烟囱大体积混凝土计算

烟囱大体积混凝土计算
烟囱大体积混凝土计算

烟囱大体积混凝土计算书

烟囱底板混凝土为宽5.9m,高2 m的圆环体,属大体积混凝土,需进行大体积混凝土计算。底板混凝土采用标号C30混凝土,中热硅酸盐水泥。

一、大体积混凝土计算公式

1.混凝土最大绝热温升

Th=m c*Q/(c*ρ*(1-e-mt))

式中Th----------最大绝热温升(℃);

m c---------混凝土中水泥(包括膨胀剂)用量(Kg/m3),取m c=350 Kg/m3;

Q---------水泥28d水化热(KJ/(mg*K)),取Q=375 KJ/(mg*K);

C---------混凝土比热,取C=0.97 KJ/(mg*K);

ρ-----混凝土密度(Kg/m3),取ρ=2400 Kg/m3;

e------为常数,取e=2.718;

t------混凝土龄期(d);

m------系数,随混凝土浇筑温度改变;

计算求得:Th=350×375×103/(0.97×103×2400×(1- e-0.362×28))=56.38℃

2.混凝土中心温度计算

T1(t)=T j+Th*ξ(t)

式中T1(t)------t龄期混凝土中心温度(℃);

T j-----------混凝土浇筑温度(℃)

ξ(t)---------------t龄期混凝土降温系数;

T1(3)=52.14℃ T1(18)=32.40℃

T1(6)=49.32℃ T1(21)=29.87℃

T1(9)=46.78℃ T1(24)=27.61℃

T1(12)=41.71℃ T1(27)=25.92℃

T1(15)=36.63℃ T1(30)=25.36℃

3.混凝土表面(表面下50~100mm处)温度

(1)保温材料厚度

δ=0.5h*λx*(T2- T q)*K b/(λ*(Tmax- T2))

式中δ---------保温材料厚度(m);

λx--------所选保温材料导热系数(W/(m*K)),草袋取

λx=0.14 ;

h---------混凝土实际厚度(m),h=2 m;

T2--------混凝土表面温度(℃);

T q--------施工期大气平均温度(℃);

λ-------混凝土导热系数(W/(m*K)),取λ=2.33 W/(m*K); Tmax-----计算得最高温度(℃)

计算时可取:T2- T q=18℃,Tmax- T2=20℃;

K b--------传热系数修正值,取K b=2.0;

计算所得:δ=0.5×2×0.14×18×2/(2.33×20)=0.108m

(2)混凝土表面模板及保温的导热系数

β=1/(∑δi/λi+1/βq)

式中β---------混凝土表面模板及保温材料等穿热系数;

δi---------各层保温材料厚度(m);

λi---------各层保温导热系数(W/(m*K));

βq--------空气层导热系数;

经计算得:β=1/(0.108/0.14+1/23)=1.227

(3)混凝土厚度

h’=K*λ/β

式中h’-----混凝土虚厚度(m);

K-------折减系数,取2/3;

经计算得:h’=2/3×2.33/1.277=1.266 m

(4)混凝土计算厚度

H=h+2*h’

式中H------混凝土计算厚度(m)

h------混凝土实际厚度(m)

H=2+2×1.266=4.532 m

(5)混凝土表面温度

T2(t)= T q+4* h’*(H-h’)*(T1(t)- T q)/H2

式中T2(t)-------混凝土表面温度(℃);

T q-----------施工期大气平均温度(℃),取T q=15℃;

h’----------混凝土虚铺厚度(m);

H------------混凝土计算厚度(m);

T1(t)-------混凝土计算温度(℃);

T2(t)=15+4×1.266×(4.532-1.266)×(52.14-15)/4.5322=57.03℃ T2(6)=52.7℃

T2(9)=48.8℃ T2(12)=41.01℃

T2(15)=33.21 ℃ T2(18)=26.33℃

T2(21)=22.83℃ T2(24)=19.36℃

T2(27)=16.77 ℃ T2(30)=15.91℃

(6)混凝土内平均温度

Tm(t)= (T1(t)+ T2(t))/2

Tm(3)= 54.95 ℃ Tm(18)=29.37℃

Tm(6)=51.01 ℃ Tm(21)=26.35℃

Tm(9)=47.79 ℃ Tm(24)=23.49℃

Tm(12)=41.36 ℃ Tm(27)=21.35℃

Tm(15)=34.92 ℃ Tm(30)=20.64℃

二、应力计算

(1)地基约束力

①大体积混凝土瞬时弹性模量

E(t)=E0*(1- e-0.09*t)

式中E(t)----------- t龄期混凝土弹性模量(N/mm2);

E0--------------取28d混凝土弹性模量(N/mm2);

e--------------为常数,取e=2.718;

t---------------龄期(d);

E(3)=3.0×104×(1-e-0.09×3)=0.71×104 N/mm2

E(6)=1.25×104 N/mm2 E(21)=2.55×104 N/mm2

E(9)=1.67 ×104 N/mm2 E(24)=2.65×104 N/mm2

E(12)= 1.98 ×104 N/mm2 E(27)=2.74×104 N/mm2

E(15)= 2.22 ×104 N/mm2 E(30)=3.0×104 N/mm2

E(18)=2.41×104 N/mm2

②地基约束系数

β2(t)=CX1/(h* E(t))

式中β(t)---------- t龄期混凝土约束系数(1/㎜);

CX1-------------单纯地基阻力系数(N/mm3);

h---------------混凝土实际厚度(㎜);

E(t)----------- t龄期混凝土弹性模量(N/mm2);

