关于高性能钢

关于高性能钢
关于高性能钢

摘要:从高性能钢(high-performance steel,简称HPS)的强度,断裂韧性,可焊性和耐腐蚀性能进行分析,并且HPS在国外的研究刚刚被引进。与普通混凝土相比较,其优越的性能和明显的经济效率就凸显出来了,并且在结构中应用,有很广阔的研发前景。

Abstract : The material properties of high-performance steel were analyzed from strength , fracture toughness , welding capacity and corrosion resistance , and the research survey of high-performance

steel in foreign was introduced simply. Combining with concrete application practices ,the good performance and obvious economic efficiency of high-performance steel were explained , and it pointed

out that it was the idea material of structure, and has wide researching prospect.

一.概述

随着钢材生产技术的进步,实现了生产出满足预先要求的高性能钢(High-performance Steel 简称HPS) 。目前,HPS 的生产方法主要有两种:淬火及回火(Q &T) 和高温控轧技术( TMCP) 。与传统钢种相比,HPS 具有强度高,延性好,更韧性高,更可焊性优越,冷成型能力和腐蚀抗力更理想的特征。这些改善的材料性能不仅可以提高结构的性能,而且可以降低施工成本。在结构工程,美国、日本及欧洲国家越来越注重HPS 的研发与应用。目前,各个国家根据本国的特殊工程要求开发了一系列钢种。

HPS的发展伴随着当今对于薄柔轻型结构日益增长的需求,例如在桥梁和高层建筑的设计中就非常需要采用具有良好的加工制作性能的高强度材料。

二.高性能钢的材料性质

1.HPS 的强度

从化学成分上分析,碳(C) 是控制钢材强度的主要化学元素。通过提高碳含量来实现钢材的高强,但是提高碳含量的同时降低了钢材的可焊性。HPS 降低了碳含量,通过加入其他合金元素来实现优越的强度和韧性。HPS 的碳含量减到0. 11 ~0. 16 之间,而由其他元素来弥补因C 含量降低引起的强度损失,如锰(M n) 。

2. HPS 的断裂韧性

高性能钢的断裂韧性远优于传统的桥梁用钢。与传统钢种相比,高性能钢的脆—延转变在温度更低时才发生。高性能钢优良的可焊性提高了焊接质量并降低了在低温条件下的钢桥发生脆断和突然失效

的可能性。这意味着HPS 在更低温度下仍然具有充分的延性,HPS 可以应用于更寒冷的地区。随着断裂韧性的提高,高性能钢的抗断裂能力与传统钢相比有很大提高。高性能结构对大裂缝的承受能力更强,所以人们有更多的时间在桥梁失效前发现并修复疲劳裂缝。

3. HPS 的可焊性

HPS 改善的韧性和可焊性主要通过控制硫的含量来实现。一般而言,焊接时的预热温度越高,脆性微观结构形成的机会就越少,氢

可从焊接中扩散的时间也越长。然而,预热不仅费时,而且增加了成本。

提高可焊性可以减少由施工时高的预热温度、温度输入控制、焊后处理和其他严格控制措施带来的过高的施工成本,也可以消除焊接过程中的氢致开裂。HPS 碳当量低且韧性高,尤其是采用TMCP 的HPS 更是如此。HPS 易于同普通钢焊接,焊接时允许高的输入温度,通常可不预热或在低预热温度下焊接。HPS 优良的可焊性可以降低预热温度、温度输入控制、焊后处理和其他需要严格控制的要求,也可以消除焊接过程中的氢致开裂。

4.HPS的耐腐蚀性和耐侯性能

具备较高的抗腐蚀和耐候性能,是HPS的显著特征之一。HPS 的抗腐蚀性指HPS 在一般气候条件下,在不需要涂装的情况下HPS

可以正常工作。高性能钢的良好耐候性,使桥梁等钢结构在大气环境下可以不采用涂装。与普通的耐候钢相比,美国和日本均通过增加镍(Ni) 和铜(Cu) 等合金元素来实现钢材的耐腐蚀性和耐候性。这种新型钢抗腐蚀性比传统钢更优,不需要涂装和其他防腐技术。HPS485W 的成分组成不仅满足ASTM G l O l规范对传统耐候钢在不油漆条件下使用的要求,且其抗大气腐蚀指标还稍稍优于传统耐候钢。实际上,取消或部分取消油漆,就可显著减少钢桥在服役期内的养护维修费用,取得较好的总的经济效益。

5.HPS抗疲劳性能

与传统钢材一样,HPS的抗疲劳性能取决于构造细节和应力比,而不受钢的类型和强度的影响。在焊接结构中疲劳强度仍然不取决于钢材的强度。由于利用HPS强度高,焊接结构的疲劳强度越来越

重要。为了提高HPS应用性价比,必须提高钢材的抗疲劳性能,使疲劳强度不作为结构设计的控制冈素,发挥HPS最大使用效率。提高结构的抗疲劳强度,首先要靠合理构造细节设计和精心施工取得好的质量,此外,还可以在焊后进一步采敢一些工艺措施提高抗疲劳强度。三.HPS力学性能

美国、日本、欧洲地区有代表性的高性能钢力学性能比较见表1。为保持高性能钢的高强特征,对合金元素进行优化组合,并采用淬火和回火( r)或TMCP技术,生产出同时保持高强度和高韧性的细晶粒结构钢。抗拉强度性能是高性能钢发展中一个主要关心的问题。表1中对高性能钢的屈服强度和抗拉强度力学性能进行比较。可以看出:美国和日本规范在所有钢板厚度范围有统一的强度标准;欧洲规范钢板强度是随着钢板的厚度变化而变化的。

对于严寒地区的桥梁结构,在活载作用下,发生疲劳破坏可能性更大。通常用最小夏比V形缺口冲击试验来表明高性能钢具有良好的抗裂韧性。高性能钢有较高的屈服和抗拉强度,表1中显示高性能钢最小轴向断裂伸长率大于16%,可见具有很高的延性性能。高性能钢的高韧性和高延性有利于提高桥梁的抗裂性能。

四.HPS与普通性能钢的比较

钢的综合性能决定了其在应用中的优劣。强度、抗腐蚀能力、延展性和可焊性都将影响其综合性能, 高性能钢有两个优点, 即可焊性及韧度都优于普通钢。普通钢可取得和高性能钢同样的屈服强度, 事实上70ksi和100ksi钢已使用数年但其可焊性较差。高性能钢因含碳量低而改善了其可焊性能, 甚至可做到焊接高性能钢不需要预热, 直至作了更深入的研究, 才推荐使用很小的预热。因HPS钢具有很好的可焊性才使新桥型及需现场焊接的结构得以发展。

五.HPS在桥梁工程中的应用

HPS的高强度性能,为桥梁工程师提供了设计更加轻盈、跨度更大的桥梁的可能;其良好的抗腐蚀和耐候性能(在正常大气环境下无需油漆),也得到桥梁业主和管理部门的认可。因此,HPS在美国桥梁工程界受到青睐,近年来,采用HPS建造的桥梁数量呈快速增长趋势。

根据目前的汇总资料进行分析,采用HPS修建的桥梁绝大部分是中小跨度的公路简支梁和连续梁桥(大部分梁桥的跨度在2O~50 m

之间,最大跨度达到137 m);主梁截面为工字形或开口箱形,配混凝土桥面板。将HPS应用到斜拉桥、桥面板和其它结构部位,只是个别情况。

新的材料带来了新的设计思路。从材料和设计的角度讲,一座桥梁的承重结构采用的钢材通常为同一型号,这是常见情况;也可以是不同型号,如日本1988年建成的与岛公铁两用连续钢桁梁桥,其在支点附件的上、下弦杆采用HT780钢,邻近的部分弦杆采用HT690钢,

