2、实际空气需要量(其中n=1.10) ()X X g L n L n 9266.06078.102356.1)823.0428.1(1.100124.010-=?-?=+?= m 3/m 3 3、烟气生成量 n n gL L n N CO H CO V 00124.0)100 21(1001][0222+-+? +++= =[23X+60(1-X )+2.4X+20X+54.6X+40(1-X )]/100+(1.1-0.21)(1.428-0.823X )+0.00124×19×(1.428-0.823X )×1.1×1.02356

=2.3088-0.7543X m 3/m 3 4、Q 低 368.31674.202.1082344.12602.10844.1262=?+?=+=H CO Q 高低 kJ/m 3 4.75866044.12644.126=?==CO Q 转低 kJ/m 3 ()X X Q XQ Q 032.44194.75861-=-+=转 低 高低混低 kJ/m 3 5、Q 空 (其中C 空在180℃时查表得1.30 kJ/m 3℃,C 水为1.38 kJ/m 3℃) +-=?+?=X t C gL t L C Q n n 96375.2115672.367293.100124.0水空空[0.00124× 19×( 1.428-0.823X )× 1.1× 1.38× 1.293]×180=379.4532-218.8138X 6、Q 煤 (其中C 煤在180℃时查表得1.42 kJ/m 3℃) 6.25518042.11=?=?=t C Q 煤煤 7、t 理 (其中1530℃时查表C 产为1.67 kJ/m 3℃) 产 混 煤 混低空理C V Q Q Q t n ++= 即:煤混 低空产理Q Q Q C V t n ++= 1530×(2.3088-0.7543X )×1.67=379.4532-218.8138X +255.6+ (7586.4-4419.032X ) 整理得:2322.238=2710.53X X=0.8567 因此,混合煤气中高炉煤气为85.67%转炉煤气为14.33%

蒸汽轮机 蒸汽透平

蒸汽轮机蒸汽轮机((蒸汽透平蒸汽透平)) 操作指南操作指南

压缩系统安装简图

主要尺寸和重量 主要尺寸见下图 重量 名称 Kg N 透平SAC1-8 18000 176580 透平转子 1800 17658 压缩机2MCL606 55000 539550 2MCL606转子 2500 24525 压缩机2BCL 306A 8500 83385 2BCL 306A转子 140 1373.4

压缩系统安装简图

透平型号:SAC1-8 编号:190.057 透平运行数据(设计值) 额定功率(A.P.I) KW 10611 最大连续转速 RPM 7133 新蒸汽压力 正常 Bar a 43.0 最高 Bar a 45.0 最低 Bar a 41.0 新蒸汽温度 正常 ℃ 387 最高 ℃ 394 最低 ℃ 380 抽气压力 正常 Bar a 25.0 注气压力 正常 Bar a 4.1 乏汽压力 正常 Bar a 0.2 透平蒸汽消耗表 SOL 19436/4

蒸汽透平隔热 隔热是在透平的表面部分区域采用棉被包裹避免于环境直接接触。 这些棉被需采用不锈钢铁丝系牢。 隔热方案 整个透平除表冷器部分外都需要做隔热处理,控制阀和紧急事故停车阀的保温固定在基础上,蒸汽管线采用铝包裹石棉保温。 特别注意,隔热棉应该紧密贴附于设备表面,避免形成空气夹层。设备的边缘和配管需要根据外部轮廓进行相应的变化。仪表探头必须露出隔热层。当仪表密集时,应该在块状隔热层上提供仪表探头孔。对于Ⅲ系列透平(SC, SANC, SAC, SNC, SANC, SGC, SGDF)仪表的接线端应采用毛料或类似编制物缠绕保温。 隔热层应该在确认法兰无泄漏后安装。 棉被的选择 a) 对于蒸汽温度低于450℃的区域,应采用60mm厚的隔热棉被。 b) 对于蒸汽温度高于450℃的区域,应采用90mm厚的隔热棉被。

