人工智能的主要内容和方法

人工智能的主要内容和方法
人工智能的主要内容和方法

人工智能的主要内容和方法

人工智能(Artificial Intelligence,简称AI)是50年代兴起的一门新兴边缘学科,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),也被认为是二十一世纪三大尖端技术之一(基因工程、纳米科学、人工智能)。广义的讲,人工智能是关于人造物的智能行为,而智能行为包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的一个长期目标是发明出可以像人类一样或能更好地完成以上行为的机器;另一个目标是理解这种智能行为是否存在于机器、人类或其他动物中。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

一、AI的主要内容

人工智能研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。

常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。

问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演绎的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。

搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。

机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。

知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。

二、AI的研究方法

既为人工智能的最终研究目标打好基础,又能创造出短期效益,这是选择人工智能研究最佳方法的标准。尽管人工智能已经创造了一些实用系统,但这些远未达到人类的智能水平。在过去的几十年里涌现出了大量的方法,大致可分为两大类。

第一类包括符号处理的方法。它们基于Newell和Simon的物理符号系统的假说。大多数被称为“经典的人工智能”均在其指导之下。这类方法中,突出的方法是将逻辑操作应用于说明性知识库。这种风格的人工智能运用说明语句来表达问题域的“知识”,这些语句基于或实质上等同于一阶逻辑中的语句,采用逻辑推理可推导这种知识的结果。这种方法有许多变形,包括那些强调对逻辑语言中定义域的形式公理化的角色的变形。当遇到“真正的问题”,这一方法需要掌握问题域的足够知识,通常就称作基于知识的方法。

在大多数符号处理方法中,对需求行为的分析和为完成这一行为所做的机器合成要经过几个阶段。最高阶段是知识阶段,机器所需知识在这里说明。接下来是符号阶段,知识在这里以符号组织表示(例如:列表可用列表处理语言LISP来描述),同时在这里说明这些组织的操作。接着,在更低级的阶段里实施符号处理。多数符号处理采用自上而下的设计方法,从知识阶段向下到符号和实施阶段。

第二类包括所谓的“子符号”方法。它们通常采用自下而上的方式,从最低阶段向上进行。在最低层阶段,符号的概念就不如信号这一概念确切了。在子符号方法中突出的方法是“Animat approach”。偏爱这种方式的人们指出,人的智能经过了在地球上十亿年或更长时间的进化过程,认为为了制造出真正的智能机器,我们必须沿着这些进化的步骤走。因此,我们必须集

中研究复制信号处理的能力和简单动物如昆虫的支配系统,沿着进化的阶梯向上进行。这一方案不仅能在短期内创造实用的人造物,又能为更高级智能的建立打好坚实的基础。

第二类方法也强调符号基础。在物理基础假说中,一个agent不采用集中式的模式而运用其不同的行为模块与环境相互作用来进行复杂的行为。机器与环境的相互作用产生了所谓的“自然行为(emergent behavior)”。一个agent的功能可视作该系统与动态环境密切相互作用的自然属性。agent本身对其行为的说明并不能解释它运行时所表现的功能;相反,其功能很大程度上取决于环境的特性。不仅要动态的考虑环境,而且环境的具体特征也要运用于整个系统之中。

由子符号派制造的著名样品机器包括“神经网络(Neural network)”。根据模拟生物进化方面的进程,一些有意思的机器应运而生,包括:Sexual crossover、Mutation和Fitness-proportional reproduction。其他自下而上,含animat风格的方法是基于控制理论和动态系统地分析。介于自上而下和自下而上之间的方法是一种“环境自动机(situated automata)”的方法。Kaelbling 和Rosenschein建议编写一种程序设计语言来说明agent在高水平上所要求的行为,并编写一编译程序,以从这种语言编写的程序中产生引发行为的线路。

径向基函数神经网络MATLAB仿真

一、RBF网络的工作原理

径向基函数神经网络(Radial Basis Function Neural Network, RBF)是一种前馈神经网络,一般为三层结构,如下图:

b0

X

X

m

上图所示为n—h—m结构的RBF网络,即网络具有n个输入,h个隐节点,m个输出。其中x=(x1, x2, …, x n)T∈R n为网络输入矢量,W∈R n×m为输出权矩阵,b0, …, b m为输出单元偏移,y=(y1, y2, …, y m)T为网络输出,Φi(*)为第i个隐节点的激活函数。图中输出层节点中的∑表示输出层神经元采用线性激活函数(输出神经元也可以采用其他非线性激活函数,如Sigmoidal函数)。

RBF网络的最显著的特点是隐节点的基函数采用距离函数(如欧式距离),并使用径向基函数(如Gaussian高斯函数)作为激活函数。径向基函数关于n维空间的一个中心点具有径向对称性,而且神经元的输入离该中心点越远,神经元的激活程度就越低。隐节点的这个特性常被称为“局部特性”。因此RBF网络的每个隐节点都具有一个数据中心,上图中c i就是网络中第i

个隐节点的数据中心值,|| * ||则表示欧式范数。

径向基函数Φi (*)可以取多种形式:

1. Gaussian 函数

22/-t e

)(i t i δΦ=

2. Reflected sigmoidal 函数 )e

1/(1)(22/t i t i δΦ+=

3. 逆Multiquadric 函数 0,)/(1)(22>+=αδΦαi i t t

以上三式中的δi 称为该基函数的扩展常数(Spread )或宽度。显然δi 越小,径向基函数的宽度就越小,基函数就越具有选择性。

与输出节点相连的隐层第i 个隐节点的所有参数可用三元组(c i, δi, ωi )表示。每个隐层神经元都对输入x 产生一个响应||)c -x (||i i Φ,且响应特性成径向对称(即是一个个同心圆),而神经网络的输出则是所有这些响应的加权和,因此第k 个输出可表示为

∑==h

1i i ||)c -x (||i i k y Φω 由于每个神经元具有局部特性,最终整个RBF 网络也呈现“局部映射”特性,即RBF 网络是一种局部相应神经网络。这意味着如果神经网络有较大的输出,必定激活了一个或多个隐节点。

二、 RBF 网络的聚类学习算法

RBF 网络的学习算法应该解决以下问题:结构设计,即如何确定网络隐节点数h ;确定各径向基函数的数据中心c i 及扩展常数δi ;输出权值修正。

如果知道了网络的隐节点数、数据中心和扩展常数,RBF网络从输入到输出就成了一个线性方程组,此时权值学习可采用最小二乘法。

RBF网络最常用的学习算法有聚类方法、梯度训练方法及OLS优选算法。下面将详细介绍最经典的RBF网络学习算法—聚类方法,并进行MATLAB仿真。

聚类方法的思路是先用无监督学习(用k-means算法对样本输入进行聚类)方法确定RBF网络中h个隐节点的数据中心,并根据各数据中心之间的距离确定隐节点的扩展常数,然后用有监督学习(梯度法)训练各隐节点的输出权值。