β2(3)=0.8/(2×103×0.71×104)

β(3)=2.37×10-4 β(18)=1.29×10-4β(6)=1.79×10-4 β(21)=1.25×10-4 β(9)=1.55×10-4 β(24)=1.23×10-4 β(12)=1.42×10-4 β(27)=1.21×10-4

β(15)=1.34×10-4 β(30)=2.37×10-4

(2)混凝土干缩率和收缩当量温差

①混凝土干缩率

εy(t)= εy0*(1- e-0.01*t)*M1*M2*M3*M4*M5*M6*M7*M8*M9*M10

式中εy(t)------------- t龄期混凝土干缩率;

εy0-----------标准状态下混凝土极限收缩值,εy0=3.24×10-4;

M1-----------------水泥品种为中热硅酸盐水泥,取1.2;

M2-----------------骨料为石灰石,取1.00;

M3-----------------水泥细度为4000孔,取1.13;

M4-----------------水灰比为0.46,取1.13;

M5-----------------水泥浆量为0.2,取1.00;

M6-----------------自然养护30天,取0.93;

M7-----------------相对湿度为50%,取0.54;

M8-----------------水里半径倒数,取1.08;

M9-----------------机械振捣,取1.00;

M10-----------------含筋率为1%,取0.972;

εy(3)= 3.24×10-4×(1- e-0.01×3)×1.2×1×1.13×1.13×1×0.93×0.54×1.08×1×0.97=7.72×10-6

εy(6)=1.52×10-6εy(21)=4.95×10-6

εy(9)=2.25×10-6εy(24)=5.57×10-6

εy(12)=2.95×10-6εy(27)=6.18×10-6

εy(15)=3.64 ×10-6εy(30)=6.77×10-6

εy(18)=4.30×10-6

②收缩温度当量

Ty(t)= εy(t)/α

式中Ty(t)-------------- t龄期混凝土收缩温度当量(℃);

εy(t)------------- t龄期混凝土干缩率;

α------------------混凝土线膨胀系数,α=1×10-5;

Ty(3)=0.77℃ Ty(18)=4.3℃

Ty(6)=1.52℃ Ty(21)=4.95℃

Ty(9)=2.25℃ Ty(24)=5.57℃

Ty(12)=2.95℃ Ty(27)=6.18℃

Ty(15)=3.64℃ Ty(30)=6.77℃

(3)结构温差

ΔTi= Tm(i)- Tm(i+3)+ Ty(i+3)- Ty(i)

式中ΔTi-------------i区段结构计算温差(℃);

Tm(i)------------ i区段平均温度起始值(℃);

Tm(i+3)---------- i区段平均温度终止值(℃);

Ty(i)------------ i区段当量温差起始值(℃);

Ty(i+3)---------- i区段当量温差终止值(℃);

ΔT3=4.69℃ΔT18=3.67℃

ΔT6=3.94℃ΔT21=3.48℃

ΔT9=7.13℃ΔT24=2.75℃

ΔT12=7.13℃ΔT27=1.3℃

ΔT15=6.21℃ΔT30=0℃

(4)计算各区段拉应力

σi=?Ei*α*ΔTi*?Si*(1-1/ch(?βi*L/2))

式中σi----------i区段混凝土内拉力(N/mm2);

?Ei----------i区段平均弹性模量(N/mm2);

ΔTi-------------i区段结构计算温差(℃);

?Si-------------i区段平均应力松弛系数

?βi------------i区段平均地基约束系数

L---------------混凝土最大尺寸(㎜)

Ch--------------双曲线函数

各区段的平均弹性模量(N/mm2)

?E3=0.98×10-4(N/mm2)?E18=2.48×10-4(N/mm2)?E6=1.46×10-4(N/mm2)?E21=2.60×10-4(N/mm2)?E9=1.83×10-4(N/mm2)?E24=2.70×10-4(N/mm2)?E12=2.1×10-4(N/mm2)?E27=2.87×10-4(N/mm2)?E15=2.32×10-4(N/mm2)?E30=3.0×10-4(N/mm2)各区段的平均应力松弛系数

?S3=0.55 ?S3=0.377

?S6=0.50 ?S3=0.36

?S9=0.46 ?S3=0.346

?S12=0.43 ?S3=0.333

?S15=0.398 ?S3=0.327

各区段的平均地基约束系数

?β3=2.08×10-4 ?β18=1.27×10-4

?β6=1.67×10-4 ?β21=1.24×10-4

?β9=1.49×10-4 ?β24=1.22×10-4

?β12=1.38×10-4 ?β27=1.18×10-4

?β15=1.32×10-4 ?β30=1.15×10-4

σ3=0.98×104×1×10-5×4.69×0.55×(1-1/(ch(2.08×10-4 ×2.95×103)))= 0.041 N/mm2

σ6=0.032 N/mm2σ21= 0.021 N/mm2

σ9=0.054 N/mm2 σ24=0.015 N/mm2

σ12=0.058 N/mm2 σ27=0.07 N/mm2

σ15=0.041 N/mm2 σ30=0 N/mm2

σ18=0.023 N/mm2

(5)到30d混凝土最大应力

σmax=(1/(1-v))*∑σi

式中σmax-------------到30d混凝土最大拉应力(N/mm2);

v-----------------波桑比,取0.15;σmax=(1/(1-0.15))×(0.041+0.032+0.054+0.058+0.041+0.023+0.021+0.015+0.007)=0.289 N/mm2

(6)安全系数

K=f t/σmax

式中 K-------------安全系数;

f t-------------30d混凝土抗拉强度,取f t=1.50 N/mm2;

