南京长江四桥北锚碇工程锚体及锚固系统施工技术

南京长江四桥北锚碇工程锚体及锚固系统施工技术
南京长江四桥北锚碇工程锚体及锚固系统施工技术

钢绞线与预应力锚固体系的关系

钢绞线与预应力锚固体系的关系 预应力锚固,常用于混凝土结构。是指预应筋、锚具及其相关材料被包裹在混凝土中,增强混凝土与预应力筋的连接,使两者能共同工作以承担各种应力(协同工作承受来自各种荷载产生压力、拉力以及弯矩、扭矩等)。为了改善结构服役表现,在施工期间给结构预先施加的压应力,结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏。预应力混凝土结构,是在结构承受荷载之前,预先对其施加压力,使其在外荷载作用时的受拉区混凝土内力产生压应力,用以抵消或减小外荷载产生的拉应力,使结构在正常使用的情况下不产生裂缝或者裂得比较晚。常用于水利水电、地基基坑、矿井巷道、边坡等支护工程;道路交通建设中桥梁工程。下面我们主要从预应力混凝土桥梁和锚索支护两种工程中所使用的预应力材料进行整理。 1.预应力混凝土桥梁常用预应力材料及设备 预应力混凝土桥指的是以预应力混凝土作为上部结构主要建筑材料的桥梁。其优点是:节省钢材,降低桥梁的材料费用;由于采用预施应力工艺,能使混凝土结构的工地接头安全可靠,因而以往只适应于钢桥架设的各种不要支架的施工方法,现在也能用于这种混凝土桥,从而使其造价明显降低;同钢桥相比,其养护费用较省,行车噪声小;同钢筋混凝土桥相比,其自重和建筑高度较小,其耐久性则因采用高质量的材料及消除了活载所致裂纹而大为改进。缺点:自重要比钢桥大,施工工艺有时比钢桥复杂,工期较长。 预应力混凝土桥施工中常用预应力材料及设备有:预应力钢绞线;锚具(含锚板、夹片、锚垫板、螺旋筋)四件套;预应力波纹管(塑料波纹管和金属波纹管);张拉设备(穿心式千斤顶、电动油泵、工具锚具<工具锚板,工具夹片,限位板>三件套);压浆机等。 预应力锚固体系总成 本体系是由张拉端锚具,固定端锚具,连接器,波纹管,预应力钢绞线组成。可锚固12.7mm和15.2mm标准强度为1860MPa级别的低松弛高强度预应力钢绞线。本锚固可以从2至55束预应力钢绞线中任意选择,使用中按具体的工程设计使用。

马鞍山长江公路大桥北锚碇沉井基础计算报告

马鞍山长江公路大桥北锚碇沉井基础不对称封底对沉井几何姿态影响 分析报告 2010年9月

目录 一封底概述 (1) 二空间有限元计算模型 (3) (1)模型说明 (3) (2)材料参数取值 (4) (3)计算说明 (5) 三计算结果 (6) (1)第一次封底混凝土浇筑完成 (6) (2)第二次封底混凝土浇筑完成 (7) (3)第三次封底混凝土浇筑完成 (9) (4)第四次封底混凝土浇筑完成 (11) (5)第五次封底混凝土浇筑完成 (13) 四结论 (15)

一封底概述 马鞍山长江公路大桥北锚沉井封底共分五次进行,先沿部分分区隔墙回填砂,使沉井内部形成封闭的五个个区域,封底浇筑顺序为:①-④-②-③-⑤。首先对区域①进行封底施工,然后对区域④进行封底施工,再对区域②进行吸砂清基浇筑封底混凝土,然后对③区域吸砂清基后进行混凝土浇筑。最后再施工⑤区域,封底混凝土浇筑到封底顶标高-28.5m。

图1-1分区封底混凝土施工顺序图

二空间有限元计算模型 (1)模型说明 采用Midas-GTS有限元软件,建立空间有限元模型对考虑结构-土体相互作用下的结构及土地受力和变形进行非线性仿真分析。 为尽可能真实地模拟该沉井结构及周围土体,采用全模型建模。如图2-1所示。模型总高度120m,长300m,宽260m,底部至中分化岩层。 模型中土体采用摩尔库仑本构模型,混凝土及钢材采用弹性材料,按规范赋予相应参数。对于地下水,根据实际情况,考虑施工过程中井内外水压的调整。 图2-1 北锚碇沉井基础整体有限元计算模型

图2-2 北锚碇沉井结构模型 (2)材料参数取值 模型中需要考虑混凝土、钢材及岩土三类材料,需考虑混凝土、钢材材料参数和锚碇所在区域岩土层的材料参数取值对结构分析结果的影响。混凝土按弹性计算,其中混凝土井壁以及水下混凝土均按C30混凝土赋予材料的弹性模量和泊松比等特性。钢壳沉井以及钢壳间横撑按照Q235钢材进行赋值。岩土层的参数取值主要依据设计方提供的详勘资料,对于详勘资料中没有提供的参数,结合本工程的实际情况,根据规范及经验取值。 北锚碇周围土层计算时采用的厚度按照详勘资料中提供的各土层层顶标高,取其平均值确定,各物理参数依据地勘资料进行了相应修正。具体数据见表2-1。 表2-1 北锚碇地基各土层厚度及参数取值 (*沉井顶面标高+4.5m)

悬索桥施工规范

18 悬索桥 18.1 一般规定 18.1.1本章适用于主缆采用平行高强钢丝制作的大跨悬索桥的制造、安装、架设施工。 18.1.2施工准备除满足第3章的要求外,还应根据悬索桥的构造和施工特点,预先编制经济可行的实施性施工组织设计,有计划地做好构件的加工、特殊机械设备的设计制作和必要的试验工作。索股、索鞍、索夹应严格执行国家或部颁的行业标准和规定制作,并应进行检测和验收。 18.1.3施工过程中,必须进行施工监控,确保施工质量。 18.1.4本章根据悬索桥施工的基本特点对主要事项作出规定,其余有关事项应按本规范相应章节的规定执行。 18.2 锚碇 18.2.1重力式锚碇基础施工除必须按本规范第4章有关规定执行外,还必须注意以下问题:1基坑开挖时应采取沿等高线自上而下分层开挖,在坑外和坑底要分别设置排水沟和截水沟,防止地面水流入积留在坑内而引起塌方或基底土层破坏。原则上应采用机械开挖,开挖时应在基底标高以上预留150~30mm土层用人工清理,不要破坏基底结构。如采用爆破方法施工,应使用如预裂爆破等小型爆破法,尽量避免对边坡造成破坏。 2对于深大基坑边坡处理,应采取边开挖边支护措施保证边坡稳定。支护方法应根据地质情况采用。 18.2.2重力式锚碇锚固体系施工 1型钢锚固体系可按下列规定进行: 1)所有钢构件安装均应按照本规范第17章的要求进行。 2)锚杆、锚梁制造时必须严格按设计要求进行抛丸除锈、表面涂装和无破损探伤等工作。出厂前应对构件连接进行试拼,其中应包括锚杆拼装、锚杆与锚梁连接、锚支架及其连接系平面试装。 3)锚杆、锚梁制作及安装精度应符合表18.2.2-1的要求。 2对预应力锚固体系可按下列规定进行: 1)预应力张拉与压浆工艺,除需严格按照设计与第12章的要求进行外,锚头要安装防护套,并注入保护性油脂。 2)加工件必须进行超声波和磁粉探伤检查。 3)预应力锚固系统施工精度应符合表18.2.2—2的要求。 表18.2.2-1 锚杆、锚粱制作安装要求

