钢结构课程设计word版

钢结构课程设计word版
钢结构课程设计word版

1.1.1设计资料

某机床加工车间,厂房跨度21m或24m,长度96m.设计对象为厂房内的钢操作平台,其平面尺寸为27.0m×22.5m,室内钢结构操作平台建筑标高为4.500m。房屋安全等级为二级,设计使用年限50年,耐火等级二级,拟采用钢平台。

(1)钢平台楼面做法:采用花纹钢板或防滑带肋钢板。

(2)楼面活荷载标准值:根据工艺要求取为7.3KN/m

(3)钢平台结构连接方式:平台板与梁采用焊接(角焊接);次梁与主梁采用高强度螺栓连接;主梁与柱采用焊接或高强度螺栓连接,定位螺栓采用粗制螺栓。

(4)材料选用:型钢、钢板采用Q235- A. F;焊条采用E43 ××型。粗制螺栓采用Q235钢材。

(5)平台柱基础混凝土强度等级C25。

试对铺板、次梁、主梁、钢柱以及次梁与主梁、主梁与柱上端、柱脚及钢楼梯进行设计。

1.1.2结构布置

1. 梁格布置

采用单向板布置方案,柱网尺寸为9.0m×4.5m;主梁沿横向布置,跨度为9m;次梁沿纵向布置,跨度为4.5 m。间距为1.5m;单块铺板的平面尺寸为1.5m×9.0m。

2.连接方案

次梁与主梁采用高强螺栓侧面铰接连接,次梁与主梁的上翼缘平齐;主梁与柱采用侧向铰接连接;柱与基础采用铰接连接;平台板与主(次)梁采用焊接(角焊缝)连接。

3. 支撑布置

钢平台柱的两端均采用铰接连接,并设置柱间支撑,以保证结构几何不变。在轴线②、⑤和轴线○B 处分别布置纵、横向支撑,采用双角钢,如图1-2所示。

图1-2 1-1剖面

因无水平荷载,支撑磕按构造要求选择角钢型号。

受压支承的最大计算长度mm mm l 9750)2009000()2804500(220=-+-=,受压支撑的允许长细比[λ]=200,要求回转半径

i ≥,75.48200/9750]/[0mm mm l ==λ选用2L125×8(节点板厚度6mm ,mm i y 4.35=,y 为对称轴)。

1.1.3 铺板设计

1.初选铺板截面

在铺板的短跨方向设置8道加劲肋,间距m m 1000l 1=。平板厚度

m m 8t m m 03.8~67.6120l ~150l t 11==≥,取。

2.计算简图

因铺板区格长边之比5.10.1/5.1a b == 可作为多跨连续的双向板计算,加劲肋和次梁作为其支承边。

3.内力计算

(1)荷载计算

7mm 厚花纹钢板: 2

20.63K N

/m 0.008K N /m 78.5=? 平台板永久荷载标准值: 2k m /k 63.0g N = 平台板可变荷载标准值: 2k m /k 3.7q N = 平台板的荷载基本组合值:

22k k m /k 054.10m /k 3.73.163.02.1q g N N P Q G =?+?=+=)(γγ

平台板的荷载标准组合值:

22k k k m /k 93.7m /k 3.763.0q g N N P =+=

+=)( (2)内力计算

平台板单位宽度最大弯矩:

222max 0.829kN/m m /m k 1054.10081.0pa =???==N M α

注:根据b/a=1.5,查表4-1可得,均布荷载作用下四边简支板的弯矩系数α=0.081 平台板的最大挠度: m m 32.6m m 81006.21000107.93084.0Et f 3

54

-334max

=?????==a q k β

注:根据b/a=1.5,查表4-1可得,均布荷载作用下四边简支板的弯矩系数α=0.084

4.截面设计

(1)强度计算 铺板的强度按式(4-5) 计算

(满足要求)2

222

3

2m a x

m a x mm /215f mm /76.64mm /8

2.110829.06t 6N N N M W M =<=???=

=γγ

(2)挠度计算

(满足要求)

150

1

1581100032.6a f <== 5.加劲肋设计

(1)计算简图 加劲肋与铺板采用单面角焊缝,焊脚尺寸6mm ,每焊150mm 后跳开50mm 间隙(图1-3b )。 此连续构造满足铺板与加劲肋作为整体计算的条件。

加劲肋高度取h=80mm ,厚度8mm ,考虑有30t=240mm 宽度的铺板作为翼缘,按T 形截面计算,如图1-3c 所示。加劲肋的跨度为1.5m ,计算简图如图1-3a 所示

图1-3加劲肋的计算简图

(2)荷载计算 铺板为四边支承板,较精确地计算可嘉定荷载按梯形分布,为简化计算,可安全地均布荷载考虑,即取加劲肋的负荷宽度1000mm 。

永久荷载标准值:

平台板传来永久荷载 m N N /k 63.0m /k 163.0=?

加劲肋自重 m /k 05024.0m /k 008.008.05.78M N =?? m /k 68.0g k N =

可变荷载标准值: m /k 3.7m /k 13.7q k N N =?= 荷载的基本组合值: m N N P Q G /k 306.10m /k 3.73.168.02.1q g k k =?+?=+=)(γγ

荷载的标准组合值

m /kN 98.7m /kN 3.768.0q g k k k =+=

+=)(P (3)内力计算 跨中最大弯矩设计值 m k 90.2m 5..1306.108

1

8122max ?=???==

N kN pl M 支座处最大剪力设计值

kN kN pl V 73.75.1306.102

1

21max =??==

(4)截面特性计算 截面形心位置 mm mm y c 158

808240)

840(88048240=?+?+??+??=

截面惯性矩

)(33.1280853)1548(88080812

1

)415(8240824012142323mm I =-??+??+-??+??=

支座处抗剪面积只计算铺板部分,偏于安全的仍取180mm 范围,则

2219208240mm

mm A v =?= (5)强度计算 受弯强度计算按式(4-7)计算,受拉侧应力最大截面塑性发展系数取1.2.

2

26

max /215/73.137)

1588/(33.12808532.110

90.2...mm N f mm N W M nx

x =<=-??=

=

γσ(满足要求)

受剪强度按式(4-8)计算: τ=

V

A V

It S V max max 5.1= =2223

/125m m 04.6m m /1920

1098.75.1mm N f N v =<=??

(满足要求) (6)变形计算 加劲肋的挠度按式(4-9)计算:

150

1

752153.128091006.2384150056.4538455

33<=?????==x k EI l p l f (满足要求) 1.1.4 次梁设计

1.计算简图

次梁与主梁铰接,按简支梁计算,跨度0l =9.0m ,如图1-4示

`

图1-4 次梁计算简图

2.初选次梁截面

次梁的荷载主要由铺板---加劲肋传来相隔1000mm 分布集中荷载,每个加劲肋传到次梁上的集中荷载设计值

q BS =10.306KN/m ×0.1/5.1=15.459KN/m q BSK =7.98KN/m ×0.15.1=11.97KN/m

次梁采用轧制普通工字钢,假定铺板不起刚性楼板作用。跨中无侧向支撑,上翼缘受均匀布荷载,自由长度为9.0m 。

假定钢号为22~40之间,查《钢结构设计规范》(GB 50017-2003)附表B.2, =0.4。

次梁跨中弯矩设计值

M max =281l q BS =8

1

×15.459×9.0 2KN ·m=156.62KN ·m

所需的截面抵抗矩

W x f

M b X ?max 02.1?≥=

362154.010

62.15602.1mm ???=1856.4cm 3 选用I 50c, h=500mm, b=162mm, t w =20mm, t=16mm, W x =2026cm 3,

