专题56 三角形中的辅助线问题(原卷版)

专题56 三角形中的辅助线问题(原卷版)
专题56 三角形中的辅助线问题(原卷版)

专题56 三角形中的辅助线问题

1、在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=.

(1)求CD的长.

(2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动.

①若当v=2时,CP=BQ,求t的值.

②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值范

围.

2、已知:如图1,△ABC中,AB=AC,BC=6,BE为中线,点D为BC边上一点,BD=2CD,DF⊥BE

于点F,EH⊥BC于点H.

(1)CH的长为;

(2)求BF?BE的值;

(3)如图2,连接FC,求证:∠EFC=∠ABC.

3、如图,在△ABC中,AB=4,∠B=45°,∠C=60°.

(1)求BC边上的高线长.

(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.

①如图2,当点P落在BC上时,求∠AEP的度数.

②如图3,连结AP,当PF⊥AC时,求AP的长

4、(1)问题发现

如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE.

填空:①则的值为;②∠EAD的度数为.

(2)类比探究

如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出的值及∠EAD的度数;

(3)拓展延伸

如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.

5、已知等腰直角△ABC中,AB=AC,∠BAC=90°,点D是AC边上一点,以BD为边作等腰直角△BDE,

其中BD=BE,∠DBE=90°,边AB与DE交于点F,点G是BC上一点.

(1)如图1,若DG⊥DE,连接FG.

①若∠ABD=30°,DE=,求BF的长度;

②求证:DG=EF﹣FG;

(2)如图2,若DG⊥BD,EP⊥BE交BA的延长线于点P,连接PG,请猜想线段PG,DG,PE之间的数量关系,并证明.

6、如图,正方形ABCD的边长为6,点E,点F分别在边AB,AD上,AE=DF=2,连接DE,CF交于点

G.连接AC与DE交于点M,延长CB至点K,使BK=3,连接GK交AB于点N.

(1)求证:CF⊥DE;

(2)求△AMD的面积;

(3)请直接写出线段GN的长.

7、如图,在正方形ABCD中,点E,F分别是AB,BC上的两个动点(不与点A,B,C重合),且AE=

CF,延长BC到G,使CG=CF,连接EG,DF.

(1)依题意将图形补全;

(2)小华通过观察、实验、提出猜想:在点E,F运动过程中,始终有EG=DF.经过与同学们充分讨论,形成了几种证明的想法:

想法一:连接DE,DG,证明△DEG是等腰直角三角形;

想法二:过点D作DF的垂线,交BA的延长线于H,可得△DFH是等腰直角三角形,

证明HF=EG;

请参考以上想法,帮助小华证明EG=DF.(写出一种方法即可)

8、如图,AB是⊙O的直径,C,D是⊙O上两点,且=,连接OC,BD,OD.

(1)求证:OC垂直平分BD;

(2)过点C作⊙O的切线交AB的延长线于点E,连接AD,CD.

①依题意补全图形;

②若AD=6,sin∠AEC=,求CD的长.

9、如图,在△ABC中,AB=AC,点M在△ABC内,AM平分∠BAC.点D与点M在AC所在直线的两侧,

AD⊥AB,AD=BC,点E在AC边上,CE=AM,连接MD、BE.

(1)补全图形;

(2)请判断MD与BE的数量关系,并进行证明;

(3)点M在何处时,BM+BE会有最小值,画出图形确定点M的位置;如果AB=5,BC=6,求出BM+BE 的最小值.

10、已知:如下图,△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,连接DE、AE.若DC∥AE,

在DC上取一点F,使得DF=DE,连接EF交AD于O.

(1)求证:EF⊥DA.

(2)若BC=4,AD=2,求EF的长.

11、如图1,∠AOB=90°,OC平分∠AOB,以C为顶点作∠DCE=90°,交OA于点D,OB于点E.

(1)求证:CD=CE;

(2)图1中,若OC=3,求OD+OE的长;

(3)如图2,∠AOB=120°,OC平分∠AOB,以C为顶点作∠DCE=60°,交OA于点D,OB于点E.若OC=3,求四边形OECD的面积.

12、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.

(1)如图1,求证:AD=2DC.

(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;

(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.

13、如图.CP是等边△ABC的外角∠ACE的平分线,点D在边BC上,以D为顶点,DA为一条边作∠ADF

=60°,另一边交射线CP于F.