悬索桥隧道锚设计

悬索桥隧道锚设计 朱玉廖朝华彭元诚 (中交第二公路勘察设计研究院有限公司 430056) 摘要:隧道锚具有环境扰动小、性价比高的特点,是悬索桥较理想的锚碇形式,但受地质条件、人们对岩体性质的认识水平等条件的限制,目前在大跨径悬索桥中应用不多,相关文献也不多见。本文结合进行我国首座采用隧道锚的大跨径悬索桥—四渡河特大桥隧道锚的设计及取得的成果,系统介绍了悬索桥隧道锚锚址的基本特点、锚体尺寸拟定、锚固系统选择以及数值分析、模型试验应注意的问题,便于隧道锚的进一步应用。 关键字:悬索桥隧道锚尺寸拟定锚固系统选择岩体力学参数初始应力场数值分析模型试验 1、引言 近年来,随着我国西部大开发政策和可持续发展战略的实施,高速公路迅速在祖国西部的崇山峻岭中延伸,环境扰动小的结构型式倍受关注。悬索桥具有跨越能力强和加劲梁高基本不随跨径增加而增高的特点,可有效避免高墩而达到跨越深谷的目的,是符合这种理念的理想桥型。锚碇作为悬索桥的四大部分之一,其土方量占悬索桥总开挖量的绝大部分,是最大限度减少环境扰动的关键所在。隧道锚可有效减少开挖量和混凝土用量,是理想的锚碇型式,如美国的华盛顿桥[1],其新泽西岸隧道锚与纽约岸重力锚混凝土用量比1:4.8,我国四渡河桥[2]宜昌岸隧道锚与恩施重力锚混凝土用量比1:4,土石方开挖量之比1:5。因而,隧道锚的使用对有效保护自然环境、避免大规模开挖、节约投资方面具有重要意义。由于隧道锚把岩体作为锚体的一部分共同承受大缆拉力,因而不但对地质条件要求较高,而且要求设计者对岩体性能要有深入的认识。它不仅涉及岩体的开挖问题(这在隧道工程中经常遇到),更主要的是需要确定开挖后岩体的二次承受巨大的大缆荷载问题,这在其它岩土工程中是很少见的。隧道锚的应用较少,相关的文献尚不多见,从目前的文献看,隧道锚的应用尚处于起步阶段[1~6]。四渡河特大桥(图1)沪蓉国道主干线湖北榔坪~高坪段的一座特大桥,其宜昌岸采用隧道锚。该桥2004年6月完成施工图设计,预计2007年12月建成。本文结合隧道锚的设计和有关研究,系统介绍了隧道锚设计的相关问题。

预应力锚固体系关键词预应力钢绞线预应力锚具预应力

预应力锚固体系关键词:预应力钢绞线、预应力锚具、预应力钢筋 预应力锚索、预应力张拉伸长值、轻型千斤顶 BM15\BM13扁形锚具 预应力锚固体系: 由张拉端锚具(M15,M13锚具,BM15,BM13扁锚,HM环锚),固定端锚具(H型,P型),连接器和波纹管组成。按钢绞线直径可分为YM12.7,YM13,YM18型锚具,该锚固体系主要适用于强度为1860MPA-2000Mpa及以下级别的12.7mm,12.9mm,15.24mm,15.7mm,17.8mm钢绞线和标准强度为1670Mpa的5mm-7mm高强度钢丝束。 可选择范围广,YM锚固体系适用于张拉力设计为0-12000KN之间,钢绞线根数范围为55根;具有良好的放张自锚性能,施工操作方便,锚固效率系数高,锚固性能稳定,可靠。 张拉端锚具: M系列钢绞线张拉端锚固体系包括:M13锚具(适用于12.7-12.9mm钢绞线)和M15锚具(使用于15.2-15.7mm钢绞线)配合YCW系类千斤顶和ZB4-500型电动油泵进行张拉;用于扁平结构的BM13和BM15扁形锚具;用于环状应力结构的HM13和HM15环形锚具。 锚固端P型锚具: 当需要把后张力直接转至梁端时,可采用P型锚固体系。固定端型锚具包括挤压套(含钢丝挤压簧),螺旋筋,锚板,约束圈等。挤压套与钢绞线采用专用的挤压器挤压而成,配用ZB2-500型高压电动油泵。 固定端P型锚具特点:圆P形锚具结构紧凑,适用于有空间尺寸要求的锚固端,可有效增加预应力施工长度,避免在固定端预应力钢绞线与混凝土直接粘结,减少钢绞线的腐蚀。圆P 型锚具的布置与普通张拉端锚具雷同。 P型锚预应力筋的加工步骤及注意事项: 预应力钢绞线安装挤压套时先按预定长度下好钢绞线,倒凌处理后,插入挤压簧和挤压套,在挤压机上挤压成型。 挤压加工步骤; 1 将挤压机和油泵连接好,接好电源。 2 在挤压模上涂润湿脂。 3 将挤压簧套入钢绞线,并一起穿过挤压机的挤压模。 4 在钢绞线头挤压簧外套上挤压套。 GYJB50-150挤压机:

跨江悬索桥南锚碇基础地连墙施工技术详解

跨江悬索桥南锚碇基础地连墙施工技术详解 1 施工工艺流程 地连墙施工工艺流程见图5.1-14。 2 槽段划分及说明 本工程地连墙轴线两个直径为57.5m圆相交,圆心距23m,相交点的连线为隔墙槽段,外围地连墙周长227.966m,隔墙地连墙轴线长52.7m。考虑本工程完全采用液压铣槽机施工,每铣长为固定值2.8m,拟划分65个槽段,Ⅰ期槽孔32个(含两个特殊槽孔)、Ⅱ期槽孔33个。其中外围Ⅰ期槽长6.313m,共分三铣成槽,Ⅱ期槽长2.8m,一铣成槽。Ⅰ期槽特殊槽段为Y形,为三墙交界槽段,共分五铣成槽。

隔墙槽段Ⅰ期有两种槽长,其中槽长为6.337m的槽段为三铣成槽,槽长为5m的槽段为二铣成槽。本工程采用铣接法进行槽段搭接,搭接厚度为外围槽段为27.3cm,隔墙槽段为20cm。槽孔划分情况见图5.1-15:

3 成槽及相关设备选型 根据工程的特点及工程量,拟采用德国宝峨公司的1台BC32型液压铣槽机和1台宝峨GB34液压抓斗,可以满足地连墙的成槽施工要求。

4 成槽顺序及连接接头 4.1 成槽顺序 按照有利于设备操作和发挥功效、施工方便、Ⅱ期槽在Ⅰ期槽完成后不宜太久(强度过高增加铣销难度)等原则,初步考虑按如下顺序进行成槽: (1)总体顺序先施工靠江侧基坑外围地连墙,再施工隔墙地连墙,最后施工背江侧外围地连墙; (2)先施工Ⅰ期槽,再施工Ⅱ期槽,从上游侧特殊Ⅰ期槽开始第一个槽段施工,然后顺时针方向依次进行Ⅰ期槽施工,当相邻两Ⅰ期槽强度达75%时,开始进行其间的Ⅱ期槽施工,以免时间太长混凝土强度过高,增加铣削的难度。由此Ⅰ、Ⅱ期槽错开几个槽段同步向前推进,直至地连墙最后封闭。对于最后封闭槽段,因相邻Ⅰ期槽混凝土龄期相差较长时间,强度差异较大,为防止因强度差异导致孔斜,对后浇Ⅰ期槽混凝土适当加大标号,尽可能地减小两侧Ⅰ期槽的强度差异。地连墙成槽

科学技术在四渡河特大悬索桥隧道式锚碇施工中的应用

现代科学技术在悬索桥隧道式锚碇施工中的应用 (路桥华南工程有限公司) 摘要:本文介绍湖北沪蓉西高速公路四渡河特大悬索桥隧道式锚碇开挖及支护施工技术,重点阐述了拉拔模型试验、地质探测等现代科学技术在隧道式锚碇开 挖施工中的运用,为隧道式锚碇在以后的施工中提供借鉴。 关键词:科学技术隧道式锚碇运用 1.概述 四渡河特大桥是湖北沪蓉西主干道湖北宜昌至湖北恩施段中的一座特大悬索桥,所处位置为深切峡谷,地势陡峭,坡度达80°。该桥的桥面至谷底高差(达500多米)、单向纵坡及锚碇的单根可换式锚固系统等居世界第一。桥位布置图见图1.1 图1.1 四渡河特大桥桥位布置图 该桥宜昌岸锚碇设计为隧道式锚碇,恩施岸为重力式锚碇。在宜昌岸隧道式锚碇(见图1.2)的正下方约23米处为八字岭公路隧道,该区域地质围岩发育皆为与桥轴线呈25°竖向发育,岩层厚为30~50cm不等,裂隙较发育,为典型的岩溶地质,围岩一般为Ⅲ~Ⅳ。 图1.2

四渡河特大桥宜昌岸锚碇设鞍室、锚体及后锚室三部分。锚碇开挖最小断面为9.8×10.9m,最大开挖断面为14×14m,洞轴线水平方向倾角为35°,洞斜向长度左锚为71.14m,右锚为66.2m,锚体都为40m,锚体后面设2.2m的后锚室。整个锚碇开挖方量约为2.1m3,砼方量约为1.6万 m3。 为了增大锚塞体与围岩的锚固应力,原设计较普通隧道的洞周增设了反向齿坎,每4m一道,一个锚塞体设置10道。齿坎尺寸为350cm×87.5㎝,由于围岩裂隙发育,施工时无法确保齿坎的形成,后设计变更取消反向齿坎增设了Φ32结构锚杆。 2.开挖支护施工 在隧道式锚碇开挖施工中采取了“短进尺、强支护、快封闭、勤观测”的基本工艺,施工工序严格遵守“安全施工、爱护围岩、内实外美、重视环境、动态施工”的原则。 四渡河特大桥宜昌岸隧道式锚碇开挖在开始阶段分上、中、下三个台阶开挖,施工过程中,由于该锚碇正处于公路隧道的正上方且竖向距离仅约23m,考虑到开挖爆破的相互影响,惟恐对结构间围岩造成扰动,将中下台阶合并成一个台阶开挖,以减少爆破次数,并形成一个10~15长的水平工作平台。整个拱圈部分为一个上台阶,开挖过程中先对上台阶超前引进,下台阶落后4.5M跟进,开挖时采用短进尺钢拱架和锚网喷支护紧跟随的形式进行施工。工作面布置形式如图2.1所示。 图2.1锚碇开挖工作面示意图