透平膨胀机

透平膨胀机,是空气分离设备及天然气(石油气)液化分离设备和低温粉碎设备等获取冷量所必需的关键部机,是保证整套设备稳定运行的心脏。 原理 其主要原理是利用有一定压力的气体在透平膨胀机内进行绝热膨胀对外做功而消耗气体本身的内能,从而使气体自身强烈地冷却而达到制冷的目的。我们平常用气筒打气会发现筒身发热,那是因为活塞压缩气体气体放热,如果反之其原理就类似于膨胀机了(更确切的说是活塞式膨胀机).透平膨胀机输出的能量由同轴压缩机回收或制动风机消耗。 扩展资料: 膨胀机是利用压缩气体膨胀降压时向外输出机械功使气体温度降低的原理以获得冷量的机械。 [1]膨胀机常用于深低温设备中。膨胀机按运动形式和结构分为活塞膨胀机和透平膨胀机两类。活塞膨胀机主要适用于高压力比和小流量的中小型高、中压深低温设备。 活塞膨胀机:活塞式膨胀机是通过气体膨胀推动活塞向外界输出功以产生制冷量的机器。工质在气缸内推动活塞输出外功,同时本身内能降低。因此,膨胀机也是一种气体发动机,所不同的是以使气体冷却获得冷量为主,利用机械功是次要的。一般来说,活塞膨胀机多适用于中、高压小流量领域。活塞式膨胀机广泛应用于空分装置及液化装置,尤其是在高压、小体积流量条件下。1934年前苏联的卡皮查提出用活塞式膨胀机替代液氢进行预冷实现氦气液化,真正实现则

是到了20世纪50年代,美国的Collins做出了带活塞式膨胀机预冷的氦液化器,但该产品在低温下活塞和气缸容易卡住,难以稳定工作。针对这个问题,1962年,中国科学院物理研究所低温物理研究室(中国科学院理化技术研究所前身)周远提出采用室温密封长活塞结构替代原卡皮查结构的方案,并于1964年研制成功,实现了带活塞式膨胀机预冷氦液化器的稳定运行,1965年获得生产推广。

高炉煤气干法设计规范

高炉煤气干法 设 计 规 范

前言 本规范是根据建设部《2007年工程建设标准规范制订、修订计划(第二批)》建标[2007]126 号文的要求,在主编部门中国冶金建设协会的领导和组织下,由主编单位北京首钢设计院会同各参编单位,并在在有关设计研究单位、钢铁冶金企业、大专院校等单位的协助下编制而成。 本规范是高炉煤气干法布袋除尘设计所应遵守的具体技术规定。 规范在编制过程中,全面检索、收集了国内外的有关资料;组织了调研,开展了必要的专题研究和技术研讨;借鉴了相关标准规范;广泛征求了有关生产、设计单位和大专院校的意见,对主要问题和疑难问题进行了反复的研讨和修改;最后经审查定稿。 规范编制过程支持单位有: 规范共分8章,主要内容有:总则,术语,工艺流程与设备,本体设备,滤料选型和滤袋规格,卸、输灰工艺,电气、自动化控制与检测,安全与环保等。 高炉煤气干法布袋除尘是一种现代的煤气净化方法,具有煤气净化质量好、节能、节水、环保、减少占地等优点,有显著的经济效益和社会效益。

虽然国外也有使用,但是始终与湿法除尘并用,不是真正意义的干法除尘。 此项技术始于我国,并有完全自主的知识产权,是一项很有推广价值的煤气净化新技术。今后有可能发展成为一项主流技术。 本规范中以黑体字标志的条文为强制性条文,必须严格执行。 本规范由建设部负责管理和对强制性条文的解释。由北京首钢设计院负责具体内容的解释。

目次 1 总则 2 术语 3 工艺流程与设备 3.1 一般规定 3.2 工艺流程 4 本体设备 4.1一般规定 4.2 设计与制造 5 袋料型与滤袋规格 6 卸、输灰工艺 6.1 一般规定 6.2 卸、输灰工艺 7 电气、自动化控制与检测 7.1 电气 7.2自动化控制与检测