K =1.5/0.289=5.19>1.5,混凝土满足抗拉裂要求。

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

大体积混凝土水化热计算和混凝土抗裂验算(泰康人寿)

大体积混凝土水化热计算和混凝土抗裂验算 工程名称:泰康人寿工程 施工单位:中建一局集团建设发展有限公司 砼供应单位:北京铁建永泰新型建材有限公司 混凝土水化热计算 1 热工计算 1.1混凝土入模温度控制计算 (1)混凝土拌合温度宜按下列公式计算: T0=[0.92(m ce T ce+m s T s+m sa T sa+m g T g)+4.2T w(m w-ωsa m sa-ωg m g)+C w(ωsa m sa T sa+ωg m g T g)-C i(ωsa m sa+ωg m g)] ÷[4.2m w+0.92(m ce+m sa+m s+m g)]…………(1.1)式中T0 —混凝土拌合物温度(℃); m w---水用量(Kg); m ce---水泥用量(Kg); m s---掺合料用量(Kg); m sa---砂子用量(Kg); m g---石子用量(Kg); T w---水的温度(℃); T ce---水泥的温度(℃); T s---掺合料的温度(℃); T sa---砂子的温度(℃); T g---石子的温度(℃); ωsa---砂子的含水率(%); ωg---石子的含水率(%); C w---水的比热容(Kj/Kg.K); C i---冰的溶解热(Kj/Kg); 当骨料温度大于0℃时, C w=4.2, C i =0; 当骨料温度小于或等于0℃时,C w=2.1, C i=335。

(2)C40P6混凝土配比如下: 根据我搅拌站的设备及生产、材料情况,取T w =16℃,T ce=40℃,T s=35℃,ωsa=5.0%,ωg=0%, T sa=10℃,T g=10℃,C1=4.2,C i =0 则T0=[0.92(280×40+175×35+723×10+1041×10)+4.2×16(165- 5.0%×723-0%×1041)+4.2(5.0%×723×10+0%×1041×0)-0 (ωsa m sa+ωg m g)]÷[4.2×165+0.92(280+175+723+1041)]=[0.92*(11200+6125+7230+10410)+67.2*(165-36.2-0)+4.2*(361.5+0)-0]/[693+ 0.92*2219] =[0.92*34965+67.2*128.8+4.2*361.5]/2734 =[32167.8+8655.4+1518.3]/2730=42341.5/2734=15.5℃ (3)混凝土拌合物出机温度宜按下列公式计算: T1=T0-0.16(T0-T i) 式中T1—混凝土拌合物出机温度(℃); T i—搅拌机棚内温度(℃)。 取T i =16℃,代入式1.2得 T1=15.5-0.16(15.5-16) =15.4℃ (4)混凝土拌合物经运输到浇筑时温度宜按下列公式计算: T2=T1-(αt1+0.032n)(T1-T a)(1.3) 式中T2—混凝土拌合物运输到浇筑时的温度(℃); t1—混凝土拌合物自运输到浇筑时的时间(h); n—混凝土拌合物运转次数; T a—混凝土拌合物运输时环境温度(℃); α—温度损失系数(h-1) 当用混凝土搅拌车输送时,α=0.25; 取t1=0.3h,n=1,α=0.25 ,T a =15℃,代入式1.3得: T2=15.4-(0.25×0.3+0.032×1)×(15.4-15) =15.4-0.107*(-0.4)≈15.4℃

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

大体积砼热工计算C35P8

混凝土热工计算 一.混凝土(C35P8)施工配合比 二.原材料 1.水泥:选用大冶尖峰P.O4 2.5 ; 2.掺合料1:安徽马钢嘉华新型建材有限公司S95矿粉; 3.掺合料2:武汉华电粉煤灰开发公司F类Ⅱ级粉煤灰; 4.掺合料3:中冶武汉冶金建筑研究院有限公司,CAS膨胀纤维抗裂剂; 5.外加剂:鄂州市樊泰隆科技有限公司,聚羧酸高效减水剂SG-100; 6.细集料:巴河中砂细度模数2.6---3.0;含泥量<2%;泥块含量 <1%; 7.粗骨料:黄石大冶5-31.5mm碎石;含泥量<1%;泥块含量<0.5%。 三、控制混凝土综合温差,降低裂缝可能性的方法 1.提高优质Ⅱ级粉煤灰的掺量,以降低混凝土的水化速度,同时降低混 凝土的水化升温; 2.调整混凝土外加剂SG-100,延长混凝土凝结时间,控制混凝土的初 凝时间在7-10小时; 3.CAS膨胀剂有一定膨胀性能,抵消混凝土的部分收缩。 4.通过施工单位对混凝土表面的覆盖进行混凝土保温、保湿养护,以降 低混凝土的内外温差; 5.选用合格的原材料,尽量降低砂率,优化配合比,减少收缩; 6.尽量降低混凝土的出机温度,不超过30℃。