(1)求证.AD=FD;

(2)若AB=2,BD=x,DF=y,求y关于x的函数解析式;(3)联结AF,当△ADF的面积为时,求BD的长.

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

三角形中的常用辅助线方法总结(1)

典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

2017中学考试全等三角形专题(8种辅助线地作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

等腰三角形常用辅助线专题练习(含答案)汇总

等腰三角形常用辅助线专题练习 (含答案) 1.如图:已知,点D、E在三角形ABCの边BC上, AB=AC,AD=AE,求证:BD=CE。 证明:作AF⊥BC,垂足为F,则AF⊥DE。∵AB=AC,AD=AE 又∵AF⊥BC ,AF⊥DE,∴BF=CF,DF=EF (等腰三角形底边上の高与底边上の中线互相重合)。∴BD=CE. 2.如图,在三角形ABC中,AB=AC,AF平行BC于F, D是AC边上任意一点,延长BA到E,使AE=AD,连接 DE,试判断直线AF与DEの位置关系,并说明理由 解:AF⊥DE.理由:延长ED交BC于G,∵AB=AC,AE=AD ∴∠B=∠C,∠E=∠ADE ∴∠B+∠E=∠C+∠ADE ∵∠ADE=∠CDG ∴∠B+∠E=∠C+∠CDG ∵∠B+∠E=∠DGC,∠C+∠CDG=∠BGE,∠BGE+∠CGD=180°∴∠BGE=∠CGD=90°∴EG⊥BC.∵AF∥BC ∴AF⊥DE.

解法2: 过A点作△ABC底边上の高, 再用∠BAC=∠D+AED=∠2∠ADE, 即∠CAG=∠AED,证明AG∥DE 利用AF∥BC证明AF⊥DE 3.如图,△ABC中,BA=BC,点D是AB延长线上一点, DF⊥AC交BC于E,求证:△DBE是等腰三角形。 证明:在△ABC中,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D ∵∠FEC=∠BED,∴∠BED=

∠D,∴BD=BE,即△DBE是等腰三角形. 4. 如图,△ABC中,AB=AC,E在AC上,且AD=AE,DE の延长线与BC相交于F。求证:DF⊥BC. 证明:∵AB=AC,∴∠B=∠C,又∵AD=AE,∴∠D=∠AED, ∴∠B+∠D=∠C+∠AED,∴∠B+∠D=∠C+∠CEF, ∴∠EFC=∠BFE=180°× 1/2 = 90°,∴DF⊥BC; 若把“AD =AE”与结论“DF⊥BC”互换,结论也成立。 若把条件“AB=AC”与结论“DF⊥BC”互换,结论依然成立。 5. 如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD, A 求证:CM=MD. 证明:连接AC,AD ∵AB=AE,∠B=∠E,BC=ED ∴△ABC≌△AED(SAS)

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、添加平行线构造“A ”“X ”型 例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P ,则 ∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1. 解法二:过点D 作BF 的平行线交AC 于点Q , ∴BE :EF=5:1. 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1. 变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点, 连结BE 并延 长交AC 于F, 求AF :CF 的值. 解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , , 1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF , EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 2 1 ==;TC BT EF BE =, DC BT 2 5=

例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE, DE延长线与BC延长线相交于F ,求证: (证明:过点C作CG//FD交AB于G) 例3:如图,△ABC中,AB

第四讲------三角形中辅助线的常见的添加方法

第四讲-------常用的辅助线的方法 知识点一: 三角形问题添加辅助线方法 1)、方法1:三角形中线--------------中线加倍。 含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结 论恰当的转移,很容易地解决了问题。 2)、方法2:含有平分线------------构造全等三角形。 常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等 三角形,从而利用全等三角形的知识解决问题。 3)、 方法3:证明两线段相等,可通过 构成全等三角形; 利用关于平分线段的一些定理; 转化到同一三角形中,证明角相等; 4)、 方法4:证明一条线段与另一条线段之和等于第三条线段-----------常 采用截长法或补短法。 截长法是把第三条线段分成两部分,证其中的一部分等于第一条线段,而 另一部分等于第二条线段。 三角形中作辅助线的常用方法举例 一.倍长中线 1:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD 。 A B C D E F 2 5 图