悬索桥隧道式锚碇施工技术

文章编号:1003-4722(2004)02-0053-03 悬索桥隧道式锚碇施工技术 王 勇,曹化明 (中铁二局股份有限公司工程部,四川成都610032) 摘 要:悬索桥锚碇是悬索桥的主要承载结构,隧道式锚碇与重力式锚碇相比,能大幅降低工程造价,但是施工难度较大,涉及技术问题较多。以丰都长江大桥为例介绍了隧道式锚碇的施工技术。 关键词:悬索桥;隧道式锚碇;桥梁施工中图分类号:U443.24 文献标识码:A Construction Techniques of Tunnel -Type Anchorage for Suspension Bridge WANG Yong ,CAO Hua -ming (Eng ineering Division of China Zhongtie the 2nd Engineering Co .,Inc .,Chengdu 610032,China ) A bstract :The anchorage fo r suspension bridge is one of the major bearing structures of the bridge .Compared w ith the g ravity anchorage ,the application of the tunnel -type anchorage can signifi -cantly reduce the engineering cost ,yet the construction of the ancho rage is difficult and involves quite a lot of technical challenges .In this paper ,by w ay of an ex ample of Fengdu Changjiang River Bridge ,the construction techniques of the tunnel -type anchorage are described . Key words :suspension bridge ;tunnel -ty pe anchorage ;bridge construction 收稿日期:2003-12-02 作者简介:王 勇(1963-),男,高级工程师,1984年毕业于西南交通大学桥梁工程专业,获学士学位,2003年毕业于西南交通大学交通土建专业,获硕士学位。 1 引 言 悬索桥锚碇通常是指锚块及其基础、主缆锚碇钢架及其固定装置、遮栅的总称。锚碇是悬索桥独有的结构,是悬索桥的主要承载结构之一,它的主要功能是将主缆张力传递给地基。按其构造形式分为重力式锚碇和隧道式锚碇[1,2]。 当桥头两岸为松散土或水域时,只能采用重力式锚碇,依靠混凝土锚碇的自重获得锚碇的稳定,传递主缆的巨大张力,但这种形式的锚碇工程数量较大,成本较高;当两岸有坚固的基岩时,可采用隧道式锚碇,在基岩内开凿隧道,在隧底设锚锭板或填塞一段混凝土作为锚块,可大大节省工程数量,降低工程造价。现代大跨悬索桥使用隧道式锚碇较少。本文以丰都长江大桥为例,介绍隧道式锚碇施工技术。 2 工程概况 丰都长江大桥位于丰都县城上游4km 处的观音滩,是一座双车道的单跨悬索桥,主跨450m 。主缆线形为三维曲线,主缆在跨中横向间距14.0m ,塔顶中心间距20.5m ,加劲梁为钢桁梁,锚碇为4个分离式隧道锚,锚体呈楔形,楔面与岩石紧密结合。 3 隧道式锚碇构造 两岸锚碇处为长石石英砂岩,岩层产状平缓,整体性较好,北岸地表覆盖层较薄,南岸基岩外露,利用其有利的地质条件设计为隧道式锚碇大大降低了工程成本。隧道式锚碇由洞室结构、拉杆的支架、钢拉杆、锚体和散索鞍等组成。 洞室结构:洞身长52m ,分成3段,洞口段12m 53 悬索桥隧道式锚碇施工技术 王 勇,曹化明

隧道式锚碇系统施工工艺

隧道式锚碇系统施工工艺 1刖言 悬索桥主缆锚碇有重力式和隧道式两种形式,其中隧道式锚碇可细分为隧道式预应力岩锚锚碇和隧道式普通混凝土锚碇。隧道式普通混凝土锚碇在前期是我国山区悬索桥的主缆主要锚碇结构,隧道式预应力岩锚作为悬索桥主缆锚碇在我国西藏角笼坝大桥首次采用,由于其改善了锚碇混凝土的受力情况,减少了圬工量,降低了造价等优点,将成为隧道式锚碇的主流。本文重点在隧道式预应力岩锚锚碇。 2适用范围 悬索桥主缆隧道式锚碇作为悬索桥主缆的主要受力结构,通过锚碇自重和锚碇隧道围岩共同承担主缆强大的锚固力,其地形地貌适于隧道的设计和施工,故隧道式锚碇一般适用于山区,又因隧道纵断面形式为喇叭形变截面形式,隧道口断面较小,锚塞体断面很大,要求岩体整体稳定性好,在施工过程中不易坍塌的地质条件采用。如采用隧道式预应力岩锚锚碇,因预应力可分担一部分锚固力,锚塞体相对要小一些,适用范围也就要大一些。 3锚碇结构及作用 3.1洞室结构 锚碇主要作用是平衡主缆拉力,主缆 由锚碇锚固,锚碇由洞室围岩与锚塞体摩 擦力、自重和预应力来锚固。一般洞室结构 为倾斜的倒喇叭形,如图1 (图例为西藏角 笼坝大桥主缆隧道式预应力岩锚洞室结 构)所示。 3.2锚塞体 锚塞体是隧道式式锚 碇锚块,锚塞体为变截面 楔形体,锚塞体尾部设置预应力岩锚,以便 将主缆拉力传入岩体,增加结构 3.3散索鞍基座 散索鞍主要功能是改变主缆索股的方 向,把主缆索股在水平和竖直方向分散开 来,然后把这些索股引入各自的锚固位 置。 的安全度及防止锚塞混凝土的开裂。图1隧道式锚碇构造示意图

图2锚碇施工工艺流程图 工艺流程图是隧道式预应力岩锚施工工艺流程,相对隧道式普通混凝土锚碇施工工艺多了锚索 钻孔,锚索、锚垫板安装及预应力张拉工序。 5隧道式锚碇施工工艺 5.1锚洞开挖 因锚洞纵断面呈倒喇叭形,锚塞底板坡度较大,一般最大坡度达450以上,不利于大型机械作 业,适合小型机械配合人工施工。适合钻爆法施工:按照短开挖、弱爆破”的原则施工,采用风钻打眼, 小药量预裂爆破全断面法开挖,周边孔与锚洞设计开挖轮廓线相距0.5m,剩余部分由人工或机械进 行开挖,以确保周边围岩的整体性。 (1)引爆:炮眼采用7655型手持式风钻进行钻眼作业,周边孔外插角度按锚洞设计坡率进行控 制(与坡率相符)。每次钻眼完成后,由爆破工程技术人员对照钻爆设计逐孔对孔位、孔深进行检查,

悬索桥复合式隧道锚碇施工工法[详细]