四、混凝土质量控制 1.严格按配合比生产混凝土,严格控制混凝土的单方用水量;严格控制砂、石料的含水率;严格控制原材料的温度在规定的范围内,同时混凝土入模不大于30℃; 2.混凝土生产时严格按配合比计量,其计量偏差应符合G B50164-2011《混凝土质量控制标准》的规定,水泥误差应控制在2%以内,粗细骨料在3%以内,水及外加剂在2%以内; 3.混凝土搅拌时间不低于40秒; 4.合理安排车辆,严格控制混凝土的出站坍落度不大于200mm,使混凝土到现场坍落度满足工地施工要求,入泵坍落度180-190mm,入模坍落度不大于180mm; 5.混凝土在现场或在运输期间绝对禁止加水; 6.混凝土自出站后,必须在2.5个小时之内浇筑完毕。 7.混凝土振捣严格按规范要求,应避免过振和漏振现象; 8.混凝土施工完毕后,应及时的做好保温、保湿措施,以提高混凝土的表 面温度,从而降低混凝土的内外温差。 五.生产组织保证及服务保证措施 1、生产调度人员昼夜值班,随时准备为施工单位服务。 2、严密组织生产,在现场安排生产调度,合理安排车辆,正常生产砼时做到工地不断车、不压车。 3、机务人员做好设备的检查工作,保证生产施工过程中搅拌、运输、泵送设备的完好,并昼夜值班,解决突发事件。 4、质量人员昼夜服务,深入工地现场检查,与工地负责人随时保持联

(新)混凝土热工计算

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

大体积混凝土施工中混凝土温度计算

大体积混凝土施工中混凝土温度计算 1、混凝土拌和温度 1.1混凝土不加冰拌和温度 设砼拌合物的热量系有各种原材料所供给,拌和前砼原材料的总热量与拌合后流态砼的总热量相等。 g s w c g s g g w s s w w w w c c c g g g s s s o m m m m T C T C m T C m T C m T C m T C T ωωωω++++++++++= o T --砼拌和温度(℃) w c g T T T T 、、、s --砂、石子、水泥、拌和用水的温度(℃) g s c m m m 、、--水泥、扣除含水量的砂及石子的重量(kg ) g s ωω、、w m --水及砂、石中游离水的重量(kg ) w c g C C C 、、、s C --砂、石、水泥及水的比热容(kJ/kg ·K ) 若c g C C 、、s C 取0.84,w C 取4.2,则公式简化为: g s w c g s g g s s w w c c g g s s o m m m m T T m T m T m T m T T ωωωω++++++++++= )(22.0)(22.0 也可用表格计算法,∑∑= mC mC T T i o 2、砂、石的重量是扣除游离水分后的净重。 1.2混凝土加冰拌和温度 为降低砼入模温度和砼的最高温度,常将部分水以冰屑代替,冰屑融解时要吸收335kJ/kg 的潜热(隔解热),可降低砼拌和温度。

g s w c g s w g g s s w w c c g g s s o m m m m Pm T T m T P m T m T m T T ωωωω+++++-++-+++= )(22.080)1()(22.0 P —加冰率,实际加水量的%,经验加冰率一般控制在25%~75% 砼拌和水中加冰量也可根据需要降低水温按下式计算: w w wo T T T X +?-= 801000 )( X —每吨水需加冰量(kg) T wo —加冰前水的温度(℃) T w --加冰后水的温度(℃) 2、混凝土出罐温度 3、混凝土浇筑温度 砼浇筑温度为砼拌和出机后,经运输平仓振捣等过程后的温度。 n o s o p T T T T θθθθ+??????+++-+=321)(( p T --砼浇筑温度 o T --砼拌和温度 ????n 321θθθθ、、--温度损失系数 4、混凝土绝热升温 假定结构四周无任何散热和热损失条件,水泥水化热全部转化成温升后的温度值,则砼的水化热绝对温升值: )1()(mt c t e C Q m T --= ρ )max ρ C Q m T c = )(t T --浇筑一段时间t ,砼的绝热温升值(℃) c m --每立方米砼水泥用量(kg/m 3 ) Q --每千克水泥水化热量(J/kg ) C --砼的比热 在0.84~1.05kJ/kg ·K 之间,一般取0.96kJ/kg ·K ρ--砼的质量密度。取2400 kg/m 3 e --常数为2.718

混凝土热工计算公式

冬季施工混凝土热工计算步骤 冬季施工混凝土热工计算步骤如下: 1、混凝土拌合物的理论温度: T0=【0.9(mceTce+msaTsa+mgTg)+4.2T(mw+wsamsa-wgmg)+c1(wsamsaTsa+wgmgTg) -c2(wsamsa+wgmg)】÷【4.2mw+0.9(mce+msa+mg)】 式中 T0——混凝土拌合物温度(℃) mw、 mce、msa、mg——水、水泥、砂、石的用量(kg) T0、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃) wsa、wg——砂、石的含水率(%) c1、c2——水的比热容【KJ/(KG*K)】及熔解热(kJ/kg) 当骨料温度>0℃时, c1=4.2, c2=0; ≤0℃时, c1=2.1, c2=335。 2、混凝土拌合物的出机温度: T1=T0-0.16(T0-T1) 式中 T1——混凝土拌合物的出机温度(℃) T0——搅拌机棚温度(℃) 3、混凝土拌合物经运输到浇筑时的温度: T2=T1-(at+0.032n)(T1-Ta) 式中 T2——混凝土拌合物经运输到浇筑时的温度(℃); tt——混凝土拌合物自运输到浇筑时的时间; a——温度损失系数 当搅拌车运输时, a=0.25 4、考虑模板及钢筋的吸收影响,混凝土浇筑成型时的温度: T3=(CcT2+CfTs)/( Ccmc+Cfmf+Csms) 式中 T3——考虑模板及钢筋的影响,混凝土成型完成时的温度(℃); Cc、Cf、Cs——混凝土、模板、钢筋的比热容【kJ/(kg*k)】; 混凝土取1 KJ/(kg*k); 钢材取0.48 KJ/(kg*k); mc——每立方米混凝土的重量(kg); mf、mc——与每立方米混凝土相接触的模板、钢筋重量(kg); Tf、Ts——模板、钢筋的温度未预热时可采用当时的环境温度(℃)。 根据现场实际情况,C30混凝土的配比如下: 水泥:340 kg,水:180 kg,砂:719 kg,石子:1105 kg。 砂含水率:3%;石子含水率:1%。 材料温度:水泥:10℃,水:60℃,砂:0℃,石子:0℃。 搅拌楼温度:5℃ 混凝土用搅拌车运输,运输自成型历时30分钟,时气温-5℃。 与每立方米混凝土接触的钢筋、钢模板的重量为450Kg,未预热。 那么,按以上各步计算如下: 1、 T0=【0.9(340×10+719×0+1105×0)+4.2×60×(180-0.03×719-0.01×1105)+2.1×0.03×719×0+2.1×0.01×1105×0-335×(0.03×719+0.01×1105)】/【4.2×180+0.9(340+719+1105)】=13.87℃ 2、 T1= T0-0.16(T0- T1)=13.87-0.16×(13.78-5)=12.45℃ 3、 T2= 12.45-(0.25×0.5+0.032×1)(12.45+5)=9.7℃