I x =50639cm 4,自重为109Kg/m=1.09KN/m

3.内力计算

包含自重在内的次梁均布荷载基本组合值

q BS =(15.459+1.2×1.09)KN/m=16.77KN/m

均布荷载标准组合值

q BSK =(11.97+1.09)KN/m=13.06KN/m 最大弯矩基本组合值

M max ==281L q BS 80.169977.1681

2=??KN ·m

最大剪力基本组合值

V max =465.75977.162

1

21=??=L q BS KN

4.截面设计

轧制型钢梁不需要验算局部稳定;正截面强度不起控制作用;连接处净截面

抗剪强度见连接节点计算。截面积算内容包括承载力极限状态的整体稳定和试用阶段极限状态的挠度。

(1)整体稳定性计算

23

6

m a x /2155.2091020264.01080.169mm N f W M x b =≤=???==?σ(满足要求) (2)挠度验算

l f =215

1841110506391006.2384900006.13538454

533

<=??????=x BSK EI l

q (满足要求) 1.1.5主梁设计

1、计算简图

主梁与柱铰接,按简支梁计算,跨度0l =4.5m ,计算简图见图1-5。

图1-5主梁计算简图

a )计算简图

b )内力图

c )截面尺寸

2、初选主梁截面尺寸

(1)梁腹板高度h w 梁承受次梁传来的集中荷载,主梁的负荷宽度为4.5m 次梁传来集中荷载设计组合值:P=16.67KN/m ×4.5m = 75.01KN 次梁传来集中荷载标准组合值:P K =13.06KN/m ×4.5m = 58.77KN 主梁的弯矩设计值近似按此梁端部反力计算 m KN p l

pl M X ?=?-≈48.135)6

2(

2.1 注:系数1.2为考虑主梁自重后附加系数。 则所需的截面抵抗矩为

W

nx ≥ f M x =135.48mm 3 ×106/215 =533,32cm 3

按下式确定梁的经济高度:

h e =73nx W —30cm=7×31560 -30cm=51.18cm

或 cm cm W h nx

e 80.561560335

252

=?==

主梁的最小高度按刚度条件确定,梁的允许挠度为4000l ,其最小高度h min 必须满足: m i n h ≥ 150l =4500mm/15=300mm

取梁的腹板高度h w =600mm ,满足最小高度要求,且接近经济高度。 (2)梁腹板厚度t w 梁腹板可按式(4-13)估算:

t w =

11

w h =

11

60

cm 0.7042cm =7.042mm 取t w =8mm,大于6mm 的最小要求。

(3)梁翼缘尺寸b ×t 取上、下翼缘相同,截面模量按式计算:

W x =6

2w

w h t +w bth

可得到所需的上(下)翼缘面积:

w x h W bt =

- 6w w h t =2200.18)5

.460

8.0601560(cm cm =?- 翼缘宽度b=(1/2.5~1/3)h =240~200mm ,取b=200mm,翼缘厚度取t=10mm,满足≥8mm 的要求。单个翼缘面积A 1 =20cm 2×1=20cm 2 >18.00cm 2,满足要求。 主梁截面尺寸如图1-6C 所示。

(4)几何特征 主梁截面面积:

288008600102002mm A =?+??=

主梁截面惯性矩:

46331013.51612/60019212/620200mm I nx ?=?-?=

46331036.1312/860012/200102mm I y ?=?+??=

抗弯截面模量:

36361098.1)2/620/(1016.516)2//(mm mm h I W nx nx ?=?==

中和轴以上部分的面积距:

333310980150830031010200mm mm mm S ?=??+??=

翼缘对截面中和轴的面积距:

33311063031010200mm mm S ?=??=

3、内力计算

取加劲肋的构造系数为1.05,主梁自重标准值:

m KN m KN g k /72.0/5.7810880005.16=???=-

主梁自重设计值:

m KN m KN g g k /86.0/72.02.12.1=?==

截面最大剪力的基本组合值

KN KN ql p V 95.762

5.48

6.001.752max =?+=+

= 截面最大弯矩的基本组合值 m KN m KN ql pl M X

?=??+?=+=69.1148

5.48

6.035.401.75832

2 主梁内力图如图1-6b 所示。

4、截面设计

(1)强度计算 抗弯强度:

σ=2

226

6max /215/2.55/1098.105.11069,114mm

N f mm N mm N W M nx x =<=???=γ

(满足要求)

抗剪强度:

2

226

3

3max /125/22.27/81013.516109801069.114mm N f mm N mm N t I S V w nx =<=?????==τ

(满足要求)

(2)整体稳定计算 次梁可以作为主梁的侧向支撑。主梁受压翼缘的自由长度1l =1.5m ,受压翼缘宽度b 1 =200mm 。11l =1500/240=6.25<16,因此可不计算主梁的整体稳定性。

(3)翼缘局部稳定计算 梁受压翼缘自由外伸宽=(200-8)mm/2=96mm ,

厚度t=10mm 。

13235

136.910961=≤==y

f t b 故受压翼缘局部稳定满足要求。

(4)腹板局部稳定验算和腹板加劲肋设计

=

=600mm,

=8mm,所以

/

=600/8=75< y f 23580=80,且

无局部压应力(

),仅需按照构造配置横向加劲肋。

根据连续需要,在次梁位置设置横向加劲肋,间距a=1.2m 。腹板两侧成对布置。其外伸宽度b s 要求满足:

mm mm mm h b s 60)4030

600

(40300=+=+≥

,取b s =(200-8)mm/2=96mm 加劲肋的厚度t s 应满足: mm t mm mm b t s s s 8,4.615

96

15===≥

取 因梁受压翼缘上有密布铺板约束其扭转,腹板受弯计算时的通用高厚比b λ:

=?=

=

1177

8

600235

177

2y w c b f t h λ 0.424<0.85 因此,临界应力f cr =σ=215N/mm 2。

a/h 0=1500/600=2.5>1,腹板受剪计算的通用高厚比λS : λS =

80.0748.01)

1500600(434.5418

600235

)

(434.5412

2

00<=??+?=

+y w

f a h t h

因此,临界应力

=125N/mm 2

根据主梁的剪力和弯矩分布(图1-5c )需对各地区段分别进行局部稳定性验算。

区段Ⅰ:平均弯矩M 1=110.34/2KN ·m=55.17KN ·m ,平均剪力V 1=(76.95+76.09)KN/2=76.52.56KN ,则弯曲应力和平均剪应力分别为

X I h M 1=σ=226

6/07.32/10

13.5163001017.55mm N mm N =??? w

w t h V 1=

τ=223

/90.15/86001030.76mm N mm N =?? 因局部压应力为0,区段Ⅰ的局部稳定:

满足要求)(0.104.012590.1521507.322

22

2<=??? ??+??? ??=???

? ??+???? ??cr cr

ττσ

σ

区段Ⅱ:平均弯矩

=(110.34+114.69)KN ·m/2=112.51KN ·m,

平均剪力

=(0.65+0)KN/2=0.33KN ,则弯曲应力和平均剪应力分别为

X I h M 2=σ=226

6/39..65/1013.516300

1051.112mm N mm N =??? w

w t h V 2=

τ=223

/06875.0/86001033.0mm N mm N =?? 因局部压应力为0,区段Ⅱ的局部稳定:

满足要求)(0.109.012506875.021539.652

2

2

2

<=??? ??+??? ??=???

? ??+???? ??cr cr

ττσ

σ

5.挠度验算

简支梁在对称集中荷载(次梁传来)和均布荷载(主梁自重)作用下的跨中挠度系数分别为19/348和5 /348,则

满足要求)

(25.11400450040029.01029.611006.2384450029.328450019.332445004.0938483842438490653

3433max 4==<=??????+??-??=+-=mm l mm mm

EI Pl EI l V EI gl f x x x 6、翼缘与腹板的连接强度

采用连续直角焊缝,所需焊缝的焊脚尺寸为

w

f

x f f I S V h 7.021

max ??≥=mm 41.01607.021013.516106201095.76633=??????? 按构造要求,max min 5.1t h f ≥ =mm mm 74.4105.1=? min max 2.1t h f ≥=1.2×7mm=8.4 取

=6mm ,如图1-5c 所示。

1.1.6 次梁与主梁的连接节点

次梁与主梁平接,如图1-6连接螺栓采用8.8级M20型高强度螺栓。计算连接螺栓和连接焊缝时,除了次梁端部垂直剪力外,尚应考虑由于偏心所产生的附加弯矩的影响。

1.支撑加劲肋的稳定计算

一侧加劲肋宽b s =56.5mm,厚度t=6mm,按轴心受压杆件验算腹板平面外稳定。验算时考虑与加劲肋相邻的15t w =15mm ×6=90mm 范围内的腹板参与工作。 加劲肋总的有效截面特性:

2223520612026200mm mm mm A =??+?=

4643431034.512/8120212/2008mm mm mm I ?=??+?=

i =mm mm A I 95.383520/1034.5/6=?=

λ=40.1598.21/6000==i l

根据λ=15.4,查《钢结构设计规范》(GB50017----2003)附录B 表B.2,可得受压稳定系数=0.983。

加劲肋承受两侧次梁的梁端剪力,N=2V=2×76.465KN=152.93KN

σ=

2223

/215/19.44/1800

983.01093.152mm N f mm N mm N A N =<=??=? (满足要求)

2.连接螺栓计算

在次梁端部剪力作用下,连接一侧的每一个高强度螺栓承受的剪力:

Nv =n V =76.465 /2KN=38.23KN (↓)

剪力V=23.28kN ,偏心距e=(40+10+40)mm=50mm ,偏心力矩M e =V e =38.23×90KN ·mm=6881.85KN ·mm 作用,单个高强度螺栓的最大拉力:

KN KN y m My N N i M t 82.6650

250

85.68812

211=??∑=

= 单个8.8级M20摩擦型高强度螺栓的抗剪承载力

N v =b

V N =N KN P n f R 25.1011255.429.0=???=μα

在垂直剪力和偏心距共同作用下,一个高强度螺栓受力为

N s =

=KN N KN KN b v 8.6472.78)82.66()23.38(22=<=+

(满足要求)

3.加劲肋与主梁的角焊缝

剪力V=76.465kN ,偏心距e=(96+40+10)mm=146mm ,偏心力矩M e =V e =76.465×146kN ·mm=11163.89kN ·mm ,采用h f =6mm ,焊缝计算长度仅考虑与主梁腹板连接部分有效,即w l =600mm-20×6mm=560mm ,则

v τ=223/26.16/560

67.0210465.767.02mm N mm N l h V w f =????=???

M σ=2

22

3/43.25/6/56067.021089.11163mm N mm N W M W e =????=

2

2222212/160/66.26/)22.1/43.25(62.16)/(mm N f mm N mm N w f M v =<=+=+βστ

(满足要求)

4.连接板的厚度

连接板的厚度按等级强度设计。对于双板连接板,其连接板厚不宜小于6mm :

所以,取连接板的厚度t=7mm 。

5.次梁腹板的净截面验算

不考虑孔前转力,近似按下式进行验算:

2

223

/125/17.11/)162202500(1610465.76mm N f mm N mm N h t V v wn w =<=?-?-??==τ (满足要求)

次梁与主梁跨内的连接节点大样如图1-6所示。

图1-6 次梁与主梁跨内的连接节点大样

1.1.7钢柱设计

平台结构中,中柱、边柱和角柱的受力显然不同,从节约钢材出发,可以设计成不同的柱子截面。但从方便钢材订货、构件加工和现场安装的便利考虑,实际工程设计时,采用相同的截面。

以最不利的中柱为依据,选择柱子截面并计算。

1. 截面尺寸初选

一根主梁传递的竖向反力设计值 1N =KN 95.76= 一根次梁传递的竖向反力设计值 2N KN 465.76= 所以,中柱的轴力设计值N :

()KN KN N 83.30676.465+95.762=?=

柱子的计算简图如图1-6b 所示,因有柱间支撑,将其视为两端不动的铰支承,柱子高度为钢平台楼面标高(标高为4.500m )减去主梁高度的一半,即H=(4500-620/2)=4190mm 。

因柱子高度不大,初步假定弱轴方向(y 轴)的计算长度为=70,b 类截面,由《钢结构设计规范》(GB 50017-2003)附录B 表B.2,可查得轴心受压构件的稳定系数=0.751,则所需的面积A :

A 22329.1900215

688.01083.306mm mm f N =??=≥?

柱的计算长度y x l l 00==4190mm ,截面的回转半径y i =4190/80=59.86mm,查有关表格,选择柱子截面HW250250,其几何系数:

翼缘厚t=14mm ,腹板厚=9mm ,回转半径

x i =10.8cm ,y i =6.29cm ,面积A=92.18cm 2,理论重量72.4kg/m 。

2. 整体稳定计算

考虑一半柱子重量集中到中柱顶,则柱顶轴力设计值:

a)b)

图1-7 平台柱计算简图

a )平台柱梁建筑高度

b )计算简图

N=306.83KN+1.20.724 4.5/2KN=308.78KN

=x x l 0=4190/108=2880

=y y i l 0=4190/62.9=66.61

绕两主轴截面分类均属于b 类,故按较大长细比(=66.61)计算,由《钢结构设计规范》(GB50017-2003)附录B 表B.2,可查得

=0.769,则

A N y ?=

2223

/215/55.43/9218

769.01078.308mm N f mm N mm N =<=??(满足要求) 3.局部稳定计算

翼缘外伸宽度与其厚度的比值:

66.161)61.661.010(235)0.110(6.8142/)9250(1=??+=+<=-=y

f t b λ 腹板高度与其厚度的比值:

30.531)61.665.025(235)5.025(6.249142250=??+=+<=?-=y

w w f t h λ 满足稳定要求。

4.刚度计算

λmax =66.61<[λ

] =150 (满足要求)

1.1.8主梁与柱的链接节点

1. 主梁与柱侧的链接设计

主梁搁置在小牛腿上,小牛腿为T 形截面,尺寸如图1-8d 所示。小牛腿与柱翼用角焊缝链接,主梁支座反力通过支撑面接触传递。小牛腿2M12普通螺栓其安装定位作用,与连接角钢连接的2M12普通螺栓其防止侧倾作用。 主梁梁端局部承压计算:

腹板翼缘交界处局部承压长度:

o m m mm l z 15)105.210135(=?+-= 梁端集中反力设计值1V =76.95KN ,则

22231/215/125.64/81501095.76mm N f mm N mm N t l V w z c =<=??==σ

因此,主梁端部的连接设支承加劲肋。

图1-8 平台梁与柱的连接构造

a)平台梁与柱的连接 b)1-1剖面 c)2-2剖面 d )小牛腿截面 e )小牛腿焊缝截面

2.牛腿与柱的连接设计

角焊缝柱脚高度=8mm ,扣除焊缝起始处各10mm 厚的焊缝截面如图4-27e 所示。

焊缝截面几何特性计算: 抗剪计算面积

22500041160+12230mm mm A wf =??= 截面形心位置 ()()

mm mm y c 121141*********

1416015412230=?+???+??=

焊缝群惯性矩

4

4229354440])80121(2240)6121172(2760[mm mm I wx =-?+--?=

最下端截面模量=/125=9354440/125=73169.0

焊缝内力设计值:

剪力 V=76.95KN

弯矩 M=76.95x(0.125/2+0.01)KN m=5.42KN m 焊缝截面强度计算:

=

39.155000

1095.763

=?N/

=

08.740

.731691042.56

=?N

=???

?????+??? ??=2

2)39.14(22.108.74N/

=62.64N/<160N/ (满足要求)

因焊缝截面承载力设计值小于牛腿截面设计承载力,故不再作牛腿截面弯矩、抗剪计算。

2. 柱翼缘在牛腿翼缘拉应力作用下是否设置横向加劲肋

《钢结构设计规范》(GB50017-2003)第7.4.1条规定计算柱翼缘厚度是否满足:

式中,cf t cf A 分别为柱翼缘板厚度和梁(本例中小牛腿)受拉翼缘面积;C A b A 分别为梁(小牛腿)翼缘和柱翼缘的钢材强度设计值。

=0.4x 215/21512250??=21.9>12

故需要设置横向加劲肋。设横向加劲肋为-80钢板,布置在与小牛腿翼缘的

同高处,如图1-9a 所示。

1.1.9柱脚设计

平台柱的柱脚采用铰接连接的方式。

1. 底板面积

平台柱截面HW250×250,采用方形底板,其边长B=H=b+40mm=290mm 。初选螺栓孔直径24mm ,底板上锚栓孔洞直 径50mm ,A 0 =1963mm 2 。