二、截长补短法作辅助线。 在△ABC 中,AD 平分∠BAC ,∠ACB =2∠B ,求证:AB =AC +CD 。 三、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 练习 如图,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。 A D C B E 12 A B C D E 1 7 图O

相似三角形常用辅助线

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC 变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想) G F E D C B A G F E D C B A CD BD AC AB

例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若 DC BD =FA FC =2,求BE:EA 的比值. 变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE ED =2,求BE:EA 的比 值. 例3、BE =AD ,求证:EF ·BC =AC ·DF 变式1、如图,△ABC 中,AB

例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长. 变式:如图,21==DE AE CD BD ,求BF AF 。(试用多种方法解) 说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结: (1)遇燕尾,作平行,构造 字一般行。 (2)引平行线应注意以下几点: 1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行线的点。 2)引平行线时尽量使较多已知线段、求证线段成比例。

三角形中做辅助线的技巧

三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD 图1-2 D B C 图 1-4

(二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180 例2. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:∠BA C 的平分线也经过点P 。 练习: 1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA , 如果PC=4,则PD=( ) A 4 B 3 C 2 D 1 2.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。 3.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。求证CF=BH 。 图2-1 B 图2-3 A B C 图2-6 E C D 图 2-7 D B A

三角形中位线中的常见辅助线

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.

三角形常见的辅助线Word版

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. A

应用:1、(09崇文二模)以 ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图①当 ABC ?为直角三角形时,AM与DE的位置关系是 , 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC,AD平分BAC ∠,且AD=BD,求证:CD⊥AC C D B A

三角形全等中辅助线的常见类型

三角形全等中辅助线的 常见类型 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

专题: 三角形全等中辅助线的常见类型 一、倍长中线法 1.如图,在△ABC中,D为BC的中点. (1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围. 2.如图,AD是△ABC的中线,点E在BC的延长线 上,CE=AB,∠BAC=∠BCA, 求证:AE=2AD. 3.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC, 点M为BC的中点,求证:DE=2AM. 二、截长补短法 4.如图,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠ACB,求证:AC=AE+CD.

5.如图,在四边形ABCD中,∠A=∠C=90°, ∠D=60°,AB=BC,E,F分别在AD,CD上, 且∠EBF=60°.求证:EF=AE+CF. 三、作平行线构造三角形全等 6.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB 于点F,连接DF.求证:∠ADC=∠BDF. 四、作垂线构造三角形全等 7.如图,已知∠AOB=90°,OM是∠AOB的平分线, 将三角尺的直角顶点P在射线OM上滑动,两直角边

分别与OA,OB交于点C,D,求证:PC=PD. 8.将一把三角尺放在正方形ABCD上,并使它的直 角顶点P在对角线AC上滑动,一条直角边始终经过 点B. (1)如图,当另一条直角边与边CD交于点Q时,线 段PB与PQ之间有怎样的大小关系试说明你的理 由; (2)若另一条直角边与DC的延长线交于点Q时,上面的结论还成立吗为什么

专题56 三角形中的辅助线问题(原卷版)

专题56 三角形中的辅助线问题 1、在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=. (1)求CD的长. (2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动. ①若当v=2时,CP=BQ,求t的值. ②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值范 围. 2、已知:如图1,△ABC中,AB=AC,BC=6,BE为中线,点D为BC边上一点,BD=2CD,DF⊥BE 于点F,EH⊥BC于点H. (1)CH的长为; (2)求BF?BE的值; (3)如图2,连接FC,求证:∠EFC=∠ABC.

3、如图,在△ABC中,AB=4,∠B=45°,∠C=60°. (1)求BC边上的高线长. (2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF. ①如图2,当点P落在BC上时,求∠AEP的度数. ②如图3,连结AP,当PF⊥AC时,求AP的长 4、(1)问题发现 如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE. 填空:①则的值为;②∠EAD的度数为. (2)类比探究

如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出的值及∠EAD的度数; (3)拓展延伸 如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长. 5、已知等腰直角△ABC中,AB=AC,∠BAC=90°,点D是AC边上一点,以BD为边作等腰直角△BDE, 其中BD=BE,∠DBE=90°,边AB与DE交于点F,点G是BC上一点. (1)如图1,若DG⊥DE,连接FG. ①若∠ABD=30°,DE=,求BF的长度; ②求证:DG=EF﹣FG; (2)如图2,若DG⊥BD,EP⊥BE交BA的延长线于点P,连接PG,请猜想线段PG,DG,PE之间的数量关系,并证明.