假设X1,X2, …, X N为样本输入,相应的样本输出(教师信号)为y1, y2, …, y N,网络中第j个隐节点的激活函数为Φj(*)。k为迭代次数,第k次迭代时的聚类中心为c1(k), c2(k), …, c h(k),相应的聚类域为ω1(k), ω2(k), …, ωh(k)。k-means聚类算法确定RBF网络数据中心c i和扩展常数δi的步骤如下:

(1) 算法初始化:选择h个不同的初始聚类中心,并令k=1。初始聚类中心的方法很多,比如,从样本输入中随机选取,或者选择前h个样本输入,但这h个初始数据中心必须取不同值。

(2) 计算所有样本输入与聚类中心的距离||X j-c i(k)||,i=1,2, …,h,j=1,2, …,N。

(3) 对样本输入X j按最小距离原则对其进行分类:即当i(x j)=

min||X j-c i(k)||,i=1,2, …,h时,X j即被归为第i类,即X j∈ωi(k)。

i

(4) 重新计算各类的新的聚类中心:

∑∈==+(k)i ,,2,1,1)1(ω

x i i h i x N k c 式中,N i 为第i 个聚类域ωi (k)中包含的样本数。

(5) 如果c i (k+1)≠c i (k),转到步骤(2),否则聚类结束,转到步骤(6)。

(6) 根据各聚类中心之间的距离确定各隐节点的扩展常数。隐节点的扩展常数取δi =κd i ,其中d i 为第i 个数据中心与其他最近的数据中心之间的距离,即d i =i

min ||c j -c i (k)||,κ称重叠系数。 一旦各隐节点的数据中心和扩展常数确定了,输出权矢量ω=(ω1, ω2, …, ωh )T 就可以用有监督学习方法(如梯度法)训练得到,但更简洁的方法是使用最小二乘方法(LMS )直接计算。假定当输入为X i ,i=1,2, …,N 时,第j

个隐节点的输出如下式所示:

||)c -x (||j i j ij h Φ=

则隐层输出阵为

][ij h H =∧

则∧

H ∈R N ×h 。如果RBF 网络的当前权值为ω=(ω1, ω2, …, ωh )T (待定),则对所有样本,网络输出矢量为

ω∧∧=H y 令∧

-=||||y y ε为逼近误差,则如果给定了教师信号y=(y 1, y 2, …, y m )T 并确定了∧H ,便可通过最小化下式求出网络的输出权值:

||||||||ωε∧∧-=-=H y y y 通常ω可用最小二乘法求得

y H ∧

+=ω

式中,∧+

H 为∧H 的伪逆,即 ∧

-∧∧∧+=T T H H H H 1)( 三、 RBF 网络MATLAB 仿真实例

题目:基于聚类方法的y=sinx 函数逼近

解:RBF 网络隐层采用标准Gaussian 径向基函数,输出层采用线性激活函数,即f ( u ) = u 。数据中心和扩展常数用聚类方法得到,输出权值和偏移采用广义逆方法求解。隐节点数(即聚类数)取10,初始聚类中心取前10个训练样本。

MATLAB 程序:

function main()

SamNum=200; %训练样本数

TestSamNum=201; %测试样本数

InDim=1; %样本输入维数

ClusterNum=10; %隐节点(聚类样本)数 Overlap=1.0; %隐节点重叠系数κ

%根据目标函数获得样本输入输出

rand('state',sum(100*clock));

% resets the generator to a different state each time

%且state 不同产生的伪随机序列顺序不同

SamIn=14*rand(1,SamNum)-7;

SamOut=sin(SamIn);

TestSamIn=-7:0.07:7; %[7-(-7)]/0.07+1=201个样本

TestSamOut=sin(TestSamIn);

figure

hold on

grid

plot(SamIn,SamOut,'b +')

plot(TestSamIn,TestSamOut,'k --') %绘制目标函数曲线

xlabel('Input x');

ylabel('Output y');

title('基于聚类的RBF网络对函数y=sinx的逼近曲线'),

Centers=SamIn(:,1:ClusterNum); %初始聚类中心取前10个训练样本

NumberInClusters=zeros(ClusterNum,1); %各类中的样本数,初始化为0 IndexInClusters=zeros(ClusterNum,SamNum); %各类所含样本的索引号

while 1,

NumberInClusters=zeros(ClusterNum,1);

IndexInClusters=zeros(ClusterNum,SamNum);

%按最小距离原则对所有样本进行分类

for i=1:SamNum

AllDistance=dist(Centers',SamIn(:,i)); %求欧几里德距离

[MinDist,Pos]=min(AllDistance);

NumberInClusters(Pos)=NumberInClusters(Pos)+1;%求各类样本的个数

IndexInClusters(Pos,NumberInClusters(Pos))=i;

end

%报存旧的聚类中心

OldCenters=Centers;

%重新计算各类的聚类中心

for i=1:ClusterNum

Index=IndexInClusters(i,1:NumberInClusters(i));

Centers(:,i)=mean(SamIn(:,Index)')';

end

%判断新旧聚类中心是否一致,如果是,则聚类结束

EqualNum=sum(sum(Centers==OldCenters)); %新旧聚类中心一致的个数if EqualNum==InDim*ClusterNum,

break,

end

end

%计算各隐节点的扩展常数(宽度)δi=κdi,其中di是Cj-Ci(k)的最小欧式距离AllDistances=dist(Centers',Centers); %求隐节点数据中心间的距离(矩阵)Maximum=max(max(AllDistances)); %找出其中最大的一个距离

for i=1:ClusterNum %某一类的中心到自身的欧式距离是0,AllDistances(i,i)=Maximum+1; %但要找隐节点间的最小距离,

end %因此将对角线上的0替换为较大的值。Spreads=Overlap*min(AllDistances)'; %以隐节点间的最小距离作为扩展常数

%计算各隐节点的输出权值

Distance=dist(Centers',SamIn); %计算各样本输入离各数据中心的距离SpreadsMat=repmat(Spreads,1,SamNum); %repmat径向基函数φj(.) HiddenUnitOut=radbas(Distance./SpreadsMat); %计算隐节点输出阵HiddenUnitOutEx=[HiddenUnitOut' ones(SamNum,1)]'; %考虑偏移

W2Ex=SamOut*pinv(HiddenUnitOutEx); %求广义输出权值。pinv求伪逆

W2=W2Ex(:,1:ClusterNum);

B2=W2Ex(:,ClusterNum+1);

W2

B2

%测试

TestDistance=dist(Centers',TestSamIn);

TestSpreadsMat=repmat(Spreads,1,TestSamNum);

TestHiddenUnitOut=radbas(TestDistance./TestSpreadsMat);

TestNNOut=W2*TestHiddenUnitOut+repmat(B2,1,TestSamNum);

plot(TestSamIn,TestNNOut,'r -')