钢结构毕业设计论文

毕业设计 建筑设计 1.前言 如今,钢结构建筑在人们的生活中被广泛应用;钢结构的高层建筑、大型厂房、大跨度桥梁、造型复杂的新式建筑物等如雨后春笋般的出现在世界各地,这足以表明钢结构的发展趋势和美好的未来。 钢结构建筑相比于混凝土结构在环保、节能、高效等方面具有明显优势,且具有材料强度高、重量轻、材质均匀、塑性韧性好、结构可靠性高、制作安装机械化程度高、抗震性能良好、工期短、工业化程度高、外形多样美观等优点,并符合可持续发展的要求。目前,国内大约每年有上千万平米的钢结构建筑竣工,国外也有大量钢结构制造商进入中国,市场竞争日趋激烈,为此通过该项设计,达到能够理论联系实际地将学到的专业理论做一次全面的应用目的。 毕业设计是这大学四年来对所学土木工程知识的一次系统的、全面的考察和总结,是大学重要的总结性教育。通过做毕业设计,使我对钢结构的学习和研究更为的深入,深化了我对土木工程专业知识的认知和理解。在做毕设的过程中通过查阅各种文献资料、规范案例,不仅拓展了我的知识面,也培养了我独立思考、查阅资料的能力。 2.设计概况 本工程为青岛市华原纺织厂职工宿舍楼,采用钢结构框架支撑体系,共5层,各层层高均为3.5m,采用造型时尚的四坡屋顶,建筑结构总高度为19.7(加屋顶),每层建筑面积约为619.92㎡,总建筑面积3099.6㎡,维护结构采用ALC板(150mm);本建筑设计采用横向8跨,9根柱;纵向2跨,3根柱的柱网布置;室内外高差为0.45m,建筑主要功能为集体居住。 总平面图见图2-1。 图2-1 总平面布置图 3.设计条件

3.1 工程地质条件 (1)拟建场地地型平坦,自然地表标高36.0m 。 (2)地基基础方案分析:宜采用天然地基,全风化角砾岩、强风化角 砾岩或中风化角砾岩为地基持力层,建议采用-1.0m ~-3.0m 柱下独立基 础;其中全风化角砾岩,土层平均厚度 2.1m ,地基承载力特征值 kPa ak f 220 ,可 作为天然地基持力层。 (3)抗震设防烈度为6度,拟建场地土类型为中硬场地土,场地类别为 Ⅱ类。 3.2 气象条件 (1)降水。平均年降雨量777.4mm ,年最大降雨量1225.2mm ;雨量集中期: 7月中旬至8月中旬,月最大降雨量140.4mm ;基本雪压:0.6kN/㎡。 (2)主导风向:夏季为东南风,冬季为西北风;基本风压:0.6kN/㎡。 3.3 楼面基本荷载 荷载一组。恒载:5.0kN/㎡,活载:2.0kN/㎡。 荷载二组。恒载:5.5kN/㎡,活载:2.0kN/㎡。 3.4 其他技术条件 建筑等级:耐久等级、耐火等级均为Ⅱ级,采光等级为Ⅲ级。 4 设计方案 4.1.1柱网布置 本方案采用横向3排柱形式,共两跨且不对称;纵向9排柱,柱距分 两种,即3.6m 和7.2m ,纵向柱网对称布置。该方案主要采用大柱距且3 排两跨的柱网,充分节约钢材以及发挥钢结构宜于应用到大跨度的优点; 并且结构形式简单,计算简图简单,受力分析简便,合理可行。(柱网布置 见图4-1-1)。 图4-1-1 结构柱网布置图 4.1.2 建筑结构形式分析选定 多层钢结构房屋的体系有纯框架体系、框架支撑—-支撑体系、框架剪力墙体系、

钢结构梯形屋架课程设计

一、设计资料: 1.结构形式: 某厂房总长度90m,跨度为18m.,纵向柱距6m,采用梯形钢屋架,无檩屋盖体系,采用1.5×6.0m预应力混凝土屋面板,屋架铰支于钢筋混凝土柱上,上柱截面400x400,柱的混凝土强度等级为C30,屋面坡度i=1/10。地区计算温度高于-200C,无侵蚀性介质,地震设防烈度为8度,屋架下弦标高为18m;厂房内桥式吊车为2台150/30t(中级工作制),锻锤为2台5t。 2. 屋架形式及荷载:屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的内力)如附图所示。 屋架采用的钢材为:Q235钢;焊条为:E43型。 3.荷载标准值(水平投影面计) 荷载: ①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架跨度,以m为单位,q为屋 架及支撑自重,以KN/m2为单位; =0.35KN/m2, ②可变荷载:活荷载标准值为0.7KN/m2,雪荷载的基本雪压标准值为S 0活荷载与雪荷载不同时考虑,而是取两者的较大值。 积灰荷载标准值: 0.7KN/m2 ③屋面各构造层的荷载标准值: 三毡四油(上铺绿豆砂)防水层 0.4KN/m2 水泥砂浆找平层 0.4KN/m2 保温层: 0.4KN/m2 一毡二油隔气层 0.05KN/m2 水泥砂浆找平层 0.3KN/m2 预应力混凝土屋面板 1.45KN/m2 二、结构形式与布置图: 屋架支撑布置图如下图所示。

12 12

符号说明:WGJ-钢屋架;SC-上弦支撑;XC-下弦支撑;CC-垂直支撑;GG-刚性系杆;LG-柔性系杆 A a +3. 4700.000-6.221-8.993-9.102-9.102-6.502 -3.3 82 -0.690 -0.462 +4.739 +1.884 -0. 462 -1.0-1. 0+0. 812-0.5+7. 962+9.279 +9. 279c e g B C D E F G 0.5 1. 0 1. 0 1. 0 1.0 1.0 1. a.18米跨屋架(几何尺寸) b.18米跨屋架全跨单位荷载 作用下各杆件的内力值 c . 18米跨屋架半跨单位荷载作用下各杆件的内力值 三、荷载与内力计算: 1、荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 三毡四油(上铺绿豆砂)防水层 0.4KN/m 2 水泥砂浆找平层 0.4KN/m 2 保温层: 0.4KN/m 2 一毡二油隔气层 0.05KN/m 2 水泥砂浆找平层 0.3KN/m 2 预应力混凝土屋面板 1.45KN/m 2 钢屋架和支撑自重 0.12+0.011×18m=0.32KN/m 2 总计:3.32KN/m 2 可变荷载标准值 雪荷载0.35KN/m 2<屋面活荷载标准值0.70KN/m 2,取0.70KN/m 2 0.70KN/m 2 积灰荷载 0.70KN/m 2 总计:1.14KN/m 2 永久荷载设计值 1.2×3.32KN/m 2=3.984KN/m 2 可变荷载设计值 1.2×1.40KN/m 2=1.96KN/m 2 2、荷载组合

完整钢结构课程设计精

贵州大学高等教育自学考试实践考试 钢结构课程设计 课程代码:02443 题目:单层工业厂房屋盖结构——梯形钢屋架设计 年级:2 0 1 3 级 专业:建筑工程 层次:本科 姓名:张伟 准考证号:21001181132 衔接院校:贵州大学 指导老师:张筱芸 完成日期: 2015. 4. 24

附件:设计资料 1、设计题目:《单层工业厂房屋盖结构——梯形钢屋架设计》 2、设计任务及参数: 第五组: 某地一机械加工车间,长84m,跨度24m,柱距6m,车间内设有两台40/10T中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m预应力钢筋混凝土大型屋面板(1.4KN/m2),上铺100mm厚泡沫混凝土保温层(容重为1KN/m3),三毡四油(上铺绿豆砂)防水层(0.4KN/m2),找平层2cm厚(0.3KN/m2),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm。钢材选用Q235B,焊条采用E43型。屋面活荷载标准值0.7KN/m2,积灰荷载标准值0.6KN/m2, 3、设计任务分解 学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容。 表-3 4、设计成果要求 在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书(指导书)规定的全部内容。 1)需提交完整的设计计算书和梯形钢屋架施工图。 2)梯形钢屋架设计要求:经济合理,技术先进,施工方便。 3)设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写(打印)。 A、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据。 B、计算过程中,必须配以相应的计算简图。 C、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据。 4)梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求。

梯形钢屋架课程设计

《钢结构》课程设计 题目:武汉某车间钢结构屋架设计 院(系):城市建设学院 专业班级:土木090 学生姓名: 学号: 指导教师:蒋华 2012年6月11日至2012年6月15日 华中科技大学武昌分校制

《钢结构》课程设计任务书

目录 一、设计资料 (5) 二、屋架几何尺寸及檩条布置 (5) 1、屋架几何尺寸 (5) 2、檩条布置 (6) 三、支撑布置 (6) 1、上弦横向水平支撑 (6) 2、下弦横向和纵向水平支撑 (6) 3、垂直支.撑 (7) 4、系杆 (7) 四、荷载与内力计算 (7) 1、荷载计算 (7) 2、荷载组合 (7) 3、内力计算 (8)