全等三角形辅助线专题

1、如图,在△ABC中,AD是∠BAC的角平分线,AC=AB+BD,求证:∠B=2∠C 证明:在AC上截取AE=AB,连结DE ∵AD是∠BAC的角平分线 ∴∠BAD=∠EAD 在△BAD与△EAD中,有: AB=AE (已知) ∠BAD=∠EAD (已证) AD=AD (公共边) ∴△BAD≌△EAD (SAS) ∴∠B=∠AED (全等三角形对应角相等) ∵∠AED=∠EDC+∠C (三角形的外角等于不相邻的内角和) ∴∠B=∠EDC+∠C (等量代换) ∵△BAD≌△EAD (已证) ∴BD=ED (全等三角形对应边相等) ∵AC=AB+BD (已知) AB=AE (已知) BD=ED (已证) ∴ED=CE (等量代换) ∴∠C=∠EDC (等边对等角) ∵∠B=∠EDC+∠C (已证) ∴∠B=2∠C 2、如图,在△ABC中,AD是∠BAC的角平分线,AB>AC,试判断AB-AC与BD-CD 的大小并说明理由。 证明:在AB上截取AE=AC,连结DE ∵AD是∠CAB的角平分线 ∴∠CAD=∠EAD 在△CAD与△EAD中,有: AC=AE (已知) ∠CAD=∠EAD (已证) AD=AD (公共边) ∴△CAD≌△EAD (SAS) ∴CD=ED (全等三角形对应边相等) ∵AC=AE (已知) ∴AB-AC=AB-AE=BE (等量代换) ∵BD-CD=BD-DE<BE (三角形两边之差少于第三边) ∴BD-CD=AB-AC 3、如图,O为∠BAC内一点,且AB=AC,OB=OC,反向延长OB 交AC于D,反向延长OC交AB于E,求证:AD=AE 证明方法一:连结BC ∵AB=AC,OB=OC ∴∠ABC=∠ACB,∠OBC=∠OCB (等边对等角) ∴∠ABC-∠OBC=∠ACB-∠OBC

三角形中做辅助线的技巧

三角形中做辅助线的技巧口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD

(二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180? 例2. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求证:∠BA C 的平分线也经过点P 。 练习: 1.如图2-4∠AOP=∠BOP=15?,PC//OA ,PD ⊥OA , 如果PC=4,则PD=( ) A 4 B 3 C 2 D 1 2.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。 3.已知:如图2-7,在Rt △ABC 中,∠ACB=90?,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作F H//AB 交BC 于H 。求证CF=BH 。 (三):作角平分线的垂线构造等腰三角形 从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。 例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是BC 中点。求证:DH= 2 1 (AB-AC ) 分析:延长CD 交AB 于点E ,则可得全等三角形。问题可证。 图2-3 B 图2-6 E C D B

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF , 则有△OED ≌△OFD ,从而为我们证明线段、角相等创造 了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分 ∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠C AD ,D A=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD 图1-2 D B C

三角形中常见辅助线培优专题

三角形中常见辅助线 的作法 1、延长中线构造全等三角形 例1如图1,已知△ ABC 中,AD 是厶ABC 的中线,AB=8 AC=6求AD 的取值范围. 2、引平行线构造全等三角形 例2如图2,已知△ ABC 中,AB = AC D 在AB 上, E 是AC 延长线上一点,且 BD= CE DE 与BC 交于点F . 求证:DF=EF 3、作连线构造等腰三角形 例 3 如图 3,已知 RT ^ ACB 中,/ C=90 , AC=BC AD=AC DEI AB,垂足为 D,交 BC 于E. 求证:BD=DE=CE 提示:连结DC 证厶ECD 是等腰三角形. 图3 4、利用翻折,构造全等三角形 . A C E

例4如图4,已知△ ABC中,/ B= 2/ C, AD平分/ BAC交BC于D.求证:AC= AB+ BD.