四、输出结果

当隐节点重叠系数κ为1时,

W2 =

Columns 1 through 8

-0.9759 1.1956 1.2402 0.9509 1.3999 -0.0311 -0.1359 0.9232 Columns 9 through 10

0.7913 -0.1700

B2 =

-0.8289

当隐节点重叠系数κ为2时,

W2 =

Columns 1 through 8

7.6555 -1.7326 0.0156 0.0815 -11.8386 1.0188 0.7853 1.5740

Columns 9 through 10

9.3149 -1.0047

B2 =

-1.3042

五、结果分析

RBF网络的学习过程与BP网络的学习过程类似,两种网络中隐节点的非线性变换作用都是把线性不可分问题转化为线性可分问题,因此均可用于函数逼近和分类。两者的主要区别在于各使用不同的激励函数,BP网络中隐层节点使用的是Sigmoid函数,其值在输入空间中无限大的范围内为非零值,因而是一种全局逼近的神经网络;而RBF网络中的激励函数是Gaussian

函数,是一种局部逼近的神经网络,其对于输入空间的某个局部区域只有少数几个连接权影响网络的输出,因而与BP网络相比,RBF网络学习速度更快。

聚类方法的优点是能根据各聚类中心之间的距离确定各隐节点的扩展常数,缺点是确定数据中心时只用到了样本输入信息,而没有用到样本输出信息;另外聚类方法也无法确定聚类的数目(RBF网络的隐节点数)。

遗传算法MATLAB仿真

一、遗传算法(GA)的基本思想

基于达尔文进化论中的适者生存、优胜劣汰的基本原理,按生物学的方法将问题的求解表示成“种群(Population)”(用计算机编程时,一般使用二进制码串表示),从而构造出一群包括N个可行解的种群,将它们置于问题的“环境”中,根据适者生存原则,对该种群按照遗传学的基本操作,不断优化生成新的种群,这样一代代地不断进化,最后收敛到一个最适应环境的最优个体上,求得问题的最优解。

遗传算法可以形式化的描述如下:

GA=( P(0), N, l, s, g, p, f , t )

其中,P(0) = ( P1(0), P2(0), …, P n(0) ),表示初始种群;N表示种群中含有个体的个数;l表示二进制串的长度;s 表示选择策略;g表示遗传算子,通常它包括有选择(繁殖)算子Q r、杂交算子Q c和变异算子Q m;p表示遗传算子的操作概率,它包括选择概率P r、P c和变异概率P m;f是适应度函数;t是终止准则。

二、Holland遗传算法(SGA)

该算法的操作对象是一群被称为种群的二进制位串(称为染色体、个体)。这里的每个染色体都对应求解问题的一个解。S GA的基本思想是:从初始种群出发,采用基于适应度比例的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此一代代演化下去,直至满足期望的终止条件为止。

执行一个简单的遗传算法时,需要做以下的准备工作:

(1) 根据问题的要求选取设计变量(即明确需要优化的参数或方案),变量的取值范围构成问题的解空间。这是一个具体问题的数学抽象的过程。

(2) 确定变量的约束条件。

(3) 确定编码方案。遗传算法求解问题不是直接作用在问题的解空间上,而是利用解的某种编码表示。通常解(变量)空间中的一个解(变量)被编码成一个串,它是由组成这个解(变量)的一系列有效信息组成。

(4) 确定适应度函数。适应度值是对解的质量的度量,它是遗传算法对种群中的个体执行各种遗传操作的唯一的依据。

(5) 确定选择策略。个体的适应度值是策略中的主要依据,该步骤使适应度值大的解在下一代有较大的存活概率。这种轮盘赌的选择策略具有正反馈特征,在自然界中也屡屡出现这样的现象,最后的结局是可怕的。实际设计中还可以选择锦标赛选择策略或者排序选择策略等。

(6) 确定控制参数。它主要包括种群规模、执行不同遗传操作的概率以及其它一些辅助性控制参数。

(7) 设计遗传算子。进化算法中的遗传算子包括繁殖(选择)、杂交变异等操作。

(8) 确定算法的条件终止准则。

三、Holland遗传算法流程图

四、遗传算法MATLAB仿真实例

例:求下列函数的最大值f(x)=10*sin(5x)+7*cos(4x) , x∈[0,10]。

其中将 x 的值用一个10位的二值形式表示。

解:分为八个部分:

1.初始化(编码)

initpop.m 函数的功能是实现群体的初始化,popsize 表示群体的大小,chromlength 表示染色体的长度(二值数的长度),长度大小取决于变量的二进制编码的长度(在本例中取10位)。

子程序文件名:initpop.m

%初始化

function pop=initpop(popsize,chromlength)

pop=round(rand(popsize,chromlength));

% rand 随机产生每个单元为 {0,1} 行数为popsize ,列数为chromlength 的矩阵,

% round 对矩阵的每个单元进行取整。产生初始种群。

2. 计算目标函数值

(1) 将二进制串转化为相应的十进制,即

'109

02089)2()b b b (x b i i i =?=><∑=

子程序文件名:decodebinary.m

%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop)

[px,py]=size(pop); %求pop 行和例数 for i=1:py

pop1(:,i)=2.^(py-1).*pop(:,i);

py=py-1;

end

pop2=sum(pop1,2); %求pop1的每行之和

(2) 找到相应的实数x ,即

1

2100.010'-?+=x x 其中0.0为区间[0,10]的左边界,10为区间长度。

decodechrom.m 函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint 表示待解码的二进制串的起始位置(对于多个变量而言,如有两个变量,采用20位表示,每个变量10位,则第一个变量从1开始,另一个变量从11开始。本例为1),参数length 表示所截取的长度(本例为10)。

子程序文件名:decodechrom.m

%将二进制编码转换成十进制

function pop2=decodechrom(pop,spoint,length)

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

(3) 计算目标函数值

calobjvalue.m 函数的功能是实现目标函数的计算。

子程序文件名:calobjvalue.m

%实现目标函数的计算

function [objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10); %将pop 每行转化成十进制数

x=temp1*10/(2^10-1); %将二值域中的数转化为变量域的数

objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

3.计算个体的适应值

子程序文件名:calfitvalue.m

%计算个体的适应值

function fitvalue=calfitvalue(objvalue)

global Cmin;

Cmin=0;

[px,py]=size(objvalue);

for i=1:px

if objvalue(i)+Cmin>0

temp=Cmin+objvalue(i);

else

temp=0.0;

end

fitvalue(i)=temp;

end

fitvalue=fitvalue';

4. 选择复制

选择或复制操作是决定哪些个体可以进入下一代。程序中采用轮盘赌式选择法进行选择,这种方法较易实现。

人工智能的主要内容和方法

人工智能的主要内容和方法 人工智能(Artificial Intelligence,简称AI)是50年代兴起的一门新兴边缘学科,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),也被认为是二十一世纪三大尖端技术之一(基因工程、纳米科学、人工智能)。广义的讲,人工智能是关于人造物的智能行为,而智能行为包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的一个长期目标是发明出可以像人类一样或能更好地完成以上行为的机器;另一个目标是理解这种智能行为是否存在于机器、人类或其他动物中。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 一、AI的主要内容 人工智能研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。 常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。