大体积混凝土测温方案及测温方法

大体积混凝土测温方案及测温方法

X交通大学第一医院l号、2号高层住宅楼采用筏板混凝土基础,剪力墙结构,地上33层.地下2层(含夹层),建筑高度97.8 m,建筑面积72,469rn2。1号、20楼筏板混凝土总方量分别约为1 250m 3,筏板强度等级C35,抗渗等级P6。筏板混凝土厚度为600mm,基础梁l400mm,核心承台1 800mm。本筏板工程属于大体积混凝土。大体积混凝土施二r中要求控制混凝土内外温差,混凝土厚度小于2. 0m时,内外温差不宜大于25℃;对于厚度超过2.0m的混凝土,根据已有的经验,只要控制温度梯度小于12.5℃/m。可适当放宽内外温差至30~ 33℃,否则会产生温差裂缝。 1 大体积混凝土施工的技术要求 1.1 本工程大体积混凝±筏板的特点 (1)筏板要求具有足够的强度,达到设计强度等级C35。水泥、粉煤灰、膨胀剂等胶凝材料在水化过程中将放出大量的热量。 (2)筏板要求具有良好的抗渗性,因此,原材料要严格控制含泥量。在混凝土配合比设计中要加入优质的泵送减水剂,提高混凝土密实度,同时掺入膨胀剂,以补偿混凝土收缩。 (3)筏板要求具有良好的整体性,防止贯穿性裂缝产生,同时尽量减少浅层裂缝的出现。 1.2 大体积混凝±施工技术要求 本工程采用商品混凝土,l号楼于2O04年5月3日(16:30)至5日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为10~28℃。混凝土入模温度15—22℃。2号楼于2004年6月1日(4:30)至2

日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为16~29 ℃,混凝土入模温度22~3l℃。白天温度较高的时候只覆盖塑料布保湿,晚上温度较低的时候及时增加覆盖棉毡进行保湿保温养护;如遇大雨天则在混凝土上面再加盖塑料布,防止积水太多(不超过20mm)导致混凝土表面温度太低而加大温差。经过9d的温度监测,1号楼大体积混凝土筏板的内部最高温度从59.9 ℃降至40℃以下,表面温度相应降至30℃左右;2号楼大体积混凝土筏板的内部最高温度从64. 8℃降至40℃以下,表面温度相应降至30℃左右,已达到安全温度,可不对筏板混凝土进行温度监控。 2 测温方式 本工程采用计算机温度监控系统对X交通大学第一医院1号、2 号高层住宅楼筏板进行温度监测。 在混凝土浇筑以前,将下端封闭的测温套管(图1)固定在测温点平面位置上,并在套管的不同高度放置测温元件。通过热电转换,数据采集及处理,在计算机上监控混凝土的温度变化 测温点的平面布置按浇筑前后顺序、不同混凝土厚度等共布置6 个测温点。测温点在竖向测试3个深度处的温度:混凝土表层温度(距混凝土表面10cm高度处的温度)、混凝土中心温度(即1/2高度处的温度)和混凝土底部的温度(距混凝土底面20cm高度处的温度)。对厚度小于1000mm的测点只监测其内部温度即可 3 测温结果 从监视器自动形成的温度变化曲线可以看出:环境曲线显示一天中

混凝土热工计算步骤及公式

冬季混凝土施工热工计算 步骤仁 出机温度T,应由预拌混凝土公司计算并保证,现场技术组提出混凝土 到现场得出罐温度要求。 计算入模温度T 2: (1) 现场拌制混凝土采用装卸式运输工具时 T 2=T-AT y (2) 现场拌制混凝土采用泵送施工时: T 2=T-AT b (3) 采用商品混凝土泵送施工时: T 2=T-AT-AT b 其中,AT y . 分别为采用装卸式运输工具运输混凝土时得温度降低