、已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD D 2 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC 3?已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C D 4.如图,△ ABC中,/ BAC=90度,AB=AC, BD是/ ABC的平分线,BD的延长线垂直于过C 点的直线于E,直线CE交BA的延长线于F . D

5?已知:AC 平分/ BAD ,CE 丄AB , B+ / D=180 求 证:AE=AD+BE 6.如图,四边形ABCD 中,AB // DC, BE、CE 分别平分/ABC、/ BCD,且点E 在AD 上。求证:BC=AB+DC。 7.P 是/ BAC 平分线AD 上一点,AC>AB,求证: PC-PB

三角形常见辅助线练习题

三角形常见辅助线作法练习题 1如图:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 2如图:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。 3如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 4如图:AD 为 △ABC 的中线,求证:AB +AC >2AD A B C D E A B C D E F G A C D E F 123 4 A B C D

5已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形, 求证EF =2AD 。 6如图:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。求证:AB -AC >PB -PC 。 7如图:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 8已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 9已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A B C D E F A B C D P 1 2D A E 1 2 A D B C

B A C D F 2 1 E 10已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 12已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF C D B A

常见三角形辅助线口诀

初二几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线 一、截取构全等

如图, AB//CD, BE平分/ ABC CE平分/ BCD点E在AD上,求证:BC=AB+C。 分析:在此题中可在长线段BC上截取BF=AB再证明CF=CD从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, / BAC K FAC,CD=B C求证:/ ADC# B=180 分析:可由C向/BAD的两边作垂线。近而证/ ADC与Z B之和为平角 三、三线合一构造等腰三角形 如图,AB=AC Z BAC=90, AD为Z ABC的平分线,CEL BE.求证:BD=2CE 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 女口图,AB>AC, Z 1 = Z2,求证:AB-AC>BD-CD c

全等三角形辅助线专题

八年级数学上册辅助线专题 教学目标:掌握各种类型得全等三角形得证明方法 教学重点:构造全等三角形 教学难点: 如何巧妙作辅助线 知识点: (一)截长补短型 (二)中点线段倍长问题 (三)蝴蝶形图案解决定值问题 (四)角平分线与轴对称 (五)等腰直角三角形,等边三角形 (六)双重直图案与全等三角形 典型例题讲练 重点例题: 一、截长补短型 如图,R T △CDA ≌RT △CDB , ①、若∠ACD =30°,∠M DN=60°,当∠MDN 绕点D 旋转时,AM 、MN 、BN 三条线段之间得关系式为______ ②、若∠ACD=45°,∠MDN=45°,AM 、M N、BN 三条线段之间得数量关系式为:______ ③、由①②猜想:在上述条件下,当∠ACD 与∠MDN 满足什么条件时,上述关系式成立,证明您得结论。 二、中点线段倍长问题 如图△A BC 中,点D就是BC 边中点,过点D 作直线交AB 、CA 延长线于点E 、 F 。当AE=A F时,求证BE=CF 。 三、蝴蝶形图案解决定值问题 1、如图,在R t△ACB 中,∠ACB =90°,CA=CB,D 就是斜边A B得中点,E 就是DA上一点,过点B 作BH ⊥CE于点H ,交CD 于点F 。 (1) 求证:DE=DF 、(2)若E 就是线段B A得延长线上一点,其它条件不 变,DE=DF 成立吗?画图说明。 2在△ABC 中,AB=AC,AD 与CE 就是高,它们所在得直线相交于H。 (1)如图1,若∠BAC =45°,求证:AH=2BD 、 (2)如图2,若∠BAC=135°,(1)中得结论就是否依然成立?请您在图2中画出图形并加以证明。 3,如图,等腰直角三角形ABC 中,AB =AC,∠BAC=90°,BE 平分∠ABC 交 AC 于E ,过C 作CD ⊥BE 于D 、求证BE=2CD 、 (2) 连接AD ,求证:∠ADB=45°、 B A C D M N ① B D A C M N ② A B C D M N ③ A B C D E F A B C D E F H A B C D E H B A C C D B A E D B A E C

三角形和四边形中常见的辅助线的作法和类型(绝对经典)

D C B A E D F C B A 三角形和四边形中常见的辅助线的作法和类型(绝对 经典) 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC C D B A

C C B A 2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC 注意:三角形中位线与梯形中位线 3、如图,已知在ABC V 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0 180=∠+∠C A

P 21 C B A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

相关文档
最新文档