煤气发生量计算

一、已知某设计高炉的冶炼条件如下 1、原料成分: 高炉采用生矿和烧结矿两种矿石进行冶炼,其中矿石、和石灰石的成分经过整理和计算,如表1所示且混合矿是按照烧结矿和生矿比为9:1进行。 表1原料成分表 % 2、高炉使用的焦炭及喷吹的煤粉成分表如表2和表3所示: 表2 焦炭成分 % C 固 灰分(12.64%) 挥发份(0.58%) 有机物(1.42%) Σ 游离水 SiO 2 Al 2O 3 CaO MgO FeO CO CO 2 CH 4 H 2 N 2 H 2 N 2 S 85.36 7.32 4.26 0.51 0.12 0.43 0.21 0.19 0.025 0.037 0.118 0.36 0.27 0.79 100.00 4.17 表3 喷吹无烟煤成分 % 3、根据炼钢对生铁的要求,规定生铁成分[Si]=0.7%,[S]=0.03% 4、设计焦比为:K=干焦消耗量/合格生铁量=480kg 煤比:M=煤粉耗用量/合格生铁量=70kg 原料 烧结矿 生矿 混合矿 石灰石 Fe 52.8 48.5 52.37 Mn 0.093 0.165 0.1 P 0.047 0.021 0.044 0.005 S 0.031 0.134 0.041 0.029 Fe2O3 55.3 62.4 56.01 FeO 18.18 6.2 16.98 CaO 11.7 2.12 10.74 54.11 MgO 3.74 0.4 3.41 1.16 SiO2 9.76 14.84 10.27 0.73 Al2O3 1 2.32 1.13 0.13 MnO2 0.26 0.03 MnO 0.12 0.11 FeS2 0.25 0.03 0.07 FeS 0.09 0.08 P2O5 0.11 0.05 0.1 0.01 CO2 2.11 0.21 43.79 H2O 9.05 0.9 总和Σ 100 100 100 100 C H O N S H2O 灰分(16.78%) 合计 SiO2 Al2O3 CaO MgO FeO 75.30 3.26 3.16 0.34 0.36 0.80 9.39 5.82 0.20 0.16 1.21 100

蒸汽压缩机工作原理

蒸汽压缩机工作原理 压缩系统 蒸汽压缩机压缩形式根据原理不同,是由一个整体的齿轮装置驱动的单级离心压缩机。根据不同的需求压缩机的形式也不尽相同,一般常见的有罗茨式压缩机(容积式)、离心式压缩机(速度式)等。 蒸汽降温器 蒸汽降温器是一个特别设计的喷嘴,它安装在回收蒸汽管中。使流动中的蒸汽使尽量多的水雾化为蒸汽。通向降温器的供水流量由降温器后的蒸汽的温度来控制。 润滑系统 润滑系统包括油罐、两个并联的水冷式冷却器、一套并联的油过滤器和两个油泵。主油泵是一个螺杆泵,直接由低速齿轮轴驱动。备用油泵由电机驱动在启动时使用。油冷却器是一个管状的换热器,油在换热管中流动。油罐上安装有油除沫器和电加热器,润滑油通过油冷却器和油过滤器从油罐泵送到齿轮箱,油的温度由油冷却器旁路的温度控制器调节。油过滤器上有压差指示器,以检测过滤器中的污染物。 蒸汽压缩机形式 根据流体通过蒸汽压缩机叶轮的方向,将相关设备称为轴流、混流或离心式压缩机。最适用的压缩机类型取决于相关应用的操作条件。关键参数是需要达到的温升和待压缩蒸汽的流量。 在蒸发工业中,经常是在真空范围内操作,加热表面负荷中等,温差小,所以通常采用离心式和罗茨式蒸汽压缩机。 目前应用于水蒸气压缩的蒸汽压缩机类型主要包括有罗茨式与离心式两种。对于罗茨式的蒸汽压缩机而言其优势主要在于其压比高,稳定性较高。从机械的角度来看越低的转速其稳定性越高,通常情况下,罗茨式的蒸汽压缩机为980rmp-1450rmp之间,而离心压缩机转速通常在9000rmp以上,然而对于罗茨式蒸汽压缩机而言,其体积流过小、单机效率低是其先天缺陷。从技术角度分析罗茨式蒸汽压缩机轮子往往加工精度要求较高,才能把漏气率降低到可接受的范围之内,而漏气率是与整体的效率成反比的。相同加工精度的离心压缩机