一、设计资料: 1、某车间跨度为18m,厂房总长度90m,柱距6m。 2、采用1.5m×6m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚100mm,檩距不大于1800mm。檩条采用冷弯薄壁斜卷边 C 形钢 C220×75×20×2.5,屋面坡度i=l/10。 3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高18.000m,柱上端设有钢筋混凝土连系梁。上柱截面为450mm×450mm,所用混凝土强度等级为C30,轴心抗压强度设计值 f=14.3N/mm2。抗风柱的柱距为6m,上端与屋架上弦用板铰连接。 c 4、钢材用Q235,焊条用E43 系列型。 5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。 图1 二、屋架几何尺寸及檩条布置 1、屋架几何尺寸 屋面采用1.5m×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架; 屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。 由于梯形屋架跨度L = 30m > 24m ,为避免影响使用和外观,制造时应起拱 f = L / 500 = 60mm 。 屋架计算跨度l0= L - 2 ? 0.15 = 30 - 2 ? 0.15 = 29.7m 。 =h0+i? l0/2=3585mm。 跨中高度H 为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取1.5m,起拱后屋架杆件几何尺寸和节点编号如图 2 所示(其中虚线为原屋架,实线为起拱后屋架)。

钢结构工业厂房设计—毕业设计

目录 第一部分编制综合说明 (3) 1、工程概况 (3) 2、现场施工平面布置 (3) 3、编制依据 (4) 第二部分施工方案 (5) 1、施工顺序与流向 (5) 2、地基基础工程施工方案 (5) 2.1地基基础的施工流向 (5) 2.2基坑降水 (5) 2.3基础混凝土要求 (5) 2.4施工机械配备 (6) 2.5土方外运及渣土垃圾处置措施 (6) 3、地下一层结构和上部主体工程施工方案 (6) 3.1测量方案 (6) 3.2模板工程 (7) 3.3钢结构工程 (8) 3.4混凝土工程 (11) 3.5砌块工程 (13) 3.6上部结构屋面防水施工 (13) 3.7脚手架工程 (14) 4、装饰工程施工方案 (14)

4.1施工步骤 (14) 4.2装饰施工 (15) 5、质量保证措施 (16) 6、安全保证措施 (19) 7、文明施工 (20) 第三部分施工进度计划编制 (20) 1、基础工程 (20) 2、主体工程双代号网络图 (22) 第四部分施工平面布置图 (22) 第五部分鸣谢 (24) 第一部分编制综合说明 1.工程概况 本工程为一钢结构工业厂房,该厂房平面外轮廓总长为48m、总宽为30m,层高4.2m,厂房分上下两层,总建筑面积1440m2,其中,在厂房的南、北、西各有两个

入口,由坡道进入厂内,厂房四周有散水。建筑结构安全等级为二级,计算结构可靠度采用的设计基准期为50年,建筑设计使用年限50年。建筑类别属于三类;耐火等级为二级;设计抗震烈度为8度;屋面防水等级Ⅲ级。 主要建设内容:本工程为一钢结构工业厂房。地上一层,主要采用双坡门式轻型钢架结构,采用独立柱基础。 本工程为一般工业建筑物,主结构采用双坡门式刚架轻型钢结构。1、采用轻型彩色型钢板作为维护材料,以焊接H型钢变截面钢架作为承重体系。2屋盖体系--C 型钢檀条及十字交叉圆钢支撑组成的屋面横向水平支撑。柱系统--柱为H型焊接实腹柱。地上标准层高为0.000m,截面框架柱主要有是500×500,上部结构主要墙体厚有:300mm、200mm、100mm。上部结构主要楼板厚分别为100mm和120mm。 基础类型--钢下架采用C20钢筋混凝土独立基础,墙下采用C15毛石混凝土条形基础。 厂房采用一般标准装饰,具体施工做法详见装饰施工。 2、现场施工平面布置 2.1临建项目安排 为保证施工场地周围区域的宁静、卫生,使用围墙与周围环境分隔开来,形成独立的施工场地。根据场地特点,施工现场设办公室、会议室及材料、工具堆放场等。 办公室及会议室等办公用房采用彩板房或者帐篷。钢筋加工区、木工加工区各两个与材料堆放场地均用40厚砼硬化,主路采用100厚C20混凝土硬化。 2.2 主要施工机械的选择: 在砼框架结构施工阶段,因工期短,用钢量大,钢筋工、木工均配备两套机械,汽车砼输送泵一台(30米),履带式塔吊2台,其它详见施工机械设备计划表。

钢结构课程设计梯形钢屋架计算书

-、设计资料 1、某工厂车间,采用梯形钢屋架无檩屋盖方案,厂房跨度取27m,长度为102m,柱距6m。采用1.5m×6m预应力钢筋混凝土大型屋面板,保温层、找平层及防水层自重标准值为1.3kN/m2。屋面活荷载标准值为0.5kN/m2,雪荷载标准值0.5kN/m2,积灰荷载标准值为0.6kN/m2,轴线处屋架端高为1.90m,屋面坡度为i=1/12,屋架铰接支承在钢筋混凝土柱上,上柱截面400mm×400mm,混凝土标号为C25。钢材采用Q235B级,焊条采用E43型。 2、屋架计算跨度: Lo=27m-2×0.15m=26.7m 3、跨中及端部高度: 端部高度:h′=1900mm(端部轴线处),h=1915mm(端部计算处)。 屋架中间高度h=3025mm。 二、结构形式与布置 屋架形式及几何尺寸如图一所示: 2、荷载组合 设计桁架时,应考虑以下三种组合: ①全跨永久荷载+全跨可变荷载(按永久荷载为主控制的组合) :全跨节点荷 载设计值:F=(1.35×3.12+1.4×0.7×0.5+1.4×0.9×0.6) ×1.5×6 =49.122kN 图三桁架计算简图 本设计采用程序计算结构在单位节点力作用下各杆件的内力系数,见表一。

1、上弦杆: 整个上弦杆采用相等截面,按最大设计内力IJ 、JK 计算,根据表得: N= -1139.63KN ,屋架平面内计算长度为节间轴线长度,即:ox l =1355mm,本屋架为无檩体系,认为大型屋面板只起刚性系杆作用,不起支撑作用,根据支撑布置和内力变化情况,取屋架平面外计算长度oy l 为支撑点间的距离,即: oy l =3ox l =4065mm 。根据屋架平面外上弦杆的计算长度,上弦截面宜选用两个不 等肢角钢,且短肢相并,如图四所示: 图四 上弦杆

钢结构课程设计计算书

一由设计任务书可知: 厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。暂不考虑地震设防。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。 屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20. 二选材: 根据该地区温度及荷载性质,钢材采用Q235-C。其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度L。=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。 三结构形式与布置: 屋架形式及几何尺寸见图1所示: 图1 屋架支撑布置见图2所示:

图2 四荷载与内力计算: 1.荷载计算: 活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡ 总计:2.784 KN/㎡可变荷载标准值: 雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。 总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合: 设计屋架时应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载 屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KN P2=1.68KN/㎡×1.5×6=15.12KN 组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载

梯形钢屋架课程设计(2017年度)

长沙理工大学继续教育学院梯形钢屋架课程设计 年级: 专业: 姓名: 学号: 指导老师:

时间:2017 年月日

目录 课程设计任务书 (1) 一、设计资料: (2) 二、屋架几何尺寸及檩条布置 (3) 三、支撑布置 (4) 四、荷载与内力计算 (5) 五、杆件截面设计 (9) 六、节点设计 (17) 七、填板设计 (35)

长沙理工大学继续教育学院课程设计任务书

一、设计资料: 1、某车间跨度为18m,厂房总长度90m,柱距6m。 2、采用1.5m×6m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚100mm,檩距不大于1800mm。檩条采用冷弯薄壁斜卷边 C 形钢C220×75×20×2.5,屋面坡度i=l/10。 3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高18.000m,柱上端设有钢筋混凝土连系梁。上柱截面为450mm×450mm,所用混凝土强度等级为C30,轴心f=14.3N/mm2。抗风柱的柱距为6m,上端与屋架上弦用板抗压强度设计值 c 铰连接。 4、钢材用Q235,焊条用E43 系列型。 5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。