悬索桥复合式隧道锚碇施工工法 1.前言 悬索桥是特大跨径桥梁中最主要的桥梁型式,一般来说其经济跨径为500m以上,适用于宽阔的海湾、水深流急的江河和大跨度的山区山谷、峡谷等。 锚碇是悬索桥的主要承重结构,要抵抗来自主缆的拉力,并传递给地基基础。锚碇按结构形式可分为重力式锚碇和隧道式锚碇。重力式锚碇依靠其巨大自重来抵抗主缆的垂直拉力,一般要求地基具有较大的承载力,水平分力则由锚碇与地基间的摩擦力或嵌固力来抵抗;隧道式锚碇则是将主缆中的拉力直接传递给周围的基岩,只适合在基岩坚实完整的地区。为了在地质条件较差的桥位处也能采用隧道式锚碇,近年来在我国悬索桥设计中,出现了一种在隧道式锚碇的锚体后方增加一定数量岩锚的隧道式锚碇,这些附加的岩锚进一步将主缆的拉力传递给更深层的基岩,分担了主缆部分拉力,从而提高了在地质条件较差的桥位处隧道式锚碇的锚固能力,扩大了隧道式锚碇的应用范围。这种在锚体后方增加岩锚的隧道式锚碇,称之为复合式隧道锚碇。复合式隧道锚碇是一种新型的悬索桥锚固方式,由于其结构型式的变化,使这种锚碇的施工过程更加复杂化,出现了许多新的施工工艺、技术和方法。 《一种隧道式锚碇洞室的开挖爆破方法》获国家发明专利、《悬索桥复合式隧道锚碇施工技术》获20__年度XX省XX市科学技术进步二等奖及XX省科技三等奖、中国路桥集团科技进步二等奖、20__年第三届西安丝绸之路国际科技论坛优秀论文,《减少斜式隧道锚超挖》获20__年全国“金圣杯”QC成果发表赛二等奖、《确保锚塞体混凝土不产生裂缝》获20__年全国“玉柴杯”QC成果发表赛一等奖及20__年“全国优秀质量管理小组”奖、《提高悬索桥预应力锚固系统形成精度》获20__年“全国工程建设优秀质量管理小组”奖、万州二桥获20__年度国家优质工程银质奖。 2.工法特点 2.1工法使用功能简介 隧道式锚碇相对于重力式锚碇有巨大的经济效益,主要适用于地质情况良好的地方。复合式隧道锚由于岩锚存在分担了主缆部分拉力,能适用于基岩情况较差的地

悬索桥锚碇预应力系统单根可换索钢铰线张拉及注蜡施工工法

悬索桥锚碇单根可换索预应力钢绞线张拉 及注蜡施工工法 1 前言 主缆和锚碇为悬索桥的主要承重受力结构,主缆通过锚碇将拉力传递给地基基础,而预应力锚固系统为主缆与锚碇的连接部件,预应力锚固系统的耐久性决定了大桥的使用寿命。 目前悬索桥工程上常用的锚碇锚固体系为普通预应力钢绞线,钢绞线张拉锚固后,管道内通过压注水泥浆进行防腐,永久锚固在锚体结构混凝土内。但是这种预应力体系压浆质量效果差,容易出现泌水、浆体不饱满、管道内上方空洞等现象,极易造成钢绞线锈蚀,在高应力作用下,钢绞线先是一根锈断,接着就是连锁式损毁,这种预应力筋束损毁后无法更换,当预应力筋破坏达一定的束数后,将很大程度缩短锚碇锚固系统使用寿命,影响到大桥的正常使用。为了克服悬索桥锚碇钢绞线锈蚀过快,锚碇锚固系统使用寿命缩短的问题,近年来,国内外桥梁界提出在悬索桥运营过程中对出现锈蚀的钢绞线进行更换的理念,并且钢绞线进行特殊防腐处理。该种可换索预应力体系,其钢绞线采用环氧树脂充填无粘结(外带PE套),预应力管道内的充填防腐油脂作为密封防腐材料。当锚碇锚体中的预应力钢绞线出现锈蚀以后,把出现锈蚀的钢绞线从预应力管道中退出,重新穿进新的钢绞线,从而保证了锚碇预应力锚固系统的耐久性,确保悬索桥的使用寿命。 可换式预应力锚固体系,钢绞线单靠两端和夹片咬合锚固,中间部位钢绞线与预应力管道是无粘结材料,故锚固夹片与钢绞线的咬合作用尤为关键,对故钢绞线的施工工艺提出了极为严格的要求。 悬索桥锚碇结构预应力管道一般较长,对已经穿束张拉的预应力管道进行压注防腐材料,因此选用的防腐材料的锥入度不能过小,否则无法克服粘滞阻力保证压注的成功,这要求材料必须具有较高的锥入度。但是,国内预应力锚垫板材质通常为铸铁,而预应力管道为普通钢材,锚垫板与预应力管道接头处无法进行理想焊接密封,一般做法是采用环氧树脂之类可塑性材料进行密封。在混凝土浇筑过程中,振捣棒不可避免会碰到预应力管道或者锚垫板,必然会扰动到锚垫板

锚碇导墙施工

导墙施工 地基加固和水泥搅拌桩施工完成后,用挖机开挖导墙区域土方,采用机械挖土和人工修整相结合的方法开挖,挖土标高由人工修整控制,防止超挖。槽段开挖好后,绑扎钢筋,钢筋在后场预先成型,现场吊装安装。导墙内侧模板采用木模,外侧以土代模。为确保尺寸准确,防止导墙向内挤压,两侧模板之间每隔1.5m 设置一组内支撑体系,要求尺寸厚度偏差:导墙内墙面垂直度容许偏差为1/400,内墙面平整度容许偏差不得大于3mm。导墙平面与地连墙轴线平行,误差不大于±5mm,导墙间距容许误差不得大于±5°导墙顶面平整度容许误差±5mm。导墙的纵向分段与地连墙的槽段分段接头错开,平均每段弧长18.369m,共分10段。 导墙模板安装实例图 导墙混凝土由混凝土拌和站拌制,搅拌车运输,自卸入模。 导墙具体施工程序如下: ①测量放样:根据地下连续墙轴线定出导墙挖土位置。 ②挖土:测量放样后,采用机械挖土和人工修整相结合的方法开挖导墙。挖土标高由人工修整控制。 ③立模及浇混凝土:定出导墙位置,再绑扎钢筋。导墙模板为木模。混凝土

采用C30混凝土,内外分层对称浇筑,分层厚度30cm。 ④拆模:混凝土达到一定强度(不小于2.5MPa)后可以拆模,同时在内墙上面分层支撑,防止导墙向内挤压。 ⑤施工缝:导墙可根据现场需要分段施工,施工缝处应凿毛,增加钢筋插筋,使导墙成为整体。按照5m长设置一道假缝,深度20mm。 ⑥导墙养护:导墙制作好后自然养护到70%设计强度以上时,方可进行成槽作业,在此之前禁止车辆和起重机等重型机械靠近导墙。已完导墙顶口覆盖防护网保障施工安全。 ⑦导墙支撑:导墙拆模后,每隔1.5m设置一道内支撑,防止导墙向内挤压,内支撑可采用方木,设上下两层,开槽时再拆除。 导墙顶口防护实例图