其余杆件则采用其它钢材,这叫混合设计(Mixed Design)。若在1根构件或1片主梁上采用不同型号的钢材,就称其为Hybrid De—sign,现姑且译其为“混杂设计”。混杂设计的主要特点在于:根据结构受力情况配置不同型号(一般不超过两种)的钢材,以便充分发挥材料特性,取得经济效益。

六.HPS应用实例

(1)马丁河(Martin Creek)桥。该桥位于田纳西州,1998年2月开通,为2×71.78 m的两跨连续梁桥,车行道宽8.53 m,横向布置连续的3片工字形主梁,主梁间距3.2 m。原设计采用345W 钢,后在FHWA的支持下,改用HPS 485W 以便进行实桥设计试验。重新设计中,中间支点附近的梁段采有横向联结采用345W。最后的结果是:主梁用钢量减少24.2 ,费用减少10.6 。由于主梁重量大为减轻,显然也带来了运输、架设和下部结构费用的节省。

(2)福特城(Ford City)桥。该桥位于田纳西州,2000年7月开通,为(97.5+126.8+97.5)m的三跨连续梁桥,第一跨布置在半径155 m的水平圆曲线上;横向布置4片主梁,主梁间距4.1 m。主梁在负弯矩区域采用HPS485W,其余部位采用345W。这样的主梁混杂设计使得钢梁自重减轻20%,而且,可在较大跨度内仍采用等高梁(减少了制作费用),避免了在采用345W 钢的常规设计中需要的腹板纵向拼接。

在积累了一些实桥数据后认为,采用HPS并实行混杂设计,与全部采用HPS相比,可大约平均节省10 的建桥费用。经济效益最好的一座HPS桥的用钢量减少28%,总费用减少18%。

六.我国桥梁用钢的发展

在国内桥梁HPS生产和应用尚属空白。国内普通桥梁用钢的发展虽起步早,但与国外相比发展

速度缓慢。我国钢桥发展的主要几个阶段如下表2所示,建国以来部分钢桥的用钢牌号情况如表3所示。在20世纪6o~8O年代开发了

16Mnq、15MnVNq,其中16Mnq在行业中虽然应用广泛,但其致命的缺点是板厚效应严重。1976年在沙通线白河桥试用的15MnVNq,后来仅在1993年京九线上的九江大桥上使用,实际上形成了中国桥梁钢仅有16Mnq可用的被动局面。20世纪7O一8O年代包括南京长江大桥在内的大型公路和铁路桥都采用16Mnq。90年代上海南浦、杨浦、徐浦等斜拉桥采用的都是进口或国产的STE355钢。随后武钢研制开发的桥粱钢14MrLNbq,先后用于芜湖长江大桥、南京长江二桥、黄河长东二桥等长江、黄河上的近20座桥梁。2007年初武钢推出第五代WNQ570(Q420qE)桥梁钢,用于计划在2009年通车的南京大胜关长江大桥。随着南京大胜关长江大桥应用Q42Oq的开始,现在设计的超大跨的钢桥陆续采用Q42Oq钢材,如安庆长江铁路桥的斜拉桥方案、广东东莞东江大桥等。从表4和表5可以看出,我国钢桥正向大跨度发展,而且多线并桥,公铁合用,桥梁恒载加大,桥梁用钢必然向高强度、高性能发展。目前我国桥梁用钢以Q345q和Q37OqE 为主流钢种;Q420qE、q42OqD陆续采用。

表2 我国钢桥发展的主要阶段

表3 我国钢材用钢发展状况

七.应用前景

从美国、日本和欧洲地区所研制的HPS性能可以看出,HPS在抗拉强度、韧性、可焊性、冷加工性能和抗腐蚀性能方面与普通钢材相比有更好的性能。桥梁建设成本主要由材料成本、制作成本、运输成本和建设成本组成。HPS的应用为桥梁建设成本的进一步降低带来了希望。HPS的高强性能可以减轻主梁自重,解决桥梁净空问题;增加跨径减少桥墩的数量,这样下部结构造价随之减少;同时,也减少了

运输和建设成本。HPS的可焊性消除氢致裂缝、减少预热,从而降低制造成本,改善焊接质量。HPS很高的抗裂韧性,可以把在低温下的脆性失效降到最低,可以在桥梁结构不安全之前有更多的时间发现和维修裂缝。HPS的抗腐蚀性能,可以使钢桥不用涂漆而不被腐蚀。HPS 的应用已经表现出建成时一次性投资的经济性,并在钢桥的后期养护成本也随之降低。

根据我国的交通发展总体规划,本世纪前期我国公路建设将形成以高速公路为主的“五纵七横”国道主干线,这将横贯多条江河川、跨越多重湖海湾。综合国力的增强给我国的桥梁建设发展提供了前所未有的机遇挑战。为了避免过深和过于昂贵的深水基础,桥梁必然向大跨度发展,在跨海工程中常常需要建造超千米级桥梁,必然会对桥梁的建设材料提出更高的要求。目前中国是世界上最大的钢铁消费国一,钢铁作为一种有限的资源必将日兹稀缺,因此在我国推广生产和使用HPS是非常紧迫的。由国外的HPS发展看,HPS已成为桥梁用钢必然发展趋势。桥梁HPS在我国的应用尚属空白,为建造更大跨度桥梁,进行这方面的研究势在必行。HPS将无可非议地成为“2l世纪桥梁建设材料”。

参考文献:

1.殷李革.性能设计方法在钢结构建筑防火设计中的应用.见:2001

年上海钢结构防火技术国际研讨会论文集.

上海, 2001

2.陈晓, 秦晓钟.高性能压力容器和压力钢管用钢. 北京: 机械工业

出版社, 1999

3.李风, 覃文清钢结构防火保护--钢结构防火涂料.

见: 2001年上海钢结构防火技术国际研讨会论文集

钢铁材料的发展演变

钢铁材料的发展演变 一、钢铁材料的历史 人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代…… 100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。 二、钢铁材料的概念 钢材是钢锭、钢坯或钢材通过压力加工制成我们所需要的各种形状、尺寸和性能的材料钢材是国家建设和实现四化必不可少的重要物资,应用广泛、品种繁多,根据断面形状的不同、钢材一般分为型材、板材、管材和金属制品四大类、为了便于组织钢材的生产、订货供应和搞经营管理工作,又分为重轨、轻轨、大型型钢、中型型钢、小型型钢、钢材冷弯型钢,优质型钢、线材、中厚钢板、薄钢板、电工用硅钢片、带钢、无缝钢管钢材、焊接钢管、金属制品等品种。 三、钢材的生产方法 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形。根据钢材加工温度不同分冷加工和热加工两种。钢材的主要加工方法有 轧制:将钢材金属坯料通过一对旋转轧辊的间隙(各种形状)因受轧辊的压缩使材料截面减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产钢材型材、板材、管材。分冷轧、热轧。 锻造钢材:利用锻锤的往复冲击力或压力机的压力使坯料改变成我们所需的形状和尺寸的一种压力加工方法。一般分为自由锻和模锻,常用作生产大型材、开坯等截面尺寸较大的材料。 拉拨钢材:是将已经轧制的金属坯料(型、管、制品等)通过模孔拉拨成截面减小长度增加的加工方法大多用作冷加工。 挤压:是钢材将金属放在密闭的挤压简内,一端施加压力,使金属从规定的模孔中挤出而得到有同形状和尺寸的成品的加工方法,多用于生产有色金属材钢材。 四、我国钢铁材料的现状 改革开放以来,随着市场的需求,我国钢产量和消费量不断增长。从1996年起,我国