图1 二、屋架几何尺寸及檩条布置 1、屋架几何尺寸 屋面采用1.5m×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架; 屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。 由于梯形屋架跨度L 30m 24m ,为避免影响使用和外观,制造时应起拱 f L / 500 60mm 。 屋架计算跨度l0L 2 0.15 30 2 0.15 29.7m 。跨中高度H 0=h0+i l0 /2=3585mm。 为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取1.5m,起拱后屋架杆件几何尺寸和节点编号如图 2 所示(其中虚线为原屋架,实线为起拱后屋架)。 图2

加油站钢结构毕业设计计算书(网架结构)

潍坊学院本科毕业设计(论文) 目录 目录 (Ⅰ) 摘要及关键词 (1) Abstract and Keywords (2) 前言 (3) 1、结构设计基本资料 (4) 1.1 工程概况 (4) 1.2 设计基本条件 (4) 1.3 本次毕业设计主要内容 (6) 2、结构选型与初步设计 (7) 2.1 设计资料 (7) 2.2 网架形式及几何尺寸 (7) 2.3 网架结构上的作用 (9) 2.3.1静荷载 (9) 2.3.2活荷载 (9) 2.3.3地震作用 (10) 2.3.4荷载组合 (10) 3、结构设计与验算 (11) 3.1 檩条设计 (11) 3.2 网架内力计算与截面选择 (18) 3.3 网架结构的杆件验算 (20) 3.3.1 上弦杆验算 (20) 3.3.2 下弦杆验算 (21) 3.3.3 腹杆验算 (23) 3.4 焊接球节点设计 (24) 3.5 柱脚设计 (27) 3.6 钢柱设计与验算 (29) 3.7钢筋混凝土独立基础设计 (32) 3.8网架变形验算 (39)

潍坊学院本科毕业设计(论文) 结束语 (41) 参考文献 (43) 附录(文献翻译) (44) 谢辞 (49)

摘要及关键词 摘要本次毕业设计为合肥地区加油站钢结构设计,此次设计主要进行的是结构设计部分。本次设计过程主要分为三个阶段: 首先,根据设计任务书对本次设计的要求,通过查阅资料和相关规范确定出结构设计的基本信息,其中包括荷载信息、工程地质条件等。 然后,根据设计信息和功能要求进行结构选型并利用空间结构分析设计软件MST2008进行初步设计。本次设计主体结构形式采用正放四角锥网架结构,节点形式采用焊接球节点,支撑形式采用四根钢柱下弦支撑,基础形式采用柱下混凝土独立基础。 最后,通过查阅相关规范和案例进行檩条、节点、支座等部分的设计,并通过整理分析得出的数据,进行了杆件、结构位移等的相关验算,最终确定了安全、可行、经济的结构模式。 关键词结构设计,网架结构,构件验算

钢结构课程设计三角形屋架设计

1:荷载计算 2 屋架杆件几何尺寸的计算 根据所用屋面材料的排水需求及跨度参数,采用人字式三角形屋架。屋面坡度为i=1:,屋面倾角α=arctg (1/)=°,sinα=,cosα= 屋架计算跨度 l 0 =l -300=15000-300=14700mm 屋架跨中高度 h= l 0×i/2=14700/(2×=2940mm 上弦长度 L=l 0/2cosα≈7903mm 节间长度 a=L/4=7903/4≈1979m m 节间水平段投影尺寸长度 a '=acosα=1555×=1475mm 根据几何关系,得屋架各杆件的几何尺寸如图1所示 图1.屋架形式及几何尺寸 3 屋架支撑布置 屋架支撑 1、在房屋两端第一个之间各设置一道上弦平面横向支撑和下弦平面横向支撑。 2、因为屋架是有檩屋架,为了与其他支撑相协调,在屋架的下弦节点设计三道柔性水平系杆,上弦节点处的柔性水平系杆均用该处的檩条代替。 3、根据厂房长度36m ,跨度为4m ,在厂房两端第二柱间和厂房中部设置三道上弦横向水平支撑,下弦横向水平支撑及垂直支撑。如图2所示。 屋面檩条及其支撑 波形石棉瓦长1820mm,要求搭接长度≥150mm ,且每张瓦至少要有三个支撑点,因此最大檩条间距为 max 1820150 83531p a mm -= =- 半跨屋面所需檩条数

15556 112.1835p n ?= +=根 考虑到上弦平面横向支撑节点处必须设置檩条,为了便于布置,实际取半跨屋面檩条数13根,则檩条间距为: max 15556778835131p p a a mm ?===-< 可以满足要求。 3.2.1 截面选择 试选用普通槽钢[8,查表得m =m,I x =101cm 4,W x =25.3cm 3,W y =5.8cm 3; 截面塑性发展系数为γx =,γy =。 恒载 ×=(kN/m ) 石棉瓦 ×=(kN/m ) 檩条和拉条 (kN/m ) 合计 g k =(kN/m ) 可变荷载 q k =×=(kN/m ) 檩条的均布荷载设计值 q=γG g k +γQ q k =×+×=m q x =qsin α=×=m q y =qcos α=×=m 3.2.2 强度计算 檩条的跨中弯距 X 方向: 2211 1.1554 2.31088x y M q l kN m ==??=? Y 方向: 2211 0.37940.1903232y x M q l kN m = =??=? (在跨中设了一道拉条) 檩条的最大拉力(拉应力)位于槽钢下翼缘的肢尖处 662 33 2.310100.19010138215/1.0525.310 1.2 5.7910 y x x x y y M M f N mm W W ??=+=+===????б<[б]γγ 满足要求。 3.2.3 强度验算 载荷标准值 ()cos y k k p q g q a =+??α=(0.469+0.467)0.7780.9487=0.691kN/m 沿屋面方向有拉条,所以只验算垂直于屋面方向的挠度: 3 354550.691400011384384 2.061010110361150 y x q l V l EI ?=?=?=???<

钢结构课程设计参考示例

参考实例: 钢结构课程设计例题 -、设计资料 某一单层单跨工业长房。厂房总长度为120m,柱距6m,跨度为27m。车间内设有两台中级工作制桥式吊车。该地区冬季最低温度为-20℃。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。屋面活荷载标准值为0.6kN/㎡,雪荷载标准值为0.75kN/㎡,积灰荷载标准值为0.5kN/㎡。 屋架采用梯形钢屋架,其两端铰支于钢劲混凝土柱上。柱头截面为400mm ×400mm,所用混凝土强度等级为C20。 根据该地区的温度及荷载性质,钢材采用Q235―A―F,其设计强度f=215kN/㎡,焊条采用E43型,手工焊接。构件采用钢板及热轧钢劲,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度:Lo=27000-2×150=26700mm,端部高度:h=2000mm(轴线处),h=2015mm(计算跨度处)。 二、结构形式与布置 屋架形式及几何尺寸见图1所示。 图1 屋架形式及几何尺寸

屋架支撑布置见图2所示。 符号说明:GWJ-(钢屋架);SC-(上弦支撑):XC-(下弦支撑); CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆) 图2 屋架支撑布置图

三、荷载与内力计算 1.荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值 放水层(三毡四油上铺小石子)0.35kN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40kN/㎡保温层(120mm厚泡沫混凝土)0.12*6=0.70kN/㎡ 预应力混凝土大型屋面板 1.40kN/㎡ 钢屋架和支撑自重0.12+0.011×27=0.417kN/㎡管道设备自重0.10 kN/㎡ 总计 3.387kN/㎡可变荷载标准值 雪荷载0.75kN/㎡ 积灰荷载0.50kN/㎡ 总计 1.25kN/㎡ 永久荷载设计值 1.2×3.387=4.0644 kN/㎡(由可变荷载控制) 可变荷载设计值 1.4×1.25=1.75kN/㎡ 2.荷载组合 设计屋架时,应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦节点荷载P=(4.0644+1.75) ×1.5×6=52.3296 kN 组合二全跨永久荷载+半跨可变荷载 屋架上弦节点荷载 P=4.0644×1.5×6=36.59 kN 1 P=1.75×1.5×6=15.75 kN 2 组合三全跨屋架及支撑自重+半跨大型屋面板重+半跨屋面活荷载 P=0.417×1.2×1.5×6=4.5 kN 屋架上弦节点荷载 3 P=(1.4×1.2+0.75×1.4) ×1.5×6=24.57 kN 4 3.内力计算 本设计采用程序计算杆件在单位节点力作用下各杆件的内力系数,见表1。由表内三种组合可见:组合一,对杆件计算主要起控制作用;组合三,可能引起中间几根斜腹杆发生内力变号。如果施工过程中,在屋架两侧对称均匀铺设面板,则可避免内力变号而不用组合三。