重力式锚碇系统施工工艺

重力式锚碇系统施工工艺 1 前言 锚碇是悬索桥地主要承重结构,要抵抗来自主缆地拉力,并传递给地基基础.锚碇按结构形式可分为重力式锚碇和隧道式锚碇.重力式锚碇依靠其巨大地重力抵抗主缆拉力,隧道式锚碇地锚体嵌入基岩内,借助基岩抵抗主缆拉力.隧道式锚碇只适合在基岩坚实完整地地区,其它情况下大多采用重力式锚碇. 2 重力式锚碇结构 锚碇一般由锚碇基础.锚块.主缆地锚碇架及固定装置.遮棚等部分组成;当主缆需要改变方向时,锚碇中还应包括主缆支架和锚固鞍座(亦称扩展鞍座). 重力式锚碇根据主缆在锚块中地锚固位置可分为后锚式和前锚式.前锚式就是索股锚头在锚块前锚固,通过锚固系统将缆力作用到锚体.后锚式即将索股直接穿过锚块,锚固于锚块后面,如图1所示,前锚式因具有主缆锚固容易,检修保养方便等优点而广泛运用于大跨悬索桥中. 前锚式锚固系统分为型钢锚固系统和预应力锚固系统两种类型.型钢锚固系统有直接拉杆式(图1)和前锚梁式(图2).预应力锚固系统按材料不同有粗钢筋锚固形式和钢绞线锚固形式,如图3所示. 1-主缆;2-索股;3-锚块;4-锚支架;5-锚杆;6-锚梁 图1 重力式主缆锚固系统结构图 1-主缆;2-索股;3-前锚梁;4-锚杆;5-锚支架;6后锚梁 图2前锚梁式锚固系统

a)粗钢筋锚固;b)钢绞线锚固 1-索股;2-螺杆;3-粗钢筋;4-钢绞线 图3 预应力锚固系统 2.1锚碇基础 根据地质.水深和悬索桥结构地规模等,锚碇地基础可以分为直接基础.沉井基础.桩基础.井筒基础.复合基础等.若持力层距地面较浅,适合采用直接基础;当持力层埋置深度大时,采用沉井基础.桩基础等. 2.2 锚块 重力式锚碇地锚块就是重力式锚块,与基础形成整体,以抵抗由主缆拉力产生地锚碇滑动及倾倒. 2.3 主缆地锚固架及固定装置 主缆地锚定架及固定装置将主缆拉力分散传布在锚块内,通常是由前梁.后梁.锚杆.定位构件和支撑结构组成.如图2. 锚杆地数量一般与钢缆地丝束数相同.根据主缆地架设方法,连接束股与锚杆地固定装置分为:用于空中送丝法地钢丝束股支座(或称靴跟)和用于预制钢丝束成缆法地套筒两种. 2.4 遮棚 锚碇地遮棚是覆盖锚块及主缆等并建于锚碇基础上地结构物,一般采用钢筋混凝土或钢结构.如果高程合适,遮棚上面可以构筑路面,内部可以作为输配电,排水等设备地机房. 2.5 主缆支架 当主缆在锚碇处改变方向时,则需设置主缆支架.主缆支架可以独立地分开设置在锚碇之前,也可以设置在锚碇之内,它是主缆地支点.主缆支架顶部设有支承钢缆地鞍座;当主缆支架设在锚碇之内时主缆就从这个鞍座开始分散开成为丝股,这个鞍座就是扩展鞍座或称散索鞍.其主要功能是改变主缆索地方向,并把主缆地钢丝束股在水平和竖直方向分散开来,然后把这些钢丝束股引入各自地锚固位置. 主缆支架主要有三种形式,钢筋混凝土刚性支架.钢制柔性支架和钢制摇杆 支架,如图4所示.当采用刚性主缆支架时,扩展鞍座地底部必须设置辊筒,以适应主缆地伸缩. 锚碇可以看作是一个刚体,承受主缆地拉力,并将其传给地基.主缆作用于锚碇上地力可分为水平分力和竖向分力.锚碇在主缆地水平分力作用下不得产生滑移;而在竖向分力和锚碇自重力等作用下,在锚碇底面任意处地压应力不能超过地基上地容许压应力,否则将会出现地基下沉.当然,锚碇也

西坝锚碇锚固系统安装方案

一、编制依据 (1) 二、工程概况 (1) 1、概述 (1) 2、后锚梁与锚杆概况 (2) 3、防腐涂装与隔离概况 (3) 4、定位支架概况 (3) 4、主要工程数量表 (3) 三、总体施工方案 (4) 1、概述 (4) 2、总体工艺流程 (4) 3、施工组织 (5) 四、施工步骤及要求 (7) 1、定位支架安装 (7) 2、锚固系统安装 (9) 3、高强螺栓施工 (17) 五、测量控制与试验检测 (23) 1、测量控制 (23) 2、高强螺栓安装前的试验 (24) 六、质量保证措施 (26) 七、安全保证措施 (26) 八、附件 (29)

、编制依据 ① . 《宜昌市庙嘴长江大桥施工图第二册第一分册(三) :锚固系统》; ② . 《公路桥涵施工技术规范》 (JTG/F50-2011); ③ . 《公路工程质量检验评定标准第一册:土建工程》 (JTG F80/1-2004); ④. 《城市桥梁工程施工与质量验收规范》 (CJJ 2-2008); ⑤ . 《钢结构工程施工质量验收规范》GB50205-2001; ⑥ . 《钢结构高强度螺栓连接技术规程》 (JGJ82-2011); ⑦ . 《国家三、四等水准测量规范》(GB/T12898-2009) 、《工程测量规范》(GB50026-2007); ⑧.《起重吊装常用数据手册》、《起重机械安全规程》(GB6067-2010)、《钢丝绳》(GB 8918-2006)、《起重吊装技术与常用数据速查及机具设备选用计算和安全作业 操作技术规范手册》; ⑨. 《宜昌市庙嘴长江大桥西坝侧锚碇施工组织设计》; ⑩. 中铁大桥局集团企业标准《悬索桥施工》。 二、工程概况 1 、概述 宜昌市庙嘴长江大桥西坝侧锚固系统采用型钢锚固系统,由后锚梁和锚杆组成。后锚梁埋于锚碇混凝土内,锚杆一端连接在后锚梁上,另一端伸出锚体前锚面,与主缆索股相连接。索股拉力通过锚杆传递到后锚梁,再通过后锚梁的承压面传递到锚碇混凝土。 理论前锚面与后锚梁中心面相平行,其与水平面的夹角为45°,间距为15m。 理论散索点IP点到理论前锚面的距离为15.0m,锚杆中心在理论前锚面的横向间距为1.1m,竖向间距为0.65m。 锚固系统构造见图2-1。

锚碇施工方法(完整已排版)