关于高性能钢

摘要:从高性能钢(high-performance steel,简称HPS)的强度,断裂韧性,可焊性和耐腐蚀性能进行分析,并且HPS在国外的研究刚刚被引进。与普通混凝土相比较,其优越的性能和明显的经济效率就凸显出来了,并且在结构中应用,有很广阔的研发前景。 Abstract : The material properties of high-performance steel were analyzed from strength , fracture toughness , welding capacity and corrosion resistance , and the research survey of high-performance steel in foreign was introduced simply. Combining with concrete application practices ,the good performance and obvious economic efficiency of high-performance steel were explained , and it pointed out that it was the idea material of structure, and has wide researching prospect. 一.概述 随着钢材生产技术的进步,实现了生产出满足预先要求的高性能钢(High-performance Steel 简称HPS) 。目前,HPS 的生产方法主要有两种:淬火及回火(Q &T) 和高温控轧技术( TMCP) 。与传统钢种相比,HPS 具有强度高,延性好,更韧性高,更可焊性优越,冷成型能力和腐蚀抗力更理想的特征。这些改善的材料性能不仅可以提高结构的性能,而且可以降低施工成本。在结构工程,美国、日本及欧洲国家越来越注重HPS 的研发与应用。目前,各个国家根据本国的特殊工程要求开发了一系列钢种。

建筑业用钢现状和发展趋势分析

建筑业用钢现状和发展趋势分析 建筑业是我国国民经济建设中重要产业之一,近年来,我国建筑业发展十分迅速,每年的房屋施工面积在 15 亿平方米以上,农村及其他个人建房约30 亿平方米。随着我国国民经济和第三产业的发展,人民生活水平的提高和国家安居工程的实施,预计今后几年我国城镇住宅建设每年在 16 亿平方米以上,农村及其他个人住宅建设每年在60 亿平方米以上,宾馆、饭店、写字楼、商店及其他公用建设等每年约 2 亿平方米左右,工业厂房及其他建筑约 6 亿平方米左右。与此同时,新建筑物装修的工程量急剧增加,老建筑物翻新周期明显缩短,装修材料也向豪华、实用方向发展。我国建筑装饰投资占建筑工程总投资的比例,已从20 世纪80 年代的 20%左右提高到现在的40%-50% ,增长势头相当强劲。 我国建筑业用钢现状 我国建筑用钢的主要用户是民用房施工单位、基础设施建设单位和工业厂房。民用房地产施工单位是建筑用钢的最大用户,其用钢量约占建筑钢材总消费量的60%以上,基础设施建设单位一般为国有大型企业,其用钢量占总消费量的20%,工业厂房也是建筑用钢重要消费客户,其消费量占总消费量的15%左右。 从建筑用钢的发展历史来看,1980 年以前,我国采取限制用钢政策,房屋建筑以砖混 结构为主,辅以钢筋混凝土结构,提倡以其他材料代替钢材,尽量节约用钢;上世纪80 年代后期到 90 年代初期,采取合理用钢政策,大量建筑、尤其是大量公共建筑,采用现浇混 凝土楼板,提高了建筑结构的抗震性能和工程的整体质量;90年代后期到现在,建筑用钢的品种和数量均有较大提高,采取鼓励合理用钢的政策,限制建造砖混结构建筑,钢筋混凝土建筑在这一时期得到了快速发展。 建筑用钢是我国钢材消费的最主要行业之一,年产量和消费量一般占钢材总产量和消费 量的比重在 55%左右。我国正处于工业化时期,固定资产投资较高,基础设施规模较大, 同时我国城镇化水平不断提高,对建筑用钢材的需求量较大。据统计,2004 年我国建筑用钢材总消费量 15180 万吨,占钢材总消费量的55%。从品种结构看,以螺纹钢筋与线材为主,其中螺纹钢筋消费量6500 万吨,占建筑用钢的43%,线材消费量 4350 万吨,占建筑用钢的 29%,薄板消费量1800 万吨,占建筑用钢的12% 。 从建筑用钢的供需情况来看,由于建筑用钢技术含量低、准入门槛低、见效快等特点, 因此建筑用钢已成为近年国有中小型钢铁企业和民营企业的主要建设项目。同时,由于近两年来国内建筑用钢需求量增长迅速,导致建筑用钢的需求量增长较快,许多民间资本纷纷进 入建筑钢材领域,国内建筑用钢生产能力增长迅速,现在国内的建筑用钢材已经处于供过于 求的局面,螺纹钢筋价格已从2004 年初的平均3600 元 /吨降至现在的2900 元 /吨,降价幅度较大,多数企业已处于微利或亏损状态;建筑用中厚板、热轧薄板产品近期国内生产量较大,价格跌幅较大,中国钢铁工业协会近期已召开关于降产、保价、稳定市场的座谈会。另 外,由于建筑用钢属于低附加值、高能耗、高污染产品,销售半径较小,产品基本不考虑进 出口,立足于国内生产,国内消费。

高强钢筋应用标准技术

一、高强钢筋应用技术 (一)前言 HRB400级钢筋已作为高效钢筋被列为重点推广应用的建筑业10项新技术之一,推广应用HRB400等高强钢筋对有效利用自然资源,降低消耗,对提高钢筋混凝土结构安全储备等具有十分重要的意义。多年来,为推广应用HRB400等高强钢筋有关部门采取了修订规范,开展试点工程等多种措施。本文通过实际调研,找到制约HRB400级钢筋推广应用的原因,通过理论分析,找到问题的根本;通过工程实例,切实地论证合理地应用HRB400级钢筋所带来的经济效益。 (二)工程概况 本工程为高级办公楼,其中车库要求空间大跨度大,主楼的办公室、会议室和裙楼的餐厅较多对跨度也有要求,根据这个特点,本工程在整体设计时,轴线布置跨度均较大,大部分跨度为8.4米。HRB400级钢筋在这个工程里得到了很好的应用,所有框架梁主筋均采用HRB400级钢筋。 图 1 HRB400 钢筋用量 地下室和裙楼部位结构大量的使用了HRB400级钢筋,达到设计要求并满足房间的使用功能。

图2 HRB400级钢筋现场码放 (三)HRB400级钢筋的特点 HRB400级钢筋是在对HRB335级钢筋化学成分作了微调,调整了钢材C、Si、Mn元素的含量。利用钒、铌、钛在钢中的沉淀强化作用,细化钢的晶粒、改善金相组织、提高钢材的强度。HRB400级钢筋产品的直径为6mm~50 mm,标准推荐直径为6mm、8mm、 10mm、 12mm、 16mm、 20mm、 25mm、 32mm、40mm、 50 mm,虽未推荐仍保留的公称直径有14mm、18mm、22mm、28mm、36 mm几种。但目前设计和施工中一般均在钢筋直径较大时(如大于等于16mm或18mm)采用HRB400级钢筋,较小时采用HRB335级钢筋(一般直径在12mm到18mm之间)或HPB235级钢筋(一般为12mm以下,并在各种结构箍筋和板筋及剪力墙结构主筋中大量使用)。 1、强度高、安全储备大 利用提高钢筋设计强度而不是增加用钢量来提高建筑结构的安全可靠度水