天然气透平膨胀机工作原理

天然气透平膨胀机工作原理 天然气透平膨胀机工作原理 第一部分基础理论简介 一、概述 目前低温技术应用非常广泛,从航天到超导,从气体分离到能量回收等,而低温能量的获得主要靠气体的膨胀,特别是气体的等熵绝热膨胀,透平膨胀机则是实现这一膨胀的有效设备,现已广泛用到气体液化分离、能量综合利用等方面。 二、膨胀机的形式 1、活塞式膨胀机:通称容积型,其特点是适宜于小流量、高压力、大膨胀比工况;缺点是复杂、体积大、易损件多、操作维护复杂。 2、透平膨胀机:通称速度型,其特点是转速高、体积小、重量轻、结构简单、易损件少、因而制造维修工作量小,适宜于大流量、中高压力而初温较低。 按工作原理分: 1)冲动式:膨胀过程几乎完全在静止的喷嘴中进行; 2)反作用式:膨胀过程不仅在静止的喷嘴中进行,还在叶轮中进一步膨胀。 按气流流流动方向分:

1)径流式:气体在垂直于旋转轴的平面内沿半径方向流动; 2)轴流式:气体沿着平行于工作轮旋转轴方向流动; 3)径轴流式:气体由径向流入工作轮而由轴向流出。 三、透平膨胀机基本结构及工作原理 1、基本结构 膨胀机由通流部分、制动器及机身三部分组成 膨胀机通流部分:蜗壳、喷嘴、工作轮、扩压器 制动器:1)压缩机——入口管、叶轮、扩压器、蜗壳 2)风机——入口管、叶轮、扩压器、蜗壳 3)电机或油制动器 机身:支撑和隔热作用 2、工作原理 1)气体在喷嘴中流动 设置喷嘴的目的是使气流的动力能转变为气流的速度能并 且使气流降温,在喷嘴前后存在着压差,这些压差推动着气流流动。当气流通过喷嘴时由于减压膨胀而使焓值降低,即使压力、温度下降,这些焓降转变成气流的动能,使在喷嘴出口处气流获得巨大的速度,因此喷嘴主要解决的问题是保持合理的形状以减小各种损失。 喷嘴在结构上可分为三段:即进口段、主体段、出口段

高炉炉顶余压发电技术

高炉炉顶余压发电技术-TRT的应用 TRT——(Blast Furnace Top Gas Recovery Turbine Unit,以下简称TRT) 是国际公认的钢铁企业很有价值的二次能源回收装置,高炉煤气余压透平发电装置(即TRT)是利用高炉冶炼的副产品——高炉炉顶煤气具有的压力能及热能,使煤气通过透平膨胀机做功,将其转 化为机械能,从而驱动发电机发电。 提高高炉生产率的途径之一,是单位时间内向高炉鼓入更多的空气和氧气。但增加鼓风要引起高炉内煤气上升浮力的增加,这种浮力妨碍了炉料的正常均匀下降,限制了生产率的提高。若把炉顶压力提高,高炉工作空间的压力也相应提高,使煤气的体积缩小、流速降低,压头损失也随之降低,从而促进高炉顺行,可以减少悬料、崩料,以及提高产量,减少单位生铁的热量损失和焦炭消耗。同时,由于顶压的提高,使炉料和煤气之间的物理化学过程加快,加速2CO=CO2+C反应向体积缩小方向进行,有利于煤气的化学能得到充分利用。这就是所谓的高压操作,炉内压力是靠煤气系统的压力调节阀组来控制的。由此得到的煤气压力能如不加以利用,还会产生了大气污染和噪声公害。为了不浪费炉顶煤气的压力能和热能,从20世纪60年代开始开发了利用炉顶煤气能量的发电技术,现已广泛应用于高压高炉上。 所谓TRT就是炉顶余压发电透平机的简称。TRT煤气入口从文氏管后的煤气管接出,TRT的煤气出口与调压阀组后的净煤气主管相接,所以TRT是与调压阀组并联在净煤气管道上的。高压煤气在透平机内膨胀做功,推动透平机叶轮转动,带动发电机发电。透平机有轴流向心式、轴流冲动式和轴流反动式3种,其中轴流反动式的质量小、效率高。在回收余压能量方式上有部分回收、全部回收和平均回收3种,平均回收的发电能力高,设备投资低,投资回收期短,而且还能保证高炉炉顶压力稳定,我国宝钢的TRT就采用平均回收方式。 炼铁生产中,高炉炉顶煤气压力大于0.03兆帕时,采用煤气余压发电技术装备(TRT)可将这部分压力能回收,其设备的工作原理是煤气的余压使煤气在透平机内进行膨胀做功,推动透平机转动,进而带动发电机转动,发出一定的电量。根据炉顶压力不同,TRT装置所发出的电量与高炉煤气的压力和流量有关,一般吨铁发电量为35千瓦时~40千瓦时。高炉煤气采用干法除尘可以使发电量提高36%,且温度每升高10℃,会使发电透平机效率提高10%,进而使TRT装置最高发电量可达54千瓦时/吨铁。 一、高炉炉顶余压发电的工艺流程 高炉荒煤气经重力除尘器后的半净煤气管道进入布袋除尘器的进气总管。在布袋除尘器进气总管和布袋除尘器之间设有一个旁路,在旁路上设有冷热交换器,用于煤气的升温和降温。布袋除尘器的布袋是氟美斯化纤制品,其工作温度为80℃~250℃,瞬间不允许超过500℃。煤气温度低于80℃易产生结露现象,布袋内有露水会与灰尘结球,造成布袋除尘的