问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演绎的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。 搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。 机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。 知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 二、AI的研究方法

人工智能-知识表示方法

实验一:知识表示方法 一、实验目的 状态空间表示法是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验通过牧师与野人渡河的问题,强化学生对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。 二、问题描述 有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定野人与牧师都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出小船来回次数最少的最佳方案。 三、基本要求 输入:牧师人数(即野人人数):n;小船一次最多载人量:c。 输出:若问题无解,则显示Failed,否则,显示Successed输出一组最佳方案。用三元组(X1, X2, X3)表示渡河过程中的状态。并用箭头连接相邻状态以表示迁移过程:初始状态->中间状态->目标状态。 例:当输入n=2,c=2时,输出:221->110->211->010->021->000 其中:X1表示起始岸上的牧师人数;X2表示起始岸上的野人人数;X3表示小船现在位置(1表示起始岸,0表示目的岸)。 要求:写出算法的设计思想和源程序,并以图形用户界面实现人机交互,进行输入和输出结果,如: Please input n: 2 Please input c: 2 Successed or Failed?: Successed Optimal Procedure: 221->110->211->010->021->000

四、实验结果 四、实验心得 本次实验运用了状态空间表示法,这是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验强化我对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。

《人工智能原理及其应用》(王万森)第3版课后习题答案

第1章人工智能概述课后题答案 1.1什么是智能?智能包含哪几种能力? 解:智能主要是指人类的自然智能。一般认为,智能是是一种认识客观事物和运用知识解决问题的综合能力。 智能包含感知能力,记忆与思维能力,学习和自适应能力,行为能力 1.2人类有哪几种思维方式?各有什么特点? 解:人类思维方式有形象思维、抽象思维和灵感思维 形象思维也称直感思维,是一种基于形象概念,根据感性形象认识材料,对客观对象进行处理的一种思维方式。 抽象思维也称逻辑思维,是一种基于抽象概念,根据逻辑规则对信息或知识进行处理的理性思维形式。 灵感思维也称顿悟思维,是一种显意识与潜意识相互作用的思维方式。 1.3什么是人工智能?它的研究目标是什么? 解:从能力的角度讲,人工智能是指用人工的方法在机器(计算机)上实现智能;从学科的角度看,人工智能是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科。 研究目标: 对智能行为有效解释的理论分析; 解释人类智能; 构造具有智能的人工产品; 1.4什么是图灵实验?图灵实验说明了什么? 解:图灵实验可描述如下,该实验的参加者由一位测试主持人和两个被测试对象组成。其中,两个被测试对象中一个是人,另一个是机器。测试规则为:测试主持人和每个被测试对象分别位于彼此不能看见的房间中,相互之间只能通过计算机终端进行会话。测试开始后,由测试主持人向被测试对象提出各种具有智能性的问题,但不能询问测试者的物理特征。被测试对象在回答问题时,都应尽量使测试者相信自己是“人”,而另一位是”机器”。在这个前提下,要求测试主持人区分这两个被测试对象中哪个是人,哪个是机器。如果无论如何更换测试主持人和被测试对象的人,测试主持人总能分辨出人和机器的概率都小于50%,则认为该机器具有了智能。 1.5人工智能的发展经历了哪几个阶段? 解:孕育期,形成期,知识应用期,从学派分立走向综合,智能科学技术学科的兴起

整理人工智能简答题

一.简答题 1.在什么情况下需要采用不确定推理或非单调推理? 答:一般推理方法在许多情况下,往往无法解决面临的现实问题,因而需要应用不确定性推理等高级知识推理方法,包括非单调推理、时序推理和不确定性推理等。 例如,当一个人打开电灯的开关而发现灯泡未亮时,就会根据以往的经验而觉得“停电了”。但当他打开另外一只灯的开关发现灯亮时,就否定了先前“停电了”的结论,想到也许是开关或者灯具出问题了。这个改变原先推导结论的过程其实就是一个非单调推理。即,随着信息与知识的增加,并没有在肯定原来的结论基础上,增加了更多并立的知识与结论, 而是否定了原先结论并有了新的看法。以下情况需要采用不确定推理:所需知识不完备,不精确所需知识描述模糊,多种原因导致同一结论,问题的背景知识不足,解题方案不唯一。不确定性推理,是指其推理过程中,由于各种偶然性误差、干扰以及证据的不确定性等因素,导致所获得的结果或结论本身具有未置可否的不确定性。 一般来说,出现不精确推理的原因和特征可能有: ①证据不足或称为证据的不确定性;②规则的不确定性;③研究方法的不确定性。 由于以上“三性”的存在,决定了推理的最后结果具有不确定但却近乎合理的特性,人们把这种性质的推理及其理论和方法总称为不确定推理 2.产生式系统有哪几种推理方式?各自特点为何? 答:(1)正向推理(正向链接推理):从一组表示事实的谓词或命题出发,使用一组产生式规则,用以证明该谓词公式或命题是否成立。 (2)逆向推理(后向链接推理):从表示目标的谓词或命题出发,使用一组产生式规则证明事实谓词或命题成立,即首先提出一批假设目标,然后逐一验证这些假设。(其基本原理是从表示目标的谓词或命题出发,使用一组规则证明事实谓词或命题成立,即提出一批假设(目标),然后逐一验证这些假设。 (3)双向推理:又称为正反向混合推理,它综合了正向推理和逆向推理的长处,克服了两者的短处。双向推理的推理策略是同时从目标向事实推理和从事实向目标推理,并在推理过程中的某个步骤,实现事实与目标的匹配。 3.算法A*直到一个目标节点被选择扩展才会终止。然而,到达目标节点的一条路经可能在那个节点被选择扩展前早就找到了。一旦目标节点被发现,为什么不终止搜索呢?用一个例子说明你的答案。 4.结合你的研究方向,论述哪些人工智能技术可以得到应用?解决什么问题? 答:人工智能目前总结出了对实现人工智能系统来说具有普遍意义的核心课题:知识的模型化和表示方法,启发式搜索理论,各种推理方法,人工智能系统结构和语言。主要研究和应用领域:机器学习,知识表示和推理,智能搜索,模糊逻辑,人工神经网络,遗传算法,自然语言理解,博弈论,知识发现和数据挖掘等。 5.在选择知识表示的方法时,应该考虑哪些因素? 答:表示能力:能够将问题求解所需的知识正确有效地表达出来,可理解性:所表达的知