国内外桥梁用钢现状简述

国内外桥梁用钢现状简述 摘要:国外已开发出屈服强度960 MPa的高强度桥梁结构用钢,以及屈服强度 690MPa 的耐候桥梁结构用钢产品,均已在工程中实际应用;国内开发出与HPS 70W 接近的高性能桥梁结构用钢,并已实际使用,但产品在在可焊性、耐候性方面的差距较大。 关键词:桥梁;结构钢;高性能 前言 随着桥梁建设地域的扩展,其面临的恶劣服役条件对桥梁结构用钢,在力学性能、工艺性能和耐候性能等方面提出了更高的要求,目前正沿着“碳锰钢→高强钢→高性能钢”的轨迹发展,应用于桥梁结构的高性能钢已成为目前各国研究热点[1]。 1国外桥梁结构用钢 1.1高强韧性 以往桥梁建设多采用碳锰钢,相同构件采用高强钢能够减小桥梁结构厚度以 降低其自重,有利于增大跨距,改善施工和养护条件,加上钢桥的推广应用,刺激了 桥梁建设对高强钢(屈服强度不小于345MPa)的市场需求并逐步替代碳锰钢(屈服强度接近235 MPa),尤其在钢梁、钢桁等关键部位. 美国在高强度桥梁结构用钢方面的研究起步较早,ASTM A709/ A709M-11标准中涵盖了36(250 MPa)、50 (345 MPa)、70 (485 MPa) 和100(690 MPa)强度级别,均已开发成功并实际应用于超过200 座桥梁,其中50 级钢包括低合金钢和耐候钢,70 级和100 级钢为高耐候的HPS。 1996 年,美国田纳西州路马丁河湾公路桥采用HPS 70W 钢替代三根连续焊接钢梁原先设计使用的HPS 50W 钢,在满足各州公路及运输工作者协会桥梁设 计规范要求的前提下,桥梁结构自重减轻了24%,建造使用钢材的费用降低了10%。美国宾夕法尼亚州福特城大桥混合采用HPS 70W钢和HPS 50W 钢,在负力矩区域使用HPS 70W 钢,其余区域使用HPS 50W 钢,消除了钢梁腹板高度差并节约 了纵向腹板栓连接的成本,据测算,该桥结构重量减小了20%。由于100 级钢的切割、焊接和加工对施工环境要求高,且价格高,实际工程中应用较少,目前桥梁建设以美标50 和70 级钢为主,未来50 级耐候钢用量将大幅攀升[1] 。经多年

高性能钢铁粉末冶金材料关键技术与应用

. 高性能钢铁粉末冶金材料关键技术与应用项目推荐公示内容 一、项目名称: 高性能钢铁粉末冶金材料关键技术与应用 二、推荐单位意见: 粉末冶金技术不仅可提高材料性能,而且可实现零部件的近终形制造,是国际上公认的“绿色制造技术”,是近些年来工业发达国家优先发展的高技术领域。该项目选择应用面最广、产量最大的钢铁粉末冶金材料为研究重点,开展了高压缩性铁粉工业化生产及应用技术研发,任务来源于国家科技支撑计划和国家973计划。 该项目的创新性主要体现在:攻克了高纯冶炼、高效水雾化和精还原等产业3以上的高压缩性铁粉工业化高效生产新7.20g/cm化关键技术,创立了压缩性在工艺;基于粉体塑性特性和改性原理,开发出了粘结化混合粉末,其压坯密度可3;在探明Ni、Mo7.60g/cm达、Cu等合金元素的强化作用机理和规律的基础上,发明了具有“烧结硬化”特性的预合金粉和燃油发动机气门阀座专用粉及其工业化生产工艺;发明了雾化铁粉的表面绝缘双层包覆新方法和关键装备,创立了铁基软磁复合材料(零件)的致密成形和热处理工艺。项目关键技术和产品性能达到了国际先进水平。本项目共取得发明专利11项,实用新型专利15项,发表学术论文20篇,出版著作1 部,主持和参与修订国家标准3 项。4项科技成果先后通过了山东省科技厅的鉴定,均“达到国际先进水平”,“产品密度居国际同类产品的领先水平”。 该项目形成了具有完全自主知识产权的钢铁粉末冶金材料生产成套技术,先后建设了8条工业化生产线,打破了国外公司的技术和市场垄断。近三年新增销售额19.30亿元,新增利润 2.48亿元。 项目成果丰富了粉末冶金过程理论和材料理论,提升了我国粉末冶金技术和产业的水平,对扩大粉末冶金的应用领域、推动我国粉末冶金行业品种结构的优化具有重要意义,并为我国汽车工业和高端装备制造业提供了有力的技术支撑。 经审查,提交的材料真实有效。 推荐该项目为国家科学技术进步奖_贰__等奖 三、项目简介: 2000年以来,随着我国汽车和高端装备制造业的快速发展,对高性能钢铁粉末冶金产品的需求量迅速增长。2009年,中国汽车产量首次超过1000万辆(1364万辆),成为世界第一大汽车制造国,汽车用铁基粉末冶金零件的年需求量达到11万吨,而我国仅生产了4.71万吨,且高密度铁基结构零件和低损耗铁基软磁产品等高性能铁基粉末冶金产品为空白。中国各个品牌汽车原装配套. . 体系中,关键粉末冶金零部件几乎都是由国外企业垄断,且对我国实施严密的技术封锁,已成为我国从汽车制造大国走向汽车制造强国的所面临的主要挑战。

高强度钢板介绍

高强度钢板介绍 牌号Q420钢,强度高,特别是在正火或正火加回火状态有较高的综合力学性能。主要用于大型船舶,桥梁,电站设备,中、高压锅炉,高压容器,机车车辆,起重机械,矿山机械及其他大型焊接结构件。 牌号Q460钢,强度最高,在正火,正火加回火或淬火加回火状态有很高的综合力学性能,全部用铝补充脱氧,质量等级为C、D、E级,可保证钢的良好韧性的备用钢种。用于各种大型工程结构及要求强度高,载荷大的轻型结构。 1.1 国内 国内对汽车用高强度钢板倾向于分为两类: 普通高强度钢板抗拉强度或屈服强度相对较低,或采用传统工艺或传统工艺少许改进即能生产出来高强度钢板。如烘烤硬化钢板、含磷钢板、高强度IF 钢板以及HSLA钢板等。 先进高强度钢板需要采用先进设备及工艺方法才能生产出来的钢板,如双相钢板(DP钢板)、复相钢板(CP钢板)、相变诱发塑性钢板(TRIP钢板)和马氏体钢板(M钢板或Mart钢板)等。 1.2 日本 将抗拉强度不低于340MPa的冷轧钢板和抗拉强度不低于490MPa的热轧钢板通称为高强度钢板(HSS)。 1.3 德国(BMW) 高强度钢板(HSS)屈服强度高于180MPa(包括180MPa),低于300MPa 的钢板。 先进高强度钢板(AHSS)屈服强度高于300MPa(包括300MPa),低于600MPa 的钢板。 超高强度钢板(UHSS)屈服强度高于600MPa(包括600MPa)的钢板。1.4 ULSAB组织 ULSAB组织将高强度钢板分为两类:屈服强度为210~550MPa的钢板定义为高强度钢板(HSS);屈服强度大于550MPa的钢板定义为超高强度钢板(UHSS)。 1.5 国际钢铁协会(IISI) 把高强度钢板从定性概念上定义为高强度钢板(HSS)和先进高强度钢板(AHSS)。 2 高强度钢板的品种介绍 2.1 普通高强度钢板 (1)高强度IF钢板是在IF钢的基础上,添加不同类型的强化元素(如固溶强化元素P、Mn、Si)和适当的轧制工艺控制,使钢材在保证良好塑性和冲压性能的同时,拥有较高的强度,满足复杂形状轿车冲压件性能要求。 (2)烘烤硬化钢板(BH钢)包括IP钢烘烤硬化钢板和低碳烘烤硬化钢板两种。特点是钢板冲压成形前具有较低的屈服强度,通过冲压成形后的涂漆烘烤工艺使钢板的屈服强度增加。 (3)含磷钢板利用磷在钢中的固溶强化作用进行强化。含磷钢板可以用来冲制一些形状比较复杂的汽车冲压件。 (4)超低碳含磷钢板特点是具有良好的深冲性、塑性和韧性,P、Mn、Si 等元素的固溶强化作用保证了其强度。