与采用泵管输送混凝土时得温度降低,可按下列公式计算: ATy= ( a ti+O> 032n) X (L- Ta) 3.6 I)w 叫= =4u)x x AT. x x d h C r x p r x D7 0.04 + — L L L 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(°C) △ Ty——采用装卸式运输工具运输混凝土时得温度降低CC) △Tb——采用泵管输送混凝土时得温度降低(°C) AT.——泵管内混凝土得温度与环境气温差(°C),当现场拌制混凝土 采用泵送工艺输送时:AL= T-「;当商品混凝土采用泵送工艺输送时:△ T F T- T- Ta T a ——室外环境气温(°C) t.——混凝土拌合物运输得时间(h) t2——混凝土在泵管內输送时间(h) n ——混凝土拌合物运转次数 Q ——混凝土得比热容[kj/(kg ?K)] p c ——混凝土得质量密度(kg/m 3) 一般取值2400 X b ——泵管外保温材料导热系数[W/ (ni ?k)] d b ---泵管外保温层厚度(m) D L ——混凝土泵管内径(m) D w ——混凝土泵管外围直径(包括外围保温材料)(m) CD ——透风系数,可按规程表A. 2. 2-2取值 a ——温度损失系数(h"1);采用混凝土搅拌车时:a 二0、25;采用开敞式 大型自卸汽车时:a 二0、20;采用开敞式小型自卸汽车时:a 二0、30;采用封 闭式自卸汽车时:a=:o 、1;采用手推车或吊斗时:a 二0、50 步骤2:考虑模板与钢筋得吸热影响,计算成型温度T3 CdiuT 2 + Cfin(Tf + Csin^Ts C(nk + Cjnif + C.v/n.v Cc --- 混凝土比热容(kj/kg ?K)普通混凝土取值0、96 C f --- 模板比热容(kj/kg ?K)木模2、51,钢模0、48 C s ——钢筋比热容(kj/kg ?K)o 、48 me --- 每混凝土重量(kg) 2500 m f --- 每m 3混凝土相接触得模板重量(kg) T3=

大体积砼温度计算

5.1.4热工计算如下: 1)混凝土绝热温升 T h(t)=[m c×Q/(c×p)](1-e-mt) 其中t为龄期 m c――混凝土中水泥 (含膨胀剂) 用量(kg/ m3); Q――水泥28天水化热; 不同品种、强度等级水泥的水化热表 c――混凝土比热,一般为—,计算时一般取(kJ/ p――混凝土密度,一般取2400(Kg/m3) e――常数,为 t――混凝土的龄期(天); m――系数,随浇筑温度改变,查表可得。 系数 m 本工程C35S8混凝土拟采用配合比(经验配合比,根据实际配

合比在制定实施方案时重新计算): 经计算得出不同龄期下的混凝土绝热升温T h,见下表: 2)t龄期混凝土中心计算温度 混凝土中心计算温度按下式计算: T1(t)= T j+ T h(t)×ξ(t) T1(t)―― t龄期混凝土中心计算温度 T h(t)―― t龄期混凝土绝热升温温 T j――混凝土浇筑温度,取值根据浇筑时的大气温度确定,根据预计浇筑时的气候条件,取T j=30℃ ξ(t)―― t 龄期降温系数 ξ(t)取值表

本工程ST1、ST2及裙楼底板厚度分别为4m、3.5m、1.5m,分别经计算T1(t)取值见下表: T1(t)取值表 3)保温材料计算厚度 保温材料计算厚度按下式计算: δ=×λx(T2-T q)×K b/λ(T max-T2) h――筏板厚度 λx ――所选保温材料的导热系数[W/()] T2――混凝土表面温度 T q――施工期大气平均温度,取30℃ λ――混凝土导热系数,取[W/()] T max――计算得混凝土最高温度 计算时取:T2-T q = 15--20oC,

大体积混凝土测温点布置原则

大体积混凝土测温点布置原则: 一、大体积砼温度的控制不仅要控制内表温差(指砼中心最高温度与之相对应的砼表面温度之间的温差)和表面温差(指砼中心最高温度相对应的表面温度与环境温度之间的温差),更要控制砼的综合降温差(指砼内部的平均降温差)和降温速率(指砼中心温度或表面温度每天的降温幅度)。 二、砼的任一降温差都可以分解为平均降温差及非均匀降温差,前者产生外约束应力,是产生贯穿性裂缝的主要原因,后者引起自约束应力,主要引起表面裂缝。非均匀降温差主要是控制砼的内表温差。规范规定大体积砼的内表温差应控制在25摄氏度,该控制值是比较严格的,根据我们的工程实践,该值可根据工程实际情况适当放宽,这主要取决于砼的一些实际物理指标,如:不同龄期的弹性模量、松弛系数和抗拉强度。因此,在大体积砼施工前,对温度控制指标进行一些理论计算,对施工大有指导意义。 三、测温点的平面布置原则:1)平面形状

中心;2)中心对应的侧边及容易散发热量的拐角处。3)主风向部位。总之测温点的位置应选择在温度变化大,容易散热、受环境温度影响大,绝热温升最大和产生收缩拉应力最大的地方。 四、测温点的竖向布置:一般每个平面位置设置一组3个,分别布置在砼的上、中、下位置,上下测点均位于砼表面10厘米处,另外在空气,保温层中各埋设1个测温点测量环境温度、保温层内的温度。 大体积混凝土养护一般不少于7 d,并根据板中心混凝土温度变化及同条件养护的混 凝土试块强度确定养护周期。 混凝土的养护应采用保温,保湿及缓慢降温的技术措施,一般在浇筑在厚度大于 3 m 时,要求考虑在大体积混凝土内部设置冷却水循环降温措施,设冷却水管,并通过温度检测控制混凝土中心与表面的温度或混 凝土内部与冷却水的温度控制在25℃以内。 2.3 降低水泥水化热和变形

冬雨季施工方案(带混凝土热工计算步骤 公式)