梯形钢屋架课程设计

梯形钢屋架课程设计 、设计资料 (1) 题号80,屋面坡度1: 16,跨度30m ,长度96m ,柱距6m ,地点:哈尔 滨,基本风压:m 2 ,基本雪压:kN/m 2 (2) 采用x 6m 预应力混凝土大型屋面板,80mm 厚泡沫混凝土保护层,卷材 屋面,屋面坡度i=1/16。屋面活荷载标准值,雪荷载标准值为 积灰荷载标准值为kN/m 。 (3) 混凝土采用C20,,钢筋采用Q235B 级,焊条采用E43型 (4) 屋架计算跨度:i °=30m-2X = (5) 跨中及端部高度:采用无檩体系屋盖方案,缓坡梯形屋架。 取屋架在轴线处的高度h 。1.972m 取屋架在30m 轴线处的端部高度h 。1.963m 1 29 7 屋架的中间高度h g il °/2 1.972 2.900m 16 2 屋架跨中起拱按l 0 /500考虑,取60mm 。 二、结构形式与布置 屋架形式及几何尺寸如下图: 梯形钢屋架支撑布置如下图: kN/m 2 1503 50C0 3&Q0 c 灿3丄卫坐 a A 刚陛4迎伫空审迎

桁杂上眩衣 挥石査怪6000 桁架下弦支撐布置图 O § -, 「 g S O 4 — 1 1 8 g S

垂直支擢IT 垂直支撑27 1、荷载计算 屋面荷载与雪荷载不会同时出现,计算时取较大值进行计算,故取屋面活荷载 kN/m 2进行计算 屋架沿水平投影面积分布的自重(包括支撑)按经验公式g k(0.12 0.011l)kN/m2计算,跨度单位为米(m)。荷载计算表如下: 设计屋架时,应考虑以下三种荷载组合 (1)全跨永久荷载+全跨可变荷载: F (4.361 1.82) 1.5 6 55.629kN (2)全跨永久荷载+半跨可变荷载 全跨节点永久荷载: F1 4.361 1.5 6 39.249kN 半跨节点可变荷载:

钢结构毕业设计总结

毕业设计总结 为期十三周的毕业设计即将结束,在老师的指导下我独立完成 了门式刚加轻型钢结构单层工业厂房建筑、结构施工图的设计。通过这段时期的学习,我对整个钢结构门式钢架单层工业厂房的设计有了一个较为全面的理解,毕业设计作为大学教育的最后一个环节,也是最重要的实践教学环节,既是所学理论知识巩固深化的过程,也是理论与实践相结合的过程。 毕业设计的目的是培养我们的独立学习能力和综合运用所学知 识和技能,分析与解决工程实际问题的能力,使我们受到工程技术 和科学技术的基本训练以及工程技术人员所必需的综合训练,建立 扎实的工程专业理论和实践能力,并相应地提高其他相关的能力, 如调查研究、理论分析、设计计算、绘图、试验、技术经济分析、 撰写论文和说明书等。在设计中进一步加强工程制图、理论分析、 结构设计、计算机应用、文献检索和外语阅读等方面的能力,毕业 设计还使我进一步熟悉和掌握道路设计的方法和步骤,从中掌握了 建筑平立面设计,结构上的檩条、墙梁、抗风柱、吊车梁、牛腿、刚架、节点、基础、支撑等设计,以及CAD、天正制图BIM建模等技术。 经过此次毕业设计,我掌握了工程设计的基本程序和方法,具有调查研究、中外文献检索、阅读、翻译的能力。依据使用功能要求、经济技术指标、工程地质和水文地质等条件,具有综合运用专业理论与知识分析、解决实际问题的能力。能够设计与制定工程和试验方案,

选择、安装、调试、测试仪器设备,计算并处理工程数据,具有定性、定量相结合的独立研究与论证实际问题能力。掌握施工图纸和试验图形的绘制方法,具有逻辑思维与形象思维相结合的文字及口头表达的能力,包括使用计算机的能力。具有设计、施工中对各种因素进行权衡、决策的能力和创新意识。能对研究结果进行综合分析和解释,得出有效结论,并应用于工程实践。能够利用现代技术、资源和工具对复杂工程问题进行模拟与预测,并对结果的有效性和局限性进行分析。能够适应行业发展,具有主动提出问题、跟踪土木工程专业学科前沿的能力 毕业设计的经历对我日后的工作、学习将会起到很大的帮助。 通过毕业设计,我获益匪浅,使我初步形成经济、环境、市场、管 理等大工程意识,培养实事求是、谦虚谨慎的科学态度和刻苦钻 研、勇于创新的科学精神。提高了我综合分析解决问题的能力、搜 集和查阅相关工程资料的能力、组织管理和社交能力,使我在独立 工作能力方面上一个新的台阶。

钢屋架钢课程设计

-、设计资料 梯形钢屋架长度为72m,跨度为27m。车间内设有两台中级工作制桥式吊车。该地区冬季最低温度为-20℃。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。屋面活荷载标准值为0.7kN/㎡,雪荷载标准值为0.3kN/㎡,积灰荷载标准值为0.6kN/㎡。 屋架采用梯形钢屋架,其两端铰支于钢劲混凝土柱上。柱头截面为400mm ×400mm,所用混凝土强度等级为C20。 根据该地区的温度及荷载性质,钢材采用Q235级,其设计强度f=215kN/㎡,焊条采用E43型,手工焊接。构件采用钢板及热轧钢劲,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度:Lo=27000-2×150=26700mm,设计为无檩屋盖方案,采用平坡梯形屋架,取屋架在27米轴线处的端部高度:h=2000mm(轴线处),h=2015mm(计算跨度处)。 二、结构形式与布置 屋架形式及几何尺寸见图1所示。 图1 屋架形式及几何尺寸

符号说明:GWJ-(钢屋架);SC-(上弦支撑):XC-(下弦支撑); CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆) 图2 屋架支撑布置图

三、荷载与内力计算 1.荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值 放水层(三毡四油上铺小石子)0.35kN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40kN/㎡保温层(120mm厚泡沫混凝土)0.12×6=0.70kN/㎡预应力混凝土大型屋面板 1.40kN/㎡ 钢屋架和支撑自重0.12+0.011×27=0.417kN/㎡管道设备自重0.10 kN/㎡ 总计 3.387kN/㎡可变荷载标准值 雪荷载0.3kN/㎡ 积灰荷载0.60kN/㎡ 总计0.90kN/㎡ 永久荷载设计值 1.35×3.387=4.572 kN/㎡(由可变荷载控制) 可变荷载设计值 1.4×0.9=1.26kN/㎡ 2.荷载组合 设计屋架时,应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦节点荷载P=(4.572+1.26) ×1.5×6=52.488 kN 组合二全跨永久荷载+半跨可变荷载 P=4.572×1.5×6=41.148 kN 屋架上弦节点荷载 1 P=1.26×1.5×6=11.34 kN 2 组合三全跨屋架及支撑自重+半跨大型屋面板重+半跨屋面活荷载 P=0.417×1.2×1.5×6=4.5 kN 屋架上弦节点荷载 3 P=(1.4×1.35+0.7) ×1.5×6=23.31 kN 4 3.内力计算 本设计采用程序计算杆件在单位节点力作用下各杆件的内力系数,见表1。由表内三种组合可见:组合一,对杆件计算主要起控制作用;组合三,可能引起中间几根斜腹杆发生内力变号。如果施工过程中,在屋架两侧对称均匀铺设面板,则可避免内力变号而不用组合三。

钢结构课程设计 普通钢屋架设计(18m梯形屋架)