我国桥梁用钢的发展历程

我国桥梁用钢的发展历程 我国钢桥是在中华人民共和国建国后,在国外对我们实施经济、技术封锁的情况下,自力更生成长起来的。 中国早在1889年就开始了铁路钢桥的建设,到现在已经有100多年的历史了,但在1949年前所建的铁路钢桥,标准杂乱,跨度都很小,建桥的钢材是进口的,结构是铆接的,采用的建造技术落后,工艺简陋,质量低劣;稍大一点的桥梁如郑州黄河老桥和济南泺口黄河桥等都是由外国商人承建,自行设计建造的很少。自行设计建造有代表性的大桥只有1937年建成的浙赣铁路钱塘江公铁路大桥(主跨65.84m,全长1453m),是我国自行设计、建造的第一座双层铁路、公路两用桥。但是钱塘江桥正桥主桁钢材是由英国Dorman Long公司1935年出品,主要化学成份为C0.3%,Mn0.7~1.0%,Si<0.2%,Cr0.7~1.1%,Cu0.25~0.5%。钢材抗拉屈服极限362.2MPa。 1957年,借助前苏联专家的技术和材料,中国建造完成了武汉长江公铁两用大桥。桥梁全长1155.5m,主跨128m,首次在长江上实现了“一桥飞架南北,天堑变通途”。这是在长江上建造的第一座大桥,是我国桥梁史上第一个里程碑。该桥所用钢材为苏联生产的A3钢(即Q235)。 20世纪60年代,为了连通京沪铁路,决定修建南京长江大桥以取代南京轮渡。为解决无低合金结构钢料的困难,鞍山钢铁公司于1962年研制成功16锰低合金高强度桥梁钢(16Mnq),屈服点σs=340MPa,南京桥除少部分仍用原苏联已进口的低合金钢外,其余全部用国产钢材代替了原定进口的钢材,当时这些钢的研制成功,十分鼓舞人心,被称之为“争气钢”。 20世纪70年代初,九江长江公铁路桥决定采用国产高强度钢建造一座高强、轻型、整体的栓焊接构方案。但采用这一方案面临的困难很多,当时没有制造大跨度焊接钢梁的材料。原来造桥采用的16锰桥钢,在材质和规格上已不符合制造大跨度焊接钢桥的需要。因这种钢材的板厚效应很大,钢材的强度、韧性随板厚的增加下降很快,用原来的16锰桥钢建桥,铁路单线桁梁桥最大跨度只可能达到112m。为此,铁道部和原冶金部决定研究开发15锰钒氮桥梁钢(15MnVNq),其屈服点比16锰桥梁钢高,σs=420MPa。由于当时钢铁冶炼及轧制设备落后,合金元素不全,前后经历了20多年研究。通过大量的焊接及力学性能试验和在北京密云建造白河试验桥的工程实践,优化生产出了15锰钒氮C级正火桥梁钢。这种钢的板厚效应小,板厚56mm,焊接性及力学性均较好。经科研、设计、制造人员的艰苦努力,1993年用这种钢建成了九江长江公铁路大桥。该桥正桥钢梁全长1806m,主跨是216m 的刚性梁柔性拱,结构雄伟壮观,桥形秀丽。 20世纪90年代初,铁路桥梁建设面临芜湖长江的建设,主跨达312米。桥梁钢问题显得愈加突出。为此大桥局和武钢联合共同开发了大跨度铁路桥梁用钢14MnNbq。该钢采用降碳加铌和超纯净的冶金方法,并通过铌的微合金化作用进行控制轧制,保证了屈服强度σs≥340MPa的基础上,具有优异的-4022低温冲击韧性(芜湖桥标准要求-40℃,Akv≥120J)。同时焊接性能也大大提高,解决了板厚效应问题,可大批量供应32-50mm厚钢板。芜湖桥建设后,14MnNbq钢材全面满足了铁路桥梁建设的需要。如2009年建成的世界上最大的公铁两用桥--武汉天兴洲长江大桥,它采用的钢材就是高韧性、抗层裂14MnNbq(Q345)。 进入新世纪以来,我国桥梁建设又有了新的飞跃。桥梁的跨径继续扩大,列车通过时速不断提高。尤其是京沪高速铁路南京大胜关长江大桥的建设,继续使用传统的14MnNbq钢已经满足不了其设计和施工要求。为此,铁道部和武钢联合开发了国内第五代铁路桥梁用钢WNQ570。该钢采用国际上最新的HPS设计理念,以超低碳贝氏体(ULCB)为设计主线,采用TMCP工艺组织生产,充分利用组织细化、组织均匀等关键技术,使开发钢种具有高强度

高性能钢

高强钢和高性能钢的应用 何卫 (1北京交通大学土建学院北京 100044)摘要:高性能钢在强度、韧性、可焊性和抗腐蚀性等方面优于传统钢材。如果将材料优势、设计与施工最优化结合起来,就可以显著降低成本,使结构更加合理耐久,降低对不可再生资源的消耗等。这些优势使高性能钢成为结构工程的理想材料,可见,高强钢和高性能钢的研究应用推动了可持续工程的发展,具有很大的潜力。 关键词:高强钢;高性能钢;高性能钢桥;韧性;耐候钢 1、概述 材料性能的改善不仅可以提高桥梁的结构性能。而且可以降低施工成本。高强钢和高性能钢桥充分发挥了材料的优越性,给社会带来了显著的效益。经过多年的共同努力,美国研发了系列高性能钢,如HPS50W、HPS70W和HPS100W,同时H P S在桥梁工程中的应用越来越广。在欧洲,HP S 在结构中的应用不限于桥梁,还用于建筑结构中。在国外,H P S 在一定程度上代表了钢桥所用材料的发展方向。 2 高性能钢 2.1 概述 结构钢的特性包括机械性能和化学性能、冶金结构和可焊性。建筑工程专家原先的注意力偏重于抗拉性(纵向屈服应力和最终抗拉强度),也注意到拉伸试样断裂时所测得的变形能力。弹性系数E在各钢种的实际应用中均为常数,因而,除了适用性外,通常很少考虑。对于结构钢来说,这些钢种的可焊性足以满足要求,变形能力和韧性也令人满意,其部分原因是设计规格仅提出非常有限的特定要求。 近年来,针对地震中显示出来的材料性能,提出了大量与钢结构设计和制造有关的问题。那些历来被接受的标准受到质疑。人们开始质疑用普通单轴拉伸试样确定材料性能的适用性,若干失败的模型都要求更高、更好地定义垂直强度。

高铁用材料的现状和发展趋势

高铁用材料的现状与发展趋势 郑州大学材料科学与工程学院 橡塑模具国家工程研究中心 陈静波 2010-12-1

高速铁路是指 通过改造原有线路(直线化、 轨距标准化),使营运速率 达到每小时200公里以上, 或者专门修建新的“高速新 线”,使营运速率达到每小 时250公里以上 的铁路系统。

世界高铁发展状况 ?世界第一条高速铁路——日本新干线于1964年成功运营,最高时速300公里。 ?目前已有11个国家和地区共14,000余公里高速铁路投入运营。 中国40% 日本17%法国12% 德国9% 其他22% 世界高铁运营里程分布图