人工智能研究方法的文献综述

人工智能研究方法的文献综述 1、前言 本文综述了人工智能的主要研究方法,并对各方法进行分析和总结,并阐述了目前人工智能研究方法日趋多样化的研究现状。 2、主题 研究方法,对一个问题的研究方法从根本上说分为两种:其一,对要解决的问题扩展到他所隶属的领域,对该领域做一广泛了解,研究该领域从而实现对该领域的研究,讲究广度,从对该领域的广泛研究收缩到问题本身;其二,把研究的问题特殊化,提炼出要研究问题的典型子问题或实例,从一个更具体的问题出发,做深刻的分析,研究透彻该问题,再一般化扩展到要解决的问题,讲究研究深度,从更具体的问题入手研究扩展到问题本身。 人工智能的研究方法主要可以分为三类:一、结构模拟,神经计算,就是根据人脑的生理结构和工作机理,实现计算机的智能,即人工智能。结构模拟法也就是基于人脑的生理模型,采用数值计算的方法,从微观上来模拟人脑,实现机器智能。采用结构模拟,运用神经网络和神经计算的方法研究人工智能者,被称为生理学派、连接主义。二、功能模拟,符号推演,就是在当前数字计算机上,对人脑从功能上进行模拟,实现人工智能。功能模拟法就是以人脑的心理模型,将问题或知识表示成某种逻辑网络,采用符号推演的方法,实现搜索、推理、学习等功能,从宏观上来模拟人脑的思维,实现机器智能。以功能模拟和符号推演研究人工智能者,被称为心理学派、逻辑学派、符号主义。三、行为模拟,控制进化,就是模拟人在控制过程中的智能活动和行为特性。以行为模拟方法研究人工智能者,被称为行为主义、进化主义、控制论学派。 人工智能的研究方法,已从“一枝独秀”的符号主义发展到多学派的“百花争艳”,除了上面提到的三种方法,又提出了“群体模拟,仿生计算”“博采广鉴,自然计算”“原理分析,数学建模”等方法。人工智能的目标是理解包括人在内的自然智能系统及行为,而这样的系统在实在世界中是以分层进化的方式形成了一个谱系,而智能作为系统的整体属性,其表现形式又具有多样性,人工智能的谱系及其多样性的行为注定了研究的具体目标和对象的多样性。人工智能与前沿技术的结合,使人工智能的研究日趋多样化。 3、总结 人工智能的研究方法会随着技术的进步而不断丰富,很多新名词还会被提出,但研究的目的基本不变,日趋多样化的研究方法追根溯源也就是研究问题的两种方法的演变。对人工智能中尚未解决的众多问题,运用基本的研究问题的方法,结合先进的技术,不断实现智能化。人工智能与前沿技术密切联系,人工智能的研究方法必然日趋多样化。 4、参考文献 (1)人工智能技术导论廉师友西安电子科技大学出版社2007.8 (2)人工智能研究方法及途径熊才权2005年第三期 (3)人工智能学派及其在理论、方法上的观点蔡自兴1995.5 (4)人工智能研究的主要学派及特点黄伟聂东陈英俊2001第三期 (5)人工智能研究对思维学的方法论启示尹鑫苏国辉2002.10第四期

人工智能复习题目

2016 人工智能复习重点 题型:选择、填空、简答、推理、计算。各20分 主要内容: AI三大学派、 AI应用领域、 图灵测试、 谓词逻辑表示法 语义网络表示法 产生式表示法 与或树,解树,可解节点的含义及解释、 归结\子句、置换、合一 状态空间\产生式系统 盲目搜索、启发式搜索(求解城市最短路径相关例题要着重看) 演绎推理和归结推理 可信度算法和bayse算法 ID3算法 【第一章绪论】 1、三大学派及其对人工智能发展历史的不同看法 符号主义:认为人工智能源于数理逻辑。符号主义仍然是人工智能的主流派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(Nilsson)等。 联结主义:认为人工智能源于仿生学,特别是人脑模型的研究。 行为主义:认为人工智能源于控制论。这一学派的代表作首推布鲁克斯(Brooks)的六足行走机器人,它被看做新一代的“控制论动物”,是一个基于感知-动作模式的模拟昆虫行为的控制系统。 2.人工智能的研究及应用领域 人工智能研究及应用领域很多,主要研究领域包括问题求解、机器学习、专家系统、模式识别、自动定理证明、自然语言理解等。 问题求解:人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序,它包含问题的表示、分解、搜索与归约等。 机器学习:学习是人类智能的主要标志和获得知识的基本手段;机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径;机器学习还有助于发现人类学习的机理和揭示人脑的奥秘。学习是一个有特定目的的知识获取过程,其内部表现为新知识结构的不断建立和修改,而外部表现为性能的改善。 专家系统:一般地说,专家系统是一个智能计算机程序系统,其内部具有大量专家水平的某个领域知识与经验,能够利用人类专家的知识和解决问题的方法来解决该领域的问题。发展

人工智能原理与应用_(张仰森_著)_高等教育出版社_课后答案

2.7解:根据谓词知识表示的步骤求解问题如下: 解法一: (1)本问题涉及的常量定义为: 猴子:Monkey,箱子:Box,香蕉:Banana,位置:a,b,c (2)定义谓词如下: SITE(x,y):表示x在y处; HANG(x,y):表示x悬挂在y处; ON(x,y):表示x站在y上; HOLDS(y,w):表示y手里拿着w。 (3)根据问题的描述将问题的初始状态和目标状态分别用谓词公式表示如下: 问题的初始状态表示: SITE(Monkey,a)∧HANG(Banana,b)∧SITE(Box,c)∧~ON(Monkey,Box)∧~HOLDS(Monkey,Banana) 问题的目标状态表示: SITE(Monkey,b)∧~HANG(Banana,b)∧SITE(Box,b) ∧ON(Monkey,Box)∧HOLDS(Monkey,Banana) 解法二: (1)本问题涉及的常量定义为: 猴子:Monkey,箱子:Box,香蕉:Banana,位置:a,b,c (2)定义谓词如下: SITE(x,y):表示x在y处; ONBOX(x):表示x站在箱子顶上; HOLDS(x):表示x摘到了香蕉。 (3)根据问题的描述将问题的初始状态和目标状态分别用谓词公式表示如下: 问题的初始状态表示: SITE(Monkey,a)∧SITE(Box,c)∧~ONBOX(Monkey)∧~HOLDS(Monkey) 问题的目标状态表示: SITE(Box,b)∧SITE(Monkey,b)∧ONBOX(Monkey)∧HOLDS(Monkey) 从上述两种解法可以看出,只要谓词定义不同,问题的初始状态和目标状态就不同。所以,对于同样的知识,不同的人的表示结果可能不同。 2.8解:本问题的关键就是制定一组操作,将初始状态转换为目标状态。为了用谓词公式表示操作,可将操作分为条件(为完成相应操作所必须具备的条件)和动作两部分。条件易于用谓词公式表示,而动作则可通过执行该动作前后的状态变化表示出来,即由于动作的执行,当前状态中删去了某些谓词公式而又增加一些谓词公式从而得到了新的状态,通过这种不同状态中谓词公式的增、减来描述动作。 定义四个操作的谓词如下,操作的条件和动作可用谓词公式的增、删表示: (1)goto