透平膨胀机

涡轮膨胀机是空气分离设备,天然气(石油气)液化分离设备和低温破碎设备的关键部件,以获取冷却能力。确保整套设备的稳定运行是我们的心。 原理 其主要原理是将一定压力的气体用于透平膨胀机中的绝热膨胀,做外部功,消耗气体本身的内能,从而使气体本身得到强烈的冷却,达到制冷的目的。当使用气缸泵送空气时,我们会发现气缸体被加热了。那是因为活塞压缩气体以释放热量。否则,其原理类似于膨胀机(更确切地说是活塞膨胀机)的原理。从涡轮膨胀机输出的能量由同轴压缩机回收或由制动风扇消耗。 处理预防性 失败原因 转速表指示不正确的原因一般有两个:一是由于膨胀机自身故障导致转速表指示异常,经常伴有严重的膨胀机异常声音。另一个是由于磁电传感器的故障引起的。

磁电传感器安装在制动风扇端盖的中间,该风扇由两个带有线圈的永磁体组成。根据磁电感应原理,如果线圈接地短路或由于潮湿而损坏内部绝缘,则当转子旋转时,通过切断磁力线产生的感应电流会发生变化,从而导致测量速度不准确。兆欧表可用于测量接地电阻和线圈接线的绝缘程度,以进行准确的诊断。 膨胀机的转速表可以在0?40℃的环境温度下正常工作。温度太低或太高,不利于转速表的测量。加热分馏器时未除去膨胀机。即使关闭了风扇的排气阀,冷风阶段的空气温度仍远低于0℃,而后期加热阶段的空气温度仍高于40℃。这两种温差较大的气体长时间充满了风扇系统,磁电传感器的线圈受影响最大。如果线圈被反复加热,则线圈会潮湿且未绝缘接地短路故障,在这种情况下,转速表指示将变慢并且低于实际速度。 转速表本身的故障非常罕见。如果转速表指示不正确,可以判断是否是由于机械故障引起的,应将膨胀机拆下进行检查。如果机械系统没有异常,则可以根据经验进行操作,并且速度显示较低。由于超高速,无需担心膨胀机的自动关闭,这将导致分馏塔上的压力升高并威胁到分馏塔的安全。可使膨胀机的压力和温度保持在正常范围内。

高炉煤气放散安全规定(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 高炉煤气放散安全规定(最新版)

高炉煤气放散安全规定(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 目前,高炉煤气频繁放散,造成下风向的岗位煤气含量超标,为杜绝下风向岗位员工发生煤气中毒事故发生,特对高炉煤气放散做出如下规定: 1、高炉煤气放散不点火是造成下风向岗位煤气浓度超标的主要原因,为此高炉煤气放散必须点火。 2、因点火系统设备原因而造成暂时不能点火的,炼铁厂必须尽快给与安排检修,在这期间煤气需要放散的,放散前炼铁厂必须报告总调,并通知到下风向岗位所在厂。 3、高炉煤气点火系统故障,造成不能点火超过10天的,视为生产事故,比照公司生产事故标准由生产安全部安全科予以处罚。 4、总调值班调度在接到炼铁未点火煤气放散报告后,应安排煤气防护站人员到下风向岗位巡查并检测煤气浓度,如发现有煤气浓度达到需人员撤离岗位的浓度值时(200ppm),应立即向总调反映,由总调通知该岗位所在厂领导或厂安全科人员(夜间通知值班厂领导),

相关文档
最新文档