日本新干线 法国TGV 德国ICE 京津城际高铁

我国高速铁路现状2010.08.18 来源:人民网 目前,中国大陆投入运营的高速铁路已达到6920公里我国高速铁路运营里程居世界第一位,其中: ?新建时速250~350公里的高速铁路有4044营业公里 ?既有线提速达到时速200~250公里的高速铁路有2876营业公里 ?正在建设中的高速铁路有1万多公里 ?全国铁路每天开行高速列车1000列左右,平均上座率达到101.7%。高速铁路为广大旅客创造了美好生活

中国大陆目前已开通的高铁线路 2008年8月1日,京津城际高铁通车 2009年4月1日,石太客运专线通车 2009年9月28日温福、甬台温铁路通车 2009年12月26日,武广高铁建成通车 2010年1月28日,郑西高铁相继建成通车 2010年4月26日,福厦高铁通车 2010 年5月1日,成灌高铁通车 2010年7月1日,沪宁高铁通车 2010年9月20日,昌九城际高铁通车 2010年10月26日,沪杭高铁通车

新型钢铁材料的设计

一、项目名称:新型钢铁材料的设计、制备和性能研究 二、推荐单位:中国科学院沈阳分院 三、项目简介: 本项目以发展新型钢铁材料为目标,近10年来在多项国家及辽宁省科研项目的支持下,以合金化和结构/功能一体化设计、显微组织控制等为主要学术思想,通过成分优化、纯净化冶炼、组织细化、相变控制、强韧化匹配、生物医学功能化等途径,在新型钢铁材料的设计、制备及性能研究方面开展了系统而深入的研究工作,取得了众多高水平研究成果,发展了一批具有自主知识产权和市场应用前景的新型钢铁材料,在国内外相关领域形成了很高的影响力。项目研究成果对于推动我国钢铁材料的发展与应用,提升钢铁材料的品质具有重要指导意义。项目取得的主要创新性研究成果包括:(1)高强高韧钢铁材料的设计理论,以解决钢铁结构材料强度与塑(韧)性之间的矛盾为切入点,形成了通过成分优化、纯净化、细晶化和复相组织控制等手段获得高强高韧钢铁材料的设计理论与制备技术。(2)结构/功能一体化钢铁新材料的设计理论,以环境保护和生物医用为主要方向,提出了具有抗菌抑菌、生物医学等功能特性的结构/功能一体化钢铁新材料设计思想,通过添加铜元素、以氮代镍等方式,使不锈钢具备了强烈和广谱杀菌特性、在人体中无有害镍离子溶出、抗凝血、抗感染、降低支架内再狭窄等特殊功能。相关研究成果具有独创性。(3)研究开发出一批具有自主知识产权和应用价值的高性能钢铁新材料,包括X80级高强度管线钢、X120级超高强度管线钢、X65级抗大变形管线钢、2800MPa级超高强度马氏体时效钢、2400MPa级无钴超高强度马氏体时效钢、应变诱发相变型高强韧马氏体时效不锈钢、氮化物强化型高铬耐热钢、高速列车转向架用特种弹簧钢、系列抗菌不锈钢、医用高氮无镍奥氏体不锈钢、抗感染医用不锈钢、抗支架内再狭窄不锈钢等钢铁新材料,性能均达到国际先进水平。在国内外相关学术期刊上总计发表文章140篇(其中SCI收录76篇,EI收录125篇),他引次数超过400次,授权23项国家发明专利。 四、完成人: 第1完成人:杨柯 学术贡献:全面负责项目的总体设计和实施,课题申请,国际合作项目的申请和执行,提出一系列创新学术思想。通过纯净化、细晶化、均质化来显著提高高性能结构钢铁材料的强度以及改善其强韧性配合。创造性地提出了钢铁材料的结构/生物医学功能一体化的创新思想,在国际上首次设计并开发出具有抗细菌感染、抑制支架内再狭窄等先进生物医学功能的

桥梁支座铸钢件的机械性能

桥梁支座铸钢件的机械性能 宫小能张迎春 衡水中铁建集团公司 摘要:ZG270-500是桥梁支座普遍采用的原材料。本文从化学成分、热处理工艺、连体试棒铸造与加工、拉力试验等方面,说明了如何有效地保证ZG270-500铸钢件的机械性能要求。 关键词:桥梁支座铸钢件机械性能 一、前言 由于ZG270-500铸钢在退火后具有较好的综合机械性能,铁路桥梁盆式橡胶支座、钢支座及新版的公路桥梁盆式支座普遍采用ZG270-500铸钢,而桥梁支座在桥梁中的作用非常重要,它将桥梁上部结构与下部结构连接,要求有足够的承载能力,以保证桥梁在运营中的安全以至地震时抗震的要求。一旦桥梁支座破坏,就可能发生桥梁坍塌的危险,造成重大的人员生命和经济财产损失,而要保证桥梁支座的质量,必须保证支座铸钢件的机械性能要求。 二、ZG270-500铸钢的化学成分与机械性能要求 GB/T 11352-2009《一般工程用铸造碳钢件》规定,ZG270-500的化学成分如表1所示,机械性能如表2所示。 表1 ZG270-500的化学成分表 注:1、对上限减少0.01%的碳,允许增加0.04%的锰,锰最高至1.20%。 2、除另有规定外,残余元素不作为验收依据。

表2 ZG270-500的机械性能 三、如何保证ZG270-500的机械性能 1、要保证铸造浇铸前的化学成分 要保证铸件的机械性能符合标准要求,首先要保证铸件的化学成分。首先对铸造原材料要进行适度筛选,尽量少用或不用杂质或合金元素(如Cr、W、Ni等)高的废钢,否则铸件中由于杂质或合金化的影响,使铸件退火后的机械性能难以满足标准要求。其次,在浇铸前,要加入钢水净化剂,对钢水进行净化,除去钢水中的大部分杂质及有害元素,特别要注意的一点是,并非化学成分满足标准要求,退火后机械性能就能满足标准要求。如果碳、锰含量太低,铸件的强度指标将不能满足标准要求,如果碳含量过高,钢的韧性、塑性指标将难以满足要求。经过多年的试验,作者摸索出ZG270-500的最佳碳及锰含量范围:碳含量0.27-0.33%,锰含量0.6-0.9%,经合适的退火后,机械性能最好,各项指标均有一定的安全裕度,为最佳搭配,分别为:屈服强度在330MPa左右,抗拉强度在570 MPa左右,伸长率在35%左右,冲击功在30J左右,收缩率在40%左右,以上控制如有难度,碳含量0.25-0.35%,锰含量0.6-1.0%,退火合适时,也能保证合格。

高性能船用钢材.doc

高性能船用钢材 近年来,高性能钢材在造船工程实践应用中得到了较大 发展,钢材的强度、耐腐蚀性能、可焊性、韧性、抗疲劳性 能等都取得了长足的进步,在高技术船舶和海洋工程领域有 着广泛的应用前景。其中,主要钢种包括以下几种: 耐腐钢。油船货油舱的耐腐蚀船板用钢量大约占到油船用 钢总量的 40%~45% ,以建造一艘 30 万吨级超大型油轮(VLCC )为例,船体结构总用钢量近 4 万吨,其中货油舱 部分用钢量约 1.7 万吨,占整个船体结构总用钢量的42%。 殷瓦钢。因瓦合金(invar ,也称为殷钢),是一种镍铁合金,其成分为镍 36%,铁 63.8%,碳 0.2%,它的热膨胀系数极低,能在很宽的温度范围内保持固定 长度。艾林瓦合金( elinvar ),是一种镍铁铬合金,成分为镍33%~35%,铁 53%~61%,铬 4% ~ 5%,钨 1%~ 3%,锰0.5%~ 2%,硅 0.5%~ 2%,碳 0.5%~ 2%,它在相当宽的温度范围内热弹性 系数实际上是零(即杨氏模量不变),热膨胀系数也很低。 它是 1896 年法国物理学家 C.E.Guialme 发现的一种奇妙的合金,这种 合金在磁性温度即居里点附近热膨胀系数显著减少,出现所谓反常热膨胀现象,