《人工智能》详细教学大纲

《人工智能》详细教学大纲 《人工智能》教学大纲 课程代码:130234 课程性质:专业必修 学分学时数: 5/80 适用专业:计算机应用技术 一、课程的性质和目的 (一)课程性质 人工智能是计算机科学理论基础研究的重要组成部分,人工智能课程是计算机科学技术专业的专业拓展选修课。通过本课程的学习使学生了解人工智能的提出、几种智能观、重要研究领域,掌握人工智能求解方法的特点。掌握人工智能的基本概念、基本方法,会用知识表示方法、推理方法和机器学习等方法求解简单问题等。 (二)课程目的 1、基本理论要求: 课程介绍人工智能的主要思想和基本技术、方法以及有关问题的入门知识。要求学生了解人工智能的主要思想和方法。 2、基本技能要求: 学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand 域概念和Horn 子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解(GPS )的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、A 算法、A*算法、博弈数的极大—极小法、α―β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes 方法、D —S 证据理论等,利用数值分析中常用方法进行正确计算。 3、职业素质要求:结合实战,初步理解和掌握人工智能的相关技术。 二、教学内容、重(难)点、教学要求及学时分配 第一章:人工智能概述(2学时) 1、讲授内容: (1) 人工智能的概念 (2) 人工智能的研究途径和方法 ………………………………………………

人工智能原理及其应用(第2版)》王万森编著电子工业出版社课后习题答案37

第2章知识表示方法部分参考答案 2.8设有如下语句,请用相应的谓词公式分别把他们表示出来: (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词 P(x):x是人 L(x,y):x喜欢y 其中,y的个体域是{梅花,菊花}。 将知识用谓词表示为: (?x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2) 有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午 将知识用谓词表示为: (?x )(?y) (A(y)→B(x)∧P(x)) (3)新型计算机速度又快,存储容量又大。 解:定义谓词 NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大 将知识用谓词表示为: (?x) (NC(x)→F(x)∧B(x)) (4) 不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词 S(x):x是计算机系学生 L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为: ?(?x) (S(x)→L(x, pragramming)∧U(x,computer)) (5)凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y 将知识用谓词表示为:

( x) (P(x)∧L(x,pragramming)→L(x, computer)) 2.9用谓词表示法求解机器人摞积木问题。设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。积木世界的布局如下图所示。 图机器人摞积木问题 解:(1) 先定义描述状态的谓词 CLEAR(x):积木x上面是空的。 ON(x, y):积木x在积木y的上面。 ONTABLE(x):积木x在桌子上。 HOLDING(x):机械手抓住x。 HANDEMPTY:机械手是空的。 其中,x和y的个体域都是{A, B, C}。 问题的初始状态是: ONTABLE(A) ONTABLE(B) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY 问题的目标状态是: ONTABLE(C) ON(B, C) ON(A, B) CLEAR(A) HANDEMPTY (2) 再定义描述操作的谓词 在本问题中,机械手的操作需要定义以下4个谓词: Pickup(x):从桌面上拣起一块积木x。 Putdown(x):将手中的积木放到桌面上。 Stack(x, y):在积木x上面再摞上一块积木y。

人工智能复习题及答案84329

黑龙江大学计算机科学技术学院 1.智能 智能是一种认识客观事物和运用知识解决问题的综合能力。 2.什么叫知识? 知识是人们在改造客观世界的实践中积累起来的认识和经验 3.确定性推理 指推理所使用的知识和推出的结论都是可以精确表示的,其真值要么为真、要么为假。 4.推理 推理是指按照某种策略从已知事实出发利用知识推出所需结论的过程。 5.不确定性推理 指推理所使用的知识和推出的结论可以是不确定的。所谓不确定性是对非精确性、模糊型和非完备性的统称。 6.人工智能 人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机器智能 7.搜索 是指为了达到某一目标,不断寻找推理线路,以引导和控制推理,使问题得以解决的过程。 8.规划 是指从某个特定问题状态出发,寻找并建立一个操作序列,直到求得目标状态为止的一个行动过程的描述。 9.机器感知 就是要让计算机具有类似于人的感知能力,如视觉、听觉、触觉、嗅觉、味觉 10.模式识别 是指让计算机能够对给定的事务进行鉴别,并把它归入与其相同或相似的模式中。11.机器行为 就是让计算机能够具有像人那样地行动和表达能力,如走、跑、拿、说、唱、写画等。 12.知识表示 是对知识的描述,即用一组符号把知识编码成计算机可以接受的某种结构。 13.事实 是断言一个语言变量的值或断言多个语言变量之间关系的陈述句 14.综合数据库 存放求解问题的各种当前信息 15.规则库 用于存放与求解问题有关的所有规则的集合 16.人工智能有哪些应用? 17.人工智能的研究目标 远期目标 揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能 涉及到脑科学、认知科学、计算机科学、系统科学、控制论等多种学科,并依赖于它们的共同发展 近期目标 研究如何使现有的计算机更聪明,即使它能够运用知识去处理问题,能够模拟人类的智能行为。

人工智能原理及其应用(第二版)习题答案

本页面为作品封面,下载文档后可自由编辑删除! 精 品 文 档

知识表示方法部分参考答案 2.8设有如下语句,请用相应的谓词公式分别把他们表示出来: (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词 P(x):x是人 L(x,y):x喜欢y 其中,y的个体域是{梅花,菊花}。 将知识用谓词表示为: (?x )(P(x)∧(L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))) (2) 有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午 将知识用谓词表示为: (?x )(?y) (A(y)∧B(x)∧P(x)) (3)新型计算机速度又快,存储容量又大。 解:定义谓词 NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大 将知识用谓词表示为: (?x) (NC(x)→F(x)∧B(x)) (4) 不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词 S(x):x是计算机系学生 L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为: ?(?x) (S(x)→L(x, pragramming)∧U(x,computer)) (5)凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y 将知识用谓词表示为: (?x) (P(x)∧L(x,pragramming)→L(x, computer))

2.9用谓词表示法求解机器人摞积木问题。设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。积木世界的布局如下图所示。 图机器人摞积木问题 解:(1) 先定义描述状态的谓词 CLEAR(x):积木x上面是空的。 ON(x, y):积木x在积木y的上面。 ONTABLE(x):积木x在桌子上。 HOLDING(x):机械手抓住x。 HANDEMPTY:机械手是空的。 其中,x和y的个体域都是{A, B, C}。 问题的初始状态是: ONTABLE(A) ONTABLE(B) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY 问题的目标状态是: ONTABLE(C) ON(B, C) ON(A, B) CLEAR(A) HANDEMPTY (2) 再定义描述操作的谓词 在本问题中,机械手的操作需要定义以下4个谓词: Pickup(x):从桌面上拣起一块积木x。 Putdown(x):将手中的积木放到桌面上。 Stack(x, y):在积木x上面再摞上一块积木y。 Upstack(x, y):从积木x上面拣起一块积木y。 其中,每一个操作都可分为条件和动作两部分,具体描述如下: Pickup(x)