钢结构课程设计 学生姓名: 学号: 所在学院:机电工程学院 专业班级: 指导教师: 2013年7月

《钢结构设计》课程设计任务书 1. 课程设计题目普通钢屋架设计 2. 课程设计的目的和要求 课程设计的目的是加深学生对钢结构课程理论基础的认识和理解,并学习运用这些理论知识来指导具体的工程实践,通过综合运用本课程所学知识完成普通钢屋架这一完整结构的设计计算和施工图的绘制等工作,帮助学生熟悉设计的基本步骤,掌握主要设计过程的设计内容和计算方法,培养学生一定的看图能力和工程图纸绘制的基本技能,提高学生分析和解决工程实际问题的能力。 3. 课程设计内容和基本参数(各人所取参数应有不同) (1)结构参数:屋架跨度18m,屋架间距6m, 屋面坡度1/10 (2)屋面荷载标准值(kN/m2) (3)荷载组合1)全跨永久荷载+全跨可变荷载 2)全跨永久荷载+半跨可变荷载 (4)材料钢材Q235B.F,焊条E43型。

屋面材料采用1.5m×6.0m太空轻质大型屋面板。 4. 设计参考资料(包括课程设计指导书、设计手册、应用软件等) (1)曹平周,钢结构,科学文献出版社。 (2)陈绍蕃,钢结构(下)房屋建筑钢结构设计,中国建筑工业出版社。 5. 课程设计任务 完成普通钢屋架的设计计算及施工图纸绘制,提交完整规范的设计技术文档。 5.1设计说明书(或报告) (1)课程设计计算说明书记录了全部的设计计算过程,应完整、清楚、正确。 (2)课程设计计算说明书应包括屋架结构的腹杆布置,屋架的内力计算,杆件的设计计算、节点的设计计算等内容。 5.2技术附件(图纸、源程序、测量记录、硬件制作) (1)施工图纸应包括杆件的布置图、节点构造图,材料明细表等内容。 (2)图面布置要求合理,线条清楚,表达正确。 5.3图样、字数要求 (1)课程设计计算说明书应装订成一册,包括封面、目录、课程设计计算说明书正文、参考文献等部分内容。 (2)课程设计计算说明书可以采用手写。 (3)施工图纸要求采用AutoCAD绘制或者手工绘制。 6. 工作进度计划(19周~20周)

钢结构课程设计

土建专业 钢结构 课程设计 钢结构课程设计 一、课程设计的性质和任务 《钢结构》是土木工程专业的重要专业课,为了加强学生对基本理论的理解和《钢结构》设计规范条文的应用,培养学生独立分析问题和解决问题的能力,必须在讲完有关课程内容后,安排2周的课程设计,以提高学生的综合运用能力。课程设计又是知识深化、拓宽的重要过程,也是对学生综合素质与工程实践能力的全面锻炼,是实现本科培养目标的重要阶段。通过课程设计,着重培养学生综合分析和解决问题的能力以及严谨、扎实的工作作风。为学生将来走上工作岗位,顺利完成设计任务奠定基础。 课程设计的任务是,通过进一步的设计训练,使学生熟悉钢结构基本构件的设计和构造设计的基本原理和方法,具备一般钢结构设计的基本技能;能够根据不同情况,合理地选择结构、构造方案,熟练地进行结构设计计算,并学会利用各种设计资料。 二、课程设计基本要求 课程设计是综合性很强的专业训练过程,对学生综合素质的提高起着重要的作用。基本要求如下: 1、时间要求。一般不少于2周; 2、任务要求。在教师指导下,独立完成一项给定的设计任务,编写出符合要求的设计说明(计算)书,并绘制必要的施工图。 3、知识和能力要求。在课程设计工作中,能综合应用各学科的理论知识与技能,去分

析和解决工程实际问题,使理论深化,知识拓宽,专业技能得到进一步延伸。通过毕业设计,使学生学会依据设计任务进行资料收集、和整理,能正确运用工具书,掌握钢结构设计程序、方法和技术规范,提高工程设计计算、理论分析、技术文件编写的能力,提高计算机的应用能力。 三、课程设计的内容 《钢结构》课程设计的选题要符合教学基本要求,设计内容要有足够的深度,使学生达到本专业基本能力的训练。对学习好、能力强的学生,可适当加深加宽。 题目:钢屋架设计 采用平面钢屋架作为设计题目。设计内容包括:屋架内力计算、屋架杆件设计;节点设计;施工图绘制以及材料用量计算等。 完成的设计成果包括:结构设计计算书一份,施工图1~3张(2号)。 普通钢屋架设计 案例及设计指导 参考题目: 一、题目:普通梯形钢屋架设计 (一)设计资料 郑州某工业厂房,长度102m,屋架间距6m,车间内设有两台20/5t中级工作工作制桥式吊车,屋面采用×6m预应力钢筋混凝土大型屋面板。水混珍珠岩制品保温层10cm,20mm 厚水混砂浆找平层,三毡四油防水层,屋面坡度1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400,混凝土C30,屋架跨度和屋面积灰荷载按指定的数据进行计算。 1、屋架跨度(1)24m (2)27m 2、屋面积灰荷载标准值(1)m2(2)m2

宁波某轻型钢结构门式刚架厂房毕业设计计算书

宁波某轻型钢结构门式刚架厂房毕业设计 专业:土木工程 姓名:张骁 学号:3020913094 指导教师:吴姗姗,查支详

前言 毕业设计是大学本科教育培养目标实现的重要阶段,是毕业前的综合学习阶段,是深化、拓宽、综合教和学的重要过程,是对大学期间所学专业知识的全面总结。 本组毕业设计题目为《宁波市某厂房设计》。在毕业设计设前期,我温习了《房屋建筑学》、《结构力学》、《钢结构设计》等知识,并借阅了《钢结构设计规范》、《混凝土结构设计规范》、《建筑结构荷载规范》、《建筑地基基础设计规范》、《轻型钢结构设计手册》等规范。在毕业设计中期,我们通过所学的基本理论、专业知识和基本技能进行建筑、结构设计,本组在校成员齐心协力、分工合作,发挥了大家的团队精神。在毕业设计后期,主要进行设计手稿的电脑输入,并得到老师的审批和指正,使我圆满的完成了任务,在此表示衷心的感谢。 毕业设计的三个月里,在指导老师的帮助下,经过资料查阅、设计计算、论文撰写以及外文的翻译,加深了对新规范、规程、手册等相关内容的理解。巩固了专业知识、提高了综合分析、解决问题的能力。在进行内力组合的计算时,进一步了解了Word,Excel。在绘图时熟练掌握了AutoCAD,天正,PKPM,STS,以上所有这些从不同方面达到了毕业设计的目的与要求。 轻型门式刚架结构设计的计算工作量很大,在计算过程中以手算为主,辅以一些计算软件的校正。由于自己水平有限,难免有不妥和疏忽之处,敬请各位老师批评指正。 二零零六年六月十五日

内容摘要 本设计主要进行了结构方案中横向框架2、3、7、8轴框架的抗震设计。在确定框架布局之后,先进行了层间荷载代表值的计算,接着利用顶点位移法求出自震周期,进而按底部剪力法计算水平地震荷载作用下大小,进而求出在水平荷载作用下的结构内力(弯矩、剪力、轴力)。接着计算竖向荷载(恒载及活荷载)作用下的结构内力,。是找出最不利的一组或几组内力组合。选取最安全的结果计算配筋并绘图。此外还进行了结构方案中的室内楼梯的设计。完成了平台板,梯段板,平台梁等构件的内力和配筋计算及施工图绘制。 关键词:框架结构设计抗震设计 Abstract The purpose of the design is to do the anti-seismic design in the longitudinal frames of axis 2、3、7、8. When the directions of the frames is determined, firstly the weight of each floor is calculated .Then the vibrate cycle is calculated by utilizing the peak-displacement method, then making the amount of the horizontal seismic force can be got by way of the bottom-shear force method. The seismic force can be assigned according to the shearing stiffness of the frames of the different axis. Then the internal force (bending moment, shearing force and axial force ) in the structure under the horizontal loads can be easily calculated. After the determination of the internal force under the dead and live loads, the combination of internal force can be made by using the Excel software, whose purpose is to find one or several sets of the most adverse internal force of the wall limbs and the coterminous girders, which will be the basis of protracting the reinforcing drawings of the components. The design of the stairs is also be approached by calculating the internal force and reinforcing such components as landing slab, step board and landing girder whose shop drawings are completed in the end. Keywords : frames, structural design,anti-seismic design

相关文档
最新文档