锚碇施工方法 1、工程概况 (1)概述 锚体整体呈马鞍造型,锚体顺桥向全长56m,横桥向前趾宽10m、后趾宽43.7m、锚体地面高43.57m。横桥向上、下游锚体中心距离28.7m。后锚室宽13m,高2.5m,深14.7m。锚体主要采取C30和C40混凝土,预应力钢绞线主要采用环氧涂层钢绞线。锚体锚固采用索股锚固拉杆预应力钢束锚固。 (2)施工场地周围环境 工程地点位于XX路右侧,距XX加油站仅20m,距XX娃哈哈厂约30m。由于紧挨加油站及XX路,施工安全较为困难。 2、锚碇主要施工方法及施工流程 (1)锚体分块分层浇筑划分 在满足大体积混凝土温控要求的前提下,锚体浇筑分层尽量方便施工。锚体大体积混凝土包括锚块、锚块连接段、鞍部及压重块。其中锚块15层、锚块连接段9层、压重块6层、鞍部16层、后浇带3层、侧墙8层。 (2)锚固系统施工 1)主要材料 锚杆采用40CrNiMoA,扣紧螺母、球面垫圈及内球面垫圈采用40Cr,连接器采用45号锻钢。定位支架采用角钢、槽钢,材质为Q235C 钢。锚杆外包层采用泡沫塑料和油毛毡。 2)施工要点 南锚主缆锚固系统是由索股锚固拉杆构造和预应力钢束锚固 构造组成的。在前锚面位置,锚固拉杆一端与索股锚头上的锚板相连接,另一端与被预应力钢束锚固于前锚面的连接器相连接。索股锚固

拉杆构造采用单锚头类型,单锚头类型由2根拉杆和单索股锚固连接器构成,每根主缆两端有88个单锚头类型的索股锚固拉杆构造。预应力钢束锚固系统构造由预应力钢束和锚具组成,预应力管道埋设于锚块内。对应于单锚头类型连接器选用15-16预应力钢束锚固,预应力钢束锚具采用特制15-16型锚具。 拉杆方向需均与其对应索股方向一致。前锚面至后锚面锚固距离为18m,前锚面与后锚面均设锚固槽口与中心索股垂直的平面。索股锚固的预应力钢束其方向与索股方向一致。拉杆方向误差采用球面垫圈和内球面垫圈调整。 3)锚体施工 锚体为大体积混凝土结构,采取平面分块、竖向分层的施工方法。锚体分成八块:左右锚块、锚块连接段、压重块、左右鞍部、左右后浇带。其中锚块、锚块连接块、压重块、鞍部竖向按照大体积砼温控要求进行分层浇筑。前锚室顶板及前墙在主缆安装完后施工。前墙采用一次浇注施工,顶板采用预制吊装施工工艺。锚体混凝土由搅拌站生产、输送车运输、泵车直接泵送入仓工艺。 3、索导管定位安装 3.1 索管匹配 由于采购的索管长度为6m,而实际索管长度为20m左右。由于索管间存在偏差,安装前在锚碇钢筋场进行预拼装后再进行现场安装。现场预拼装平台设置在南锚钢筋场,施工前,测量对施工场地高程进行超平,然后在超平的地面上安装,以此作为索管预拼装平台。 3.2 索管现场安装定位 当支架安装到位后,根据索导管的空间位置,在定位支架上据索导管底口5cm左右的位置焊接支撑角钢。安装完毕后,安装索管定位架,将索管定位架与支撑角钢焊接。然后将索管穿过定位架与下端

润扬大桥锚碇基岩摩阻力试验研究

第23卷 第2期 岩石力学与工程学报 23(2):256~260 2004年1月 Chinese Journal of Rock Mechanics and Engineering Jan.,2003 2003年5月24日收到初稿,2003年6月5日收到修改稿。 润扬大桥锚碇基岩摩阻力试验研究 吉 林1 眭 峰1 王保田2 (1江苏省长江公路大桥建设指挥部 南京 210001) (2河海大学 南京 210098) 摘要 采用室内试验和现场剪切试验等手段研究了润扬大桥南北锚碇基底基岩-混凝土胶结面的强度,并根据试验研究成果及现场实际情况,综合分析多种影响因素,研究确定整个锚碇范围内基底摩阻力情况。 关键词 岩石力学,锚碇,基岩,摩阻力,接触面 分类号 TV 459+.2 文献标识码 A 文章编号 1000-6915(2003)02-0256-05 TESTING STUDY ON BASE RESISTANCE OF THE ANCHORS AT RUNYANG YANGTZE BRIDGE Ji Lin 1,Xu Feng 1,Wang Baotian 2 (1Construction Management Department of Yangtze River Highway Bridge , Nanjing 210001 China ) (2 Hohai University , Nanjing 210098 China ) Abstract The shear strength of the contacting surface between bedrock and anchor concrete is obtained through laboratory direct shear test and in-situ shear test at the South Suspension Bridge of Runyang Yangtze Bridge. The testing results show that there is significant cohesion on the contacting surface between full weathered rock and concrete because of the rough contacting surface. The shear strength indexes c and ? are the functions of roughness of contacting surface between concrete and weak or slight weathered rocks. The available shear strength indexes c and ? are suggested for the contacting surfaces between concrete and full to slight weathered rocks on the anchor base according to the testing results. Key words rock and soil mechanics ,concrete anchor ,bed rock ,friction resistance ,contacting surface 1 概 述 国家重点工程润扬长江公路大桥跨越长江连通镇江与扬州。整座大桥由南汊悬索桥和北汊斜拉桥以及相连的高架桥和南北引桥组成。其中,南汊悬索桥主跨跨径达1 490 m ,其跨径为目前中国第1,世界第3。 南汊悬索桥南北锚碇分别需承受主缆的 6.664×105 kN 的拉力,采用坐落在基岩上的重力式基 础,其中,北锚碇基础基岩埋深为48 m ,南锚碇基 础基岩埋深为29 m 。悬索桥的受力特点决定了南北锚碇基础的稳定是悬索桥整体结构安全的关键。地质勘察资料及锚碇基坑开挖到基岩面后的现场编录表明,润扬大桥南汊悬索桥南北2个锚碇基岩面存 在明显的差异:北锚碇岩体风化程度差异大,有微风化、弱风化和强风化3种程度的花岗岩岩体露头,且分布面积差异较大,多条断层从建基面通过;南锚基底基岩面岩体主要是全风化花岗岩,局部有弱风化和强风化的花岗岩出露,岩体风化程度差异较