冬雨季施工方案 一、工程概况 本工程岚县秀容御苑10#、11#楼位于岚县西村北侧,北临滨河 南路,东临秀容街。由山西伟厦广业房地产开发集团有限公司开发,山西国建工程设计有限公司设计,山西省第九地质工程勘察院勘察,山西五建集团有限公司承建。10#楼地下一层,地上三十层,地下一层为住宅用户的储藏间,地上一层二层为单户,三层以上为住宅。建 筑总高度96米,建筑层高:地下一层4.0m,地上一层4.8m,地上二层4.2m,地上三层以上为住宅层高3.0m,顶层坡屋顶。住宅平面有 三个单元组成,每单元1梯四户,共计336户,建筑总面积39529.48m2。其中商铺裙房结构为框架结构,主楼为钢筋混凝土剪力墙结构,基础采用钢筋混凝土灌注桩基础。11#楼地下一层,地上十层,地下一层为住宅用户的储藏间,地上一层以上为住宅。建筑总高度30.9米,建筑层高:地下一层3.3m,地上一层以上为住宅层高3.0m,。住宅平面有三个单元组成,每单元1梯三户,共计90户,建筑总面积9066.14m2, CFG桩复合地基筏板式基础。 二、冬施工程 当室外平均气温连续5d稳定低于5℃即进入冬期施工。(一)冬施包括施工内容 1、模板工程

2、钢筋工程 3、混凝土工程 4、地下室外墙防水工程 5、地下室周边回填土工程 (二)施工部署 1、组织措施 (1)建立以项目经理为组长的冬期施工领导小组。 (2)定期组织各工种施工人员对冬期施工方法进行学习交底。 2、准备工作 (1)本工程由专人(刘健龙)负责每日收集天气预报情况,及时向冬期施工领导小组成员汇报,及时掌握了解近期的天气变化以便采取必要的防护措施。 (2)提前将工地所需的保温材料(塑料布、岩棉、草袋等)热水炉、测温工具送到工地。 (3)落实责任制。各级施工技术管理人员、试验人员及施工人员应明确责任,并认真贯彻落实冬期施工措施。做好技术交底。在每个分项施工前,由项目技术负责人向施工班组作出书面交底,内容应包括冬期施工技术措施及外加剂的使用知识,并监督实施。 (4)建立冬季施工测温制度,测温派专人(李文飞)负责,发现异常及时反映并采取措施。项目技术负责人应绘制测温孔平面图,

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

GB50496-2009大体积混凝土施工规范标准

GB50496-2009 大体积混凝土施工规范 1 总则 1.0.1为使大体积混凝土施工符合技术先进、经济合理、安全适用的原则,确保工程质量,制定本规范。 1.0.2本规范适用于工业与民用建筑混凝土结构工程中大体积混凝土工程施工,不适用于碾压混凝土和水工大体积混土工程施工。 1.0.3大体积混凝土施工除应遵守本规范外,尚应符合国家现行有关标准的规定。 2 术语符号 2.1 术语 2.1术语 2.1.1大体积混凝土mass concrete 混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。 2.1.2胶凝材料cementing material 用于配制混凝土的硅酸盐水泥与活性矿物掺合料的总称。 2.1.3跳仓施工法alternative bay construction method 在大体积混凝土混凝土工程施工中,将超长的混凝土块体分为若干小块体间隔施工,经过短期的应力释放,再将若干小块体连成整体,依靠混凝土抗拉强度抵抗下一段的温度收缩应力的施工方法。 2.1.4永久变形缝deformation seam 将建筑物(构筑物)垂直分割开来的永久留置的预留缝,包括伸缩缝和沉降缝。 2.1.5竖向施工缝vertical construction seam 混凝土不能连续浇筑时,因混凝土浇筑停顿时间有可能超过混凝土的初凝时间,在适当

位置留置的垂直方向的预留缝。 2.1.6水平施工缝horizontal construction seam 混凝土不能连续浇筑时,因混凝土浇筑停顿时间有可能超过混凝土的初凝时间,在适当位置留置的水平方向的预留缝。 2.1.7温度应力thermal stress 混凝土的温度变形受到约束时,混凝土内部所产生的应力。 2.1.8收缩应力shrinkage stress 混凝土的收缩变形受到约束时,混凝土内部所产生的应力。 2.1.9温升峰值the peak value of rising temperature 混凝土浇筑体内部的最高温升值。 2.1.10里表温差temperature difference of center and surface 混凝土浇筑体中心与混凝土浇筑体表层温度之差。 2.1.11降温速率the descending speed of temperature 散热条件下,混凝土浇筑体内部温度达到温升峰值后,单位时间内温度下降的值。2.1.12入模温度the temperature of mixture placing to mold 混凝土拌合物浇筑入模时的温度。 2.1.13有害裂缝harmful crack 影响结构安全或使用功能的裂缝。 2.1.14贯穿性裂缝transverse crack 贯穿混凝土全截面的裂缝。 2.1.15绝热温升adiabatic temperature rise

混凝土热工计算步骤及公式(完整资料).doc

【最新整理,下载后即可编辑】 冬季混凝土施工热工计算 步骤1: 出机温度T 1应由预拌混凝土公司计算并保证,现场技术组提出混凝土到现场的出罐温度要求。 计算入模温度T 2: (1)现场拌制混凝土采用装卸式运输工具时 T 2=T 1-△T y (2)现场拌制混凝土采用泵送施工时: T 2=T 1-△T b