人工智能习题答案-第2章-知识表示方法

第二章知识表示方法 2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。该船的负载能力为两人。在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。他们怎样才能用这条船安全地把所有人都渡过河去 (答案并不唯一,意思正确即可) 用S i(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况: 1. nC=0 2. nC=3 3. nC=nY>=0 (当nC不等于0或3) 用d i(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。当i为偶数时,dC,dY同时为非负数,表示船驶向对岸,i为奇数时,dC, dY同时为非正数,表示船驶回岸边。 初始状态为S0(0, 0),目标状态为S0(3, 3),用深度优先搜索的方法可寻找渡河方案。 在此,用图求法该问题,令横坐标为nY, 纵坐标为nC,可行状态为空心点表示,每次可以在格子上,沿对角线移动一格,也可以沿坐标轴方向移动1格,或沿坐标轴方向移动2格。第奇数次数状态转移,沿右方,上方,或右上方移动,第偶数次数状态转移,沿左方,下方,或左下方移动。

从(0,0)开始,依次沿箭头方向改变状态,经过11步之后,即可以到达目标状态(3,3),相应的渡河方案为: d1(1,1)--d2(-1,0)--d3(0,2)--d4(0,-1)--d5(2,0)--d6(-1,-1)--d7(2,0)--d8(0,-1)--d9(0,2)--d10(-1,0)--d11(1,1) 2-5 试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。 用四元数列 (nA, nB, nC, nD) 来表示状态,其中nA 表示A 盘落在第nA 号柱子上,nB 表示B 盘落在第nB 号柱子上,nC 表示C 盘落在第nC 号柱子上,nD 表示D 盘落在第nD 号柱子上。 初始状态为 1111,目标状态为 3333 1 nC nY 2 3 1 3 2

(人工智能)人工智能教案章知识表示概述

(人工智能)人工智能教案章知识表示概述

4.1概述 4.1.1知识的定义 很难给知识以明确的定义,只能从不同侧面加以理解,不同的人有不同的理解。 知识表示是人工智能研究中最基本的问题之壹。于知识处理中总要问到:如何表示知识,怎样使机器能懂这些知识,能对之进行处理,且能以壹种人类能理解的方式将处理结果告诉人们。 于AI系统中,给出壹个清晰简洁的有关知识的描述是很困难的。有研究报道认为。严格地说AI对知识表示的认真、系统的研究才刚刚开始。 下面是壹些专家的见法: Feigenbaum:知识是经过消减、塑造、解释和转换的信息。 Bernstein:知识是由特定领域的描述、关系和过程组成的。 Hayes-roth:知识是事实、信念和启发式规则。 从知识库的观点见,知识是某领域中所涉及的各有关方面的壹种符号表示。 另外有壹种三维的描述方法:(范围,目的,有效性),其中知识的范围由具体到壹般,知识的目的从说明到指定,知识的有效性从确定到不确定。例如,“今天下雨”这种知识是具体的、说明性、不确定的,而“要证A→B,只需证明A∧~B是不可满足的”这种知识是壹般性的、指示性、确定性的。 4.1.2知识的分类 从不同的角度、不同的侧面对知识有着不同的分类方法。

于此,我们根据知识表达的内容,将其简单地分为如下几类:事实性知识 知识的壹般直接表示,如果事实性知识是批量的、有规律的,则往往以表格、图册,甚至数据库等形式出现。 这种知识描述壹般性的事实,如凡是冷血动物均要冬眠,哺乳动物均是胎生繁殖后代等。 过程性知识 表述做某件事的过程。标准程序库也是常见的过程性知识,而且是系列化、配套的。 如电视机维修法,怎样烹制法国大餐等。 行为性知识 不直接给出事实本身,只给出它于某方面的行为。行为性知识经常表示为某种数学模型,从某种意义上讲,行为性知识描述的是事物的内涵,而不是外延。 如微分方程 实例性知识 只给出壹些实例。知识藏于实例中。感兴趣的不是实例本身,而是隐藏于大量实例中的规律性知识。 举例说明 类比性知识 既不给出外延,也不给出内涵,只给出它和其它事物的某些相似之处。类比性知识壹般不能完整地刻画事物,但它能够启发人们

人工智能的主要内容和方法

人工智能的主要内容和方法 人工智能( Artificial Intelligence,简称 AI)是 50 年代兴起的一门新兴边缘学科,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),也被认为是二十一世纪三大尖端技术之一(基因工程、纳米科学、人工智能)。广义的讲,人工智能是关于人造物的智能行为,而智能行为包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的一个长期目标是发明出可以像人类一样或能更好地完成以上行为的机器;另一个目标是理解这种智能行为是否存在于机器、人类或其他动物中。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机 , 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外 , 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 一、 AI 的主要内容人工智能研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。 常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。 问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,

相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演绎的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。 搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有 A* 、AO* 算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。 机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。 知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 二、 AI 的研究方法

人工智能的原理及应用

人工智能的原理及应用 摘要 人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落……长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。 关键词 人工智能;专家系统;模式识别 ABSTRACT AI (Artificial Intelligence, AI) has been at the forefront of computer technology, has experienced severa l ups and downs several…… a long time, the ordinary people of artificial intelligence is so elusive, but it has attracted countless It dedicated intelligence researchers, from the U.S. Massachusetts Institute of Technology (MIT), Carnegie - Mellon University (CMU) to IBM, and then to Japan's Honda, SONY, as well as domestic companies of QingHua University, China Branch Hospitals and other research institutes, laboratories around the world are carrying out the AI technology experiments. Not long ago, the fam ous director Steven Spielberg will be the subject ? onto the screen, sci-fi film "artificial intelligence" (AI) on many people's minds once again produced a shock, caused some people to understand and explore Interest in the field of artificial intelligence. Key words Artificial Intelligence(AI); Expert System ; Pattern Recognition 引言 人工智能的发展已达到很高水平,电子计算机将更接近大脑的功能了,虽然计算机解决问题的能力从技术角度看目前还有很大局限性,计算机万能论者的理论依据也是有问题的。计算机暂时不能代替人我相信他预见的会成为现实,目前也有了很多技术突破,这就是人类-机器的结合体,他预见这是人类进化史上的一个飞跃。在这样一个结合体形式下,肯定超出目前的人的智能和人工智能,这个结合体中,人类的大脑将植入能和机器直接沟通的芯片,这个芯片是人机的桥梁,而人类-机器结合体将发挥出人与机器的各自优势。 1.介绍什么是人工智能 由于人工智能是一个边缘学科,是哲学、数学、电子工程、计算机科学、心理学等众多学科的混血儿。它的研究队伍由未自不同领域的学者组成,各自从事着自己感兴趣的工作,他们对人工智能是什么有不同的认识。所以,要想在他们之间找出一个什么是人工智能的共同的看法还是有一定的困难的。 如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能支灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为、就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了:这样,人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。 除了上述的观点以外,人工智能领域中的心理学家、语言学家倾向于将重点放在用电脑去再现人脑思维的内部状态上.也就是要使电脑程产真正理解它所他的事情,就好保人脑一样去“思考问题”。