锚碇基础介绍

第5章锚碇基础 5.1悬索桥及其锚碇 悬索桥,是指以悬索为主要承重结构的桥,由主缆、主塔、加劲梁、锚碇、吊索、桥面、等部分组成,如图5-1所示,是跨越能力最强的桥型,目前跨度1000m以上的桥几乎都采用了这种形式。 图5-1 悬索桥结构示意图 悬索桥的主缆是柔性结构,为对其两端进行约束,可采用两种方式:一是将两端锚于悬索桥的加劲梁上,成为自锚式,这种方式适用于跨度较小的桥。另一种是地锚式,即通过锚碇将主缆固定于桥头岸边的岩石或土层中,这也是目前应用最为广泛的形式。因此,锚碇也是悬索桥的主要承载结构之一。 锚碇的形式与桥位区的地形及地质条件密切相关。 当桥头的岸边有坚固的岩层时,主缆可通过隧道式锚碇或岩锚的方式锚固在岩石中。图5-2所示为乔治华盛顿大桥新泽西侧的隧道式锚碇。 图5-2隧道式锚碇(乔治华盛顿大桥新泽西侧)

如果岸边没有合适的锚固岩层,则可采用重力式锚碇,其主要组成部分包括锚体、散索鞍支墩、锚室和基础等。 其中,基础可采用沉井、桩、地下连续墙等形式。这将在下节详细介绍。 根据上述介绍,锚碇的锚固形式可归纳为: 无论采用何种锚固形式,都需通过散索鞍座或喇叭形散索套将原来捆紧的钢丝索股分开,然后逐股锚固。 图5-4为散索鞍座示意图,一般置于主缆锚固体之前,除可将主缆分散为索股外,还能使分散后的主缆转角。 图5-4 散索鞍分散主缆示意图 若主缆分散后不需要转角,则可采用喇叭形散索套,如图5-5所示。喇叭形散索套的内表面适应主缆从捆紧状态逐渐变化到分散状态,其本身依靠置于散索套小口端的摩擦套箍固定位置。

图5-5 喇叭形散索套分散主缆示意图 展开后的索股通过一定的方式将其所受拉力传给锚体或锚塞体。如图5-6所示,其主要传递方式有5种: 图中(a)所示是早期采用的方式(20世纪前半叶)。索股的拉力通过数节眼杆形成的眼杆链传至锚固块后方的后锚梁。眼杆链与锚固块之间的是分离的,以保证拉力全部传至后锚梁。这种方式施工工艺繁杂且不经济,现已很少使用。 (b)是采用上端有螺纹的钢杆代替眼杆传递索股力。当钢杆过长过重时,会给施工带来困难。 上述两种传递方式的主要目的是保证传至锚体的索股力不在锚体中产生拉应力。当引入预应力技术后,使得索股力的传递可采用更为灵活方便的方式: 如(c)中所示,锚固块中施加预应力后,其钢杆的长度只要保证他与锚体混凝土之间有足够的黏结力传递索股力即可,其长度可较(b)中的长度大大减小。 (d)中在混凝土在前锚面通过基板将连接索股的螺杆直接与预应力筋相连,将索股力传至锚体。 在(e)中,索股穿过锚固在锚体中的锚管后,固定在后锚面。

隧道式锚碇系统施工工艺标准

隧道式锚碇系统施工工艺 1前言 悬索桥主缆锚碇有重力式和隧道式两种形式,其中隧道式锚碇可细分为隧道式预应力岩锚锚碇和隧道式普通混凝土锚碇。隧道式普通混凝土锚碇在前期是我国山区悬索桥的主缆主要锚碇结构,隧道式预应力岩锚作为悬索桥主缆锚碇在我国角笼坝大桥首次采用,由于其改善了锚碇混凝土的受力情况,减少了圬工量,降低了造价等优点,将成为隧道式锚碇的主流。本文重点在隧道式预应力岩锚锚碇。 2适用围 悬索桥主缆隧道式锚碇作为悬索桥主缆的主要受力结构,通过锚碇自重和锚碇隧道围岩共同承担主缆强大的锚固力,其地形地貌适于隧道的设计和施工,故隧道式锚碇一般适用于山区,又因隧道纵断面形式为喇叭形变截面形式,隧道口断面较小,锚塞体断面很大,要求岩体整体稳定性好,在施工过程中不易坍塌的地质条件采用。如采用隧道式预应力岩锚锚碇,因预应力可分担一部分锚固力,锚塞体相对要小一些,适用围也就要大一些。 3锚碇结构及作用 3.1 洞室结构 锚碇主要作用是平衡 主缆拉力,主缆由锚碇锚 固,锚碇由洞室围岩与锚 塞体摩擦力、自重和预应 力来锚固。一般洞室结构 为倾斜的倒喇叭形,如图 1(图例为角笼坝大桥主缆 隧道式预应力岩锚洞室结 构)所示。 3.2 锚塞体 锚塞体是隧道式式锚 碇锚块,锚塞体为变截面 楔形体,锚塞体尾部设置 预应力岩锚,以便将主缆 拉力传入岩体,增加结构 的安全度及防止锚塞混凝土的开裂。图1 隧道式锚碇构造示意图 3.3 散索鞍基座 散索鞍主要功能是改变主缆索股的方向,把主缆索股在水平和竖直方向分散开来,然后把这些索股引入各自的锚固位置。 4锚碇施工工艺流程图(见图2)

图2 锚碇施工工艺流程图 工艺流程图是隧道式预应力岩锚施工工艺流程,相对隧道式普通混凝土锚碇施工工艺多了锚索钻孔,锚索、锚垫板安装及预应力拉工序。 5隧道式锚碇施工工艺 5.1锚洞开挖 因锚洞纵断面呈倒喇叭形,锚塞底板坡度较大,一般最大坡度达45o以上,不利于大型机械作业,适合小型机械配合人工施工。适合钻爆法施工:按照“短开挖、弱爆破”的原则施工,采用风钻打眼,小药量预裂爆破全断面法开挖,周边孔与锚洞设计开挖轮廓线相距0.5m,剩余部分由人工或机械进行开挖,以确保周边围岩的整体性。 (1)引爆:炮眼采用7655型手持式风钻进行钻眼作业,周边孔外插角度按锚洞设计坡率进行控制(与坡率相符)。每次钻眼完成后,由爆破工程技术人员对照钻爆设计逐孔对孔位、孔深进行检查,发现不符合者,应补钻。采用高压风射风清孔。清孔后由专业爆破员严格按照有关要求进行装药作

相关文档
最新文档