(3)采用商品混凝土泵送施工时: T 2=T 1-△T y -△T b 其中,△T y 、△T b 分别为采用装卸式运输工具运输混凝土时的温度降低和采用泵管输送混凝土时的温度降低,可按下列公式计算: △Ty=(αt 1+0.032n )×(T 1- Ta) 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(℃) △T y ——采用装卸式运输工具运输混凝土时的温度降低(℃) △T b ——采用泵管输送混凝土时的温度降低(℃) △T 1——泵管内混凝土的温度与环境气温差(℃),当现场拌制混凝土采用泵送工艺输送时:△T 1= T 1- T a ;当商品混凝土采用泵送工艺输送时:△T 1= T 1- T y - T a T a ——室外环境气温(℃) t 1——混凝土拌合物运输的时间(h ) t 2——混凝土在泵管内输送时间(h ) n ——混凝土拌合物运转次数 C c ——混凝土的比热容[kj/(kg ·K)] ρc ——混凝土的质量密度(kg/m 3) 一般取值2400 λb ——泵管外保温材料导热系数[W/(m ·k )] d b ——泵管外保温层厚度(m ) D L ——混凝土泵管内径(m ) D w ——混凝土泵管外围直径(包括外围保温材料)(m ) ω——透风系数,可按规程表A.2.2-2取值 α——温度损失系数(h -1);采用混凝土搅拌车时:α=0.25;采用开敞式大型自卸汽车时:α=0.20;采用开敞式小型自卸汽车时:α=0.30;采用封闭式自卸汽车时:α=0.1;采用手推车或吊斗时:α=0.50 步骤2:考虑模板和钢筋的吸热影响,计算成型温度T3 T3=s s f f c c s s s f f f c c m C m C m C T m C T m C T m C ++++2 C c ——混凝土比热容(kj/kg ·K )普通混凝土取值0.96 C f ——模板比热容(kj/kg ·K )木模2.51,钢模0.48

大体积混凝土施工方案(正式)

目录 1. 编制依据 (2) 2. 工程概况 (2) 3. 施工部署 (3) 4. 混凝土的运输 (8) 5. 混凝土的浇筑 (9) 6. 质量控制 (11) 7. 热工计算 (13) 8.底板大体积混凝土连续浇筑措施 (17) 9. 安全文明施工 (17) 10.环保措施 (18) 附: 1区大体积混凝土测温点平面布置图

1. 编制依据 1.1 古湄家苑安置小区B区三标段工程施工图纸及设计洽商变更; 1.2 《建筑工程施工质量验收统一标准》(GB50300-2013); 1.3 《钢筋混凝土高层建筑结构技术规程》(JGJ3-2010); 1.4 《混凝土结构工程施工及验收规范》(GB50204-2015) ; 1.5 《混凝土质量控制标准》(GB50164-2011) ; 1.6 《混凝土泵送施工技术规程》(JGJ/10-2011) ; 1.7 《混凝土强度检验评定标准》(GBJ107-2010) ; 1.8 《民用建筑工程室内环境污染控制规范》( GB50325-2013) ; 1.9 《建筑地基基础设计规范》(GB50007-2011); 2.0 《混凝土结构设计规范》(GB50010-2015); 2.1 《江苏省绿色建筑设计标准》(DGJ32/J173-2014); 2.2 古湄家苑安置小区B区三标段工程施工组织设计; 2. 工程概况

本工程主楼底板厚度1200mm ,按对大体积混凝土基础考虑,采取相应的技术措施降低其温差,控制温度应力与裂缝。 3. 施工部署 3.1人员准备 为保证底板大体积混凝土浇筑施工质量,项目部以项目经理为领导核心大体积混凝土施工管理小组和项目部以执行经理为领导大体积砼施工攻关小组。 3.1.1大体积混凝土施工管理小组机构: 大体积混凝土施工管理小组机构

冬季施工混凝土热工计算

冬季施工混凝土热工计算 一、混凝土拌合物的理论温度计算 To=[0.9(Mce*Tce+Mcm*Tcm+Mg*Tg)+4.2*Tw(Mw-Wcm*Mcm-Wg*Mg) -C 1(Wcm*Mcm*Tcm+Wg*Mg*Tg) -C 2(Wcm*Mcm+Wg*Mg)尸[4.2*Mw+0.9(Mce+Mcm+Mg)]——(公式1) To—混凝土拌合物温度「C) M w 、M ce、M C m、M g —水、水泥、砂、石的用量( kg) Tw、Tee Tcm、Tg-水、水泥、砂、石的温度(C) Wcm、Wg—砂、石的含水率 C 1、C 2—水的比热容[kj/ (kg.k)]及冰的溶解[kj/ (kg.k)]当骨料温度>0C时,C 1=4.2,C 2=0 W0时,C 1=2.1, C 2=335 墙体混凝土配合比为: 水泥:砂:石:水(每立方量)=419:618:1100:190 砂含水量为5%,石含水量为0% 热水温度为80C,水泥温度为5C,砂温度为3C,石温度为3C。 根据公式1

To=[0.9(419 米618 x 齐1100 x 3)4.2 x 80(1900.05 x 618) 4.20.05 x 618823 x 0.05 X-6335 x 0.05 x 618] - [4.209(409 + 618+ 1100)]=18.06C 二、混凝土拌合物的出机温度计算: T 1= To—0.16(To-Tp)(公式2)T 1—混凝土拌合物出机温度(C) Tp—搅拌机棚内温度(C) 根据公式2 T 1=18.06—0.16(18.06—6)=16.13C 三、混凝土拌合物经运输到浇筑时的温度计算 T 2=T1—(a x t i+0.032n) (x T 1 + Th)――(公式3)T 2—混凝土拌合物经运输到浇筑时温度( C ) t i —混凝土拌合物自运输到浇筑时的时间(h) n—混凝土拌合物转运次数 Th—混凝土拌合物运输时的环境温度(°C)

相关文档
最新文档