人工智能方法故障诊断

人工智能方法故障诊断。 2基于人工智能的故障诊断方法的应用现状基于人工智能的故障诊断方法不需要知道被控对象的精确模型,能很好的应对不确定性和模糊性的随机故障。目前基于人工智能的故障诊断方法主要有以下几个方向:基于模糊的方法、基于神经网络的方法、专家系统故障诊断方法、基于遗传算法、支持向量机的方法、基于数据挖掘的方法、基于图论的模型推理方法等,以下是对几种故障诊断方法的具体论述。 2.1基于模糊的故障诊断方法 在模糊诊断中,各种故障征兆和故障成因之间都存在不同程度的因果关系,但表现在故障与征兆之间并非存在一一对应的关系,故障征兆信息的随机性、模糊性加上某些信息的不确定性,造成了故障形式复杂多样性。这种模糊性和随机性往往不能用精确的数学公式来描述,然而用模糊逻辑、模糊诊断矩阵等模糊理论来分析其故障与现象之间的不确定性关系是可行的,从模糊数学的角度看,故障诊断是一个模糊推理问题。因而基于模糊的诊断方法得到了长足的发展[2-4]。 故障诊断通常是基于一定的征兆,做出可能引起这些征兆的故障判别,而模糊逻辑系统是应用模糊理论解决问题的重要形式。研究表明,通过建立模糊逻辑系统,采用模糊推理的方法能够实现故障诊断。不过,成熟地应用基于模糊逻辑系统的故障诊断方法,需要解决好如何建立模糊诊断规则库等关键问题。 常用的模糊逻辑诊断方法一般步骤是检测信号经过模糊化单元处理后,输入到模糊推理规则库中进行分析,其输出即为故障信息的模糊输出,经过解模糊单元处理后即可得出故障原因。 另外一种基于模糊理论的诊断方法是用模糊诊断矩阵来描述故障原因和故障征兆之间关系的方法。其模糊关系矩阵的数学模型为[3]: T T Y 二RX 丫…y「— X :=(P X]-4,) -r 1 1r 1 2 r 1 …1 1 m R =r1 2 「2 2…r 2 m =(r ij ) n xm 「1r n2…r n m _ 1 式中 :丫为诊断矩 阵, 'yi 为对象具有故障丫,的 隶属度(i= 1,2,…,n). X为起因矩阵, u Xj为对象 具有症状X j的隶属度(j =1,2,…,m);R为征兆矩 阵,描述了故障征兆与故障原因之间的关系。 m 乞= 1 i 4 ij(0乞乞1;1乞i空n;1乞j空m) 。 基于模糊的故障诊断方法的优点在于:可将人类的 语言化的知识嵌入系统;可模拟人类的近似推理能力, 且通用性好,只要针对不同的故障类型对推理规则进行 修改就可以应当不同的故障诊断。但与传统的故障诊断 理论和方法相比,仍有不成熟之处:基于模糊逻辑的故 障诊断方法缺少在线学习能力,不适应被控对象变化的 需要;模糊隶属函数和模糊推理规则无法保证任何情况 下都为最优;尚未建立起有效的方法来分析和设计模糊 系统,主要还是依赖专家经验和试凑。 2.2基于人工神经网络的故障诊断方法 从故障诊断的过程来讲,故障诊断实质上也是一类 模式分类问题,而人工神经网络(ANN)作为一 种自适应的模式识别技术,非常适合用于建立大型复杂 系统的智能化故障诊断系统。神经网络通过输入层、隐 含层和输出层来建立故障类型和故障原因之间复杂的映 射关系。基于神经网络的故障诊断 方法具有强大的自学习和数据处理能力,其分类方式通 过网络学习来确定系统参数和结构来完成训练过程。将 样本库的知识以网络的形式存储在神经网络的连接权中 是神经网络的独特之处。待检测故障信息经已训练好的 网络处理后可自动对被识别对象进行分类。故障诊断中 神经网络所采用的模型大多为BP网络,这主要由于对 BP模型的研究比 较成熟[5-6]。神经网络故障诊断技术被广泛应用于

人工智能知识表示练习题

1、设有如下问题: (1) 如图一所示的三个相邻的方框内有两个编号的小方块, (2) 紧邻空位的小方块可以移动到空位上, (3) 通过平移小方块可将布局改为图二所示。 (图一) (图二) 请用产生式规则表示移动小方块的操作,并用产生式的使用顺序来说明解决问题的过程。 2、请用框架表示如下知识: 如果咳嗽、发烧、流涕,则一定是患了某种疾病,应及时到医院治疗。最近的医院是校医院,位于校园西侧。 要求: 必须用三个相关联的框架表示。 3、试用语义网络表示如下知识: 118路汽车从经贸大学始发,途径肖家营,到达终点站“火车站”。 4、请用语义网络表示如下知识: 雪地上留下一串串脚印,有大、有小、有深、有浅。 5、设下列知识: 如果咳嗽、发烧、流涕,则八成是患了感冒,需服用“感冒清”,一日三次,每次2 ~ 3粒,多喝开水。 请用框架法表示上述知识,要求: (1) 用两个相关联的事例框架表示; (2)标准槽连接。 6、设有如下知识: 狗都会吠叫和咬人, 任何动物吠叫时总是吵人的, 猎犬是一种狗。 请根据上述知识设计一组产生式规则,使它们可以用来证明:

“猎狗是吵人的”。 并用产生式的使用序列表示证明过程。 7、请写出如下命题的语义网络: 钱老师从6月至8月给会计班讲《市场经济学》课程。 8、以下是一段新闻报道: “今天,一次强度为里氏7级的地震袭击了X 地区,造成250人死亡和5000万元人民币 的财产损失。有专家说:‘多年来,靠近Y 断层的地方一直是一个危险的地区。’” 试用一个事例框架表达上述新闻报道内容。注意画线的地方。 9、.试用产生式表示如下知识: 如果要判定某动物为企鹅,那么,应该先判定它是属于鸟类且不能飞、能游水、颜色为黑色和白色。如果要判断某动物是否属于鸟类,应看它是否有羽毛。 10、试用谓词逻辑表示法表示如下知识: 因为老百姓受法律管制,所以晁盖劫了生辰纲,触犯了宋朝法律,受到官府追究;而达官贵人和恶少不受法律管制,所以其强抢民女虽也违法,却可以横行无忌。 要求: 给出谓词公式以及对应于“晁盖”和“达官贵人和恶少”的两种不同解释。 11、试用产生式表示如下知识: “张三”八成是个学生。

相关文档
最新文档