从而可以在室温附近很宽的温度范围内 , 获很小的甚至接近零 的膨胀系数 ,呈面心立方结构 , 其牌号为 4J36, 该钢种也称不膨胀钢,是含36%镍的合金钢,热膨胀系数低, 在温度变化时,殷瓦钢几乎不变形,能适合常温至 -163℃的温度变化。 LNG (液化天然气)船货舱围护系统多使用厚度 为 0.5mm 、 0.7mm、 1.0mm、3.0mm 的殷瓦钢, 0.8mm 的殷 瓦钢也有局部使用。一次听到“殷瓦材料” “殷瓦钢”这个名 词是在中央电视台的新闻联播中介绍我国上海沪东造船 厂已经能够成功制造 14。 7 万立方米 LNG 槽船的解说中,了解到”“殷瓦钢”的焊接是是 LNG 槽船制造的五大关键技术之一,而且”“殷瓦钢”是一种特殊的不锈钢材料,厚度只有 0。 7mm,需要全部进口。仅知道这些!因瓦合金(invar ,也称为殷钢),是一种镍铁合金,其成分为镍 36%, 铁 63.8%,碳 0.2%,它的热膨胀系数极低,能在很宽的温度范围内保持固定长度。艾林瓦合金( elinvar ),是一种镍铁铬合金,成分为镍 33%~ 35%,铁 53%~ 61%,铬 4%~ 5%,钨 1%~ 3%,锰 0.5%~ 2%,硅 0.5%~ 2%,碳 0.5%~2%,它在相当宽的温度范围内热弹性系数实际上是零(即 杨氏模量不变),热膨胀系数也很低。纪尧姆在研究铁镍 合金的过程中偶然发现其热膨胀系数极低,于是就对整个 合金系列展开了研究,从而发现了因瓦合金和艾林瓦合金以 及其它一些有用的合金。人们很快认识到因瓦合金的用处,

高强度钢材应用技术

高强度钢材应用技术 刘振泉刘海豹 (中交第一公路工程局有限公司) 1 前言 目前许多施工企业都在拓展海外市场,以谋求更广阔的发展空间。非洲基础设施落后,房建领域尤其是高强度钢结构应用凤毛麟角,我们结合本项目钢结构设计特点,现将恩德培国际机场改扩建项目货运楼中应用的高强度钢材技术进行一下说明。 2 技术特点 (1)所有高强度钢材需符合欧标或英标。 (2)钢结构高强度钢材形式多样,连接复杂。 3 适用范围 本方法适用于恩德培国际机场改扩建项目货运楼主体钢结构。 4 工艺原理 所用高强度钢材符合欧标及英标的标准。 4.1严格控制高强钢材的焊接程序 高强钢材焊接应符合相应欧洲或英国标准,焊工应有符合上岗的认证,对相应焊接的关键部位要严格把控。 4.2严格控制施工过程 施工过程要遵守施工规范,严格控制高强钢材的吊装,吊装的顺序应安全有序。 5 施工工艺流程及操作要点 5.1 施工工艺流程 施工放线→基础混凝土内预埋螺栓→(钢结构加工制作)门式刚架吊装→吊车梁安装→钢梁安装→屋架、屋面板及屋檐板安装→墙面板安装→钢结构涂装。 5.2 操作要点 5.2.1.钢结构的焊缝要探伤,看加工的是否合格; 5.2.2.结构安装的误差; 5.2.3.钢结构螺栓位置及尺寸偏差; 5.2. 4.维护结构的安装节点的合理性; 5.2.5.钢结构的除锈的等级; 5.2. 6.防锈漆和防火涂料的厚度。 6 材料与设备

6.2 设备 根据材料特性和施工工艺要求,一般采用以下机械设备: 7 质量控制 1)钢结构安装时,必须控制屋面、楼面、平台等的施工荷载,严禁超过设计图纸和相应规范要求。 2)钢结构安装过程中,结构形成空间刚度单元后,应及时对柱底和基础顶面的空隙进行二次浇灌,地 脚螺栓安装好后的外露长度允许偏差0—+30mm。 3)焊接H型钢的翼缘板拼接缝和腹板拼接缝的间距不小于200mm,翼缘板拼接长度不小于2倍板宽; 腹板拼接宽度不小于300mm,长度不小于600mm。 4)吊车梁和桁架不应下挠。 5)摩擦型高强度螺栓连接接触面应平整,有75%的面顶紧,边缘最大间隙0.8mm。 8 安全措施 1) 吊装现场道路必须平整坚实,回填土、松软土层要进行处理。如土质松软,应单独铺设道路。起重

高性能钢铁粉末冶金材料关键技术与应用

高性能钢铁粉末冶金材料关键技术与应用项目推荐公示容 一、项目名称: 高性能钢铁粉末冶金材料关键技术与应用 二、推荐单位意见: 粉末冶金技术不仅可提高材料性能,而且可实现零部件的近终形制造,是国际上公认的“绿色制造技术”,是近些年来工业发达国家优先发展的高技术领域。该项目选择应用面最广、产量最大的钢铁粉末冶金材料为研究重点,开展了高压缩性铁粉工业化生产及应用技术研发,任务来源于国家科技支撑计划和国家973计划。 该项目的创新性主要体现在:攻克了高纯冶炼、高效水雾化和精还原等产业化关键技术,创立了压缩性在7.20g/cm3以上的高压缩性铁粉工业化高效生产新工艺;基于粉体塑性特性和改性原理,开发出了粘结化混合粉末,其压坯密度可达7.60g/cm3;在探明Ni、Mo、Cu等合金元素的强化作用机理和规律的基础上,发明了具有“烧结硬化”特性的预合金粉和燃油发动机气门阀座专用粉及其工业化生产工艺;发明了雾化铁粉的表面绝缘双层包覆新方法和关键装备,创立了铁基软磁复合材料(零件)的致密成形和热处理工艺。项目关键技术和产品性能达到了国际先进水平。本项目共取得发明专利11项,实用新型专利15项,发表学术论文20篇,出版著作1 部,主持和参与修订国家标准3 项。4项科技成果先后通过了省科技厅的鉴定,均“达到国际先进水平”,“产品密度居国际同类产品的领先水平”。 该项目形成了具有完全自主知识产权的钢铁粉末冶金材料生产成套技术,先后建设了8条工业化生产线,打破了国外公司的技术和市场垄断。近三年新增销售额19.30亿元,新增利润 2.48亿元。 项目成果丰富了粉末冶金过程理论和材料理论,提升了我国粉末冶金技术和产业的水平,对扩大粉末冶金的应用领域、推动我国粉末冶金行业品种结构的优化具有重要意义,并为我国汽车工业和高端装备制造业提供了有力的技术支撑。 经审查,提交的材料真实有效。 推荐该项目为国家科学技术进步奖_贰__等奖

Q500q高性能桥梁用钢设计

1 引言 随着时代的变迁,材料科学的发展,特别是钢铁材料的技术进步成为了桥梁工程发展的重要推动力。随着设计理论、计算机技术和施工技术的不断进步,现代桥梁建设更加注重桥梁的功能性、安全性和经济性,同时也对建桥的钢材提出了高强、轻质和多功能的要求。从世界各国的桥梁发展历史可以看出,桥梁用钢基本上都经历了从低碳钢-低合金钢-高强度钢-高性能钢的发展历程。近10多年来,随着钢铁冶炼工艺中控温控轧过程控制技术(TMCP)和钢的微合金化技术的开发和应用,使高性能钢的生产成为可能。南京大胜关大桥使用了Q345qD、Q37OqE和Q42OqE(WNQ57O)三种钢材,采用了混杂设计方法,其中Q42OqE(WNQ57)的用于受力超过600吨的受压杆件,这是该钢种首次应用于铁路桥梁建设。Q500q高性能桥梁用钢目前尚在实际桥梁工程中大规模应用。本文就500MPa级高性能桥梁用钢做出设计。 2 Q500q高性能桥梁用钢性能设计原则 由于桥梁用钢长时间受到载荷,和大气腐蚀、风力和地震的考验,以及在架设桥梁时的焊接。对Q500q桥梁用钢性能应有如下设计原则: (1)材料强度高。在板材厚度在40mm-100mm的范围内,高性能钢的标准强度不降低。因为材料的高强度而减少了钢材的用量。例如采用高性能钢可减少主梁片数以减轻自重,可采用更矮的主梁以增加桥下净空,可增加跨度以减少水中桥墩的数量。 (2)良好的焊接性能。材料的低碳当量CEV和低焊接裂纹敏感系数Pcm可减低热影响区(HAZ)的硬度和防止冷脆,提高了焊缝的可靠性。同时,这在很大程度上消除了氢致开裂。在焊接工艺中焊接预热是一个关键,例如在对常规的780MPa 级钢焊接时,需要约120℃以上的预热温度。降低或取消预热,可以克服因预热带来热膨胀引起的构件变形和高温所带来的工作荷载增加等各方面的问题。预热温度的降低既减少了制造费用,也改善了焊接质量。减少焊道数量,节省焊接费用,降低焊接工作时间,同时也使整个桥梁的性能提高。在焊接中降低预热温度,可以极大的改善了操作工人的工作环境。 (3)材料的高韧性,大大降低了在低温条件下钢桥发生脆断和突然失效的可能性,而且,高韧性也意味着增大了对裂纹的容忍度,这就争取到更多时间在桥梁出现严重问题之前进行检测和修复。同时,我国是地震多发国,高韧性将有效

高性能细晶粒钢筋规模化生产及应用关键技术项目简介

附件1 《高性能细晶粒钢筋规模化生产及应用关 键技术》项目简介 细晶高强钢筋是近年来我国自主开发节约型高强度钢筋,其产品应用可在节约合金资源的条件下促进高强钢筋的推广,从而具有节材、资源节约等经济社会效益。钢筋产品是我国钢产量中所占比重最大的品种,2011年我国钢筋产量为1.5亿吨占全年粗钢产量的22%。另一方面,我国具有细晶高强钢筋的生产能力,有产品标准,但却没有细晶粒钢筋牌号产品应用。近年来,为促进节能减排、节材降耗,我国大力推广高强钢筋的使用。本项目对细晶高强钢筋在建筑中应用的关键技术进行集成创新,形成细晶高强钢筋应用的系统化技术标准,将有利于促进细晶高强钢筋以及高强钢筋的推广应用。主要技术进步包括: 1)提出细晶高强钢筋SH-CCT曲线,提出t8/5与HAZ 组织、硬度关系图,以及规范t8/5的时间范围。提出适用细晶高强钢筋的焊接工艺和允许规格,解决细晶高强钢筋无焊接依据的问题。 2)依据内应力集中的材料在受力状态下对腐蚀介质具有腐蚀敏感性原理,为检测细晶高强钢筋的应力腐蚀敏感性,开发出适用的应力腐蚀试验机。 3)为进行细晶高强钢筋用于工程结构中耐蚀性能的检

测,设计开发模拟海洋腐蚀耐蚀性能检测方法,并试制了条件环境箱。 4)完成系统的细晶高强钢筋应用技术试验研究,为细晶高强钢筋在混凝土结构中应用的安全性、经济性提供了可靠的依据;将细晶高强钢筋纳入相关设计、施工及验收规范,为全面推广应用技术基础。 项目开发出适用于细晶高强钢筋的测试、应用技术,并将成果纳入到相应标准规范中,解决了细晶高强钢筋没有设计、应用、施工依据的问题。 本项目授权专利1项,制定标准规范5项,发表论文38篇。该成果实施后形成显著的经济效益和社会效益。已有应用证明的经济效益显示,近三年新增利润3648万元,节支总额5860万元,而另一方面我国具有细晶高强钢筋生产能力的企业为数众多,无法一一统计。该成果也促进了400~500MPa级高强钢筋的应用,在我国建筑用钢筋用钢量基础上,可达到节材12%~21%的效果。以400MPa级细晶高强钢筋代替HRB335可节约用钢量12%~14%,2010年HRB335钢筋使用量8198万吨,如使用400MPa级细晶高强钢筋可节约用钢量983~1147万吨。并可节约水资源8428万吨,减少二氧化碳排放量5.9亿立方米,减少煤气消耗1352亿立方米,减少二氧化硫排放量约2744吨,节省大量铁矿资源。而细晶高强钢筋的使用,不仅可以减少钢筋用量,亦可减少炼钢

耐候钢发展历程与研究现状

耐候钢发展历程与研究现状本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

材料科学与工程学院《材料学科前沿》文献综述 题目:耐候钢发展历程与研究现状 学生姓名: 学号: 专业:金属材料工程 评阅教师: 2012年 4 月 5号

耐候钢发展历程与研究现状 摘要:钢的腐蚀是一个普遍而严重的问题,其中大气腐蚀造成的损失约占全部腐蚀损失的一半,给国民经济带来了巨大损失,据一些工业发达国家统计,每年由于钢结构腐蚀造成的经济损失约占国民经济生产总值的2%~ 4%。目前,全 世界每年因钢结构腐蚀造成的经济损失已高达数千亿美元以上,因此,为了解决钢在大气中容易腐蚀的问题,人们研制开发了耐候钢。 关键词:耐候钢合金元素发展技术革新展望 1 前言 耐候钢是指通过添加少量合金元素,使其在大气中具有良好耐腐蚀性能的低合金高强度钢。耐候钢的耐大气腐蚀性能为普通碳素钢的2~ 8 倍,并且使用 时间愈长,耐蚀作用愈突出。耐候钢除具有良好的耐候性外, 还具有优良的力学、焊接等使用性能, 广泛用于铁道车辆、桥梁和集装箱。 2 发展概况 国外发展现状 从20 世纪初至今, 美、德、英、日各国对耐候钢进行了深入的研究。早在1900 年,欧美科学家就发现铜可以改善钢在大气中的耐蚀性能。1916 年, 美国实验和材料学会( ASTM) 开始了大气腐蚀研究。C. P. Larrabee 等进行了大气腐蚀的数据积累工作,总结腐蚀规律, 探讨了腐蚀机理。20 世纪30 年代,美国的U. S. Steel 公司首先研制成功了耐腐蚀高强度含铜低合金钢——Corten 钢, 在20 世纪60 年代不涂漆直接用于建筑和桥梁, 其中最普遍应用的是高磷、铜+ 铬、镍的Corten A 系列钢和以铬、锰、铜合金化为主的Corten B 系列钢[1]。这种耐候钢在欧洲、日本也得到广泛应用。目前, 国外已将耐候钢逐渐作为普通钢种广泛使用, 并且在钢种开发、使用及设计施工方面也进行了详细规定。 我国发展现状 我国耐候钢的发展较晚。1960年前后, 武钢利用其铁矿中含铜, 首先在国内进行了含铜耐候钢的研究和开发工作,20 世纪60 年代, 我国开始进行耐候钢的研

相关文档
最新文档