上下偏差标注方法

上下偏差标注方法

1.没有正负公差之说,公差永远是正数。

2.没有上下公差之说,是上下偏差。

3.公差等于上偏差减下偏差。

4.尺寸上下偏差不可以随便标,上偏差数值“大”、下偏差数值“小”。例如,30(-0.025,-0.05),公差 = -0.025 - (-0.05)= 0.025 。 30±0.025 ,公差 = 0.025 - (-0.025)= 0.05 。

正负公差之间的区别就在于,正公差是允许当前对象尺寸可以超当前尺寸的范围,而负公差则相反,是允许当前尺寸小于当前尺寸的范围。

如模具中的套筒中的轴芯,只能是负公差而不能是正公差,要不然轴芯就套不进去了,相互之就进行了干涉。

公差的数值一般是根据当前模具材料的收缩率来决定的,而建筑中的公差范围会适当大一些。

形位误差测量方法

形位误差测量方法

摘要:跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。 形位误差测量 径向圆跳动、全跳动、端面圆跳动实验 一、实验目的: 跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。本实验的目的是: 1、掌握形位公差检测原则中的跳动原则。 2、形状误差不大时,用以代替同轴度测量。 3、分析圆度误差与径向跳动的各自特点。 二、实验内容: 1、模拟建立理想检测基准。 2、径向圆跳动、全跳动、端面圆跳动的测量。 3、根据指示表读数值,确定各种跳动量。 三、实验仪器: 偏摆仪、测量表架、指示表。 四、实验方法: 调整偏摆仪两端顶尖同轴,以两顶尖的轴线模拟公共基准,被测工件对顶无轴向移动且转动自如,采用跳动原则,看指示表读数,确定跳动量。 具体检测方法见下表。

五、实验步骤: 1、径向圆跳动测量: (1)将指示表安装在表架上,指示表头接触被测圆柱表现,指针指示不得超过指示表量程的1/3,测头与轴线垂直,指示表调零。 (2)轻轻使被测工件回转一周,指示表读数的最大差值即为单个测量截面上的径向跳动。 (3)按上述方法在若干个正截面上测量,分别记录,取各截面上测的跳动量中的最大值作为该零件的径向圆跳动。 (4)将测量记录填表2-2。

2、径向全跳动测量 (1)按上述方法在被测工件连续转动过程中,同时让指示表沿基准轴线方向作直线移动。(2)在整个测量过程中,指示表读数最大差值即为该零件的全跳动。(3)所测数据填表2-2。 3、端面圆跳动测量 (1)将指示表测头与被测的台阶表面接触,注意指示表指针指示不得超过指示表量程的1/3,指示表读数调零。 (2)轻轻转动工件一周,指示表读数最大差值即为单个测量圆柱面上的端面圆跳动。(3)按上述方法,在任意半径处测量若干个圆柱面,取各测量圆柱面上测得的跳动中最大值作为该零件的端面圆跳动。(4)所测数据填表2-2。 六、实验记录表 表2-2 径向圆跳动、全跳动、端面圆跳动实验记录

cad公差标注方法

Auto CAD标注尺寸公差的方法 Notation methods of the dimension tolerance make used of the Auto CAD 江桂兰熊旭平 (平顶山工业职业技术学院河南平顶山467001) 摘要:零件图中的尺寸公差标注有各种形式,通过实例介绍利用计算机辅助设计CAD技术标注各种尺寸公差的方法 关键词:计算机辅助设计;Auto CAD;尺寸公差 0引言 美国Autodesk公司从1982年12月开始推出计算机辅助设计与绘图软件AutoCAD,从AutoCADR1.0起到目前AutoCAD2007功能日趋完善,深受广大工程技术人员的欢迎。 国家标准GB4458-84《机械制图》对零件图线性尺寸公差的标注式样,规定有3种:公差代号标注、极限公差标注、同时标注公差代号和极限偏差。本文介绍了利用计算机辅助设计与绘图软件(Auto CAD)标出符合国家标准的尺寸公差的方法。 1、标注公差带代号 根据尺寸注法(GB/T4458.4-1984和GB/T16675.2-1996)利用“标注样式管理器”建立正确尺寸标注样式,在此基础上,可用下列方法之一进行标注。 方法一:使用输入尺寸文本标注 在执行线性尺寸标注命令后,从尺寸标注提示 中选择文字(T)输入尺寸文本而替代测量值。 (即%%C20f7)→回车,用光标确定尺寸位置。 方法二:利用“编辑标注”按钮编辑尺寸 在执行线性尺寸标注命令后,调出“编辑标注” 图 1 标注公差带代号命令,从标注编辑类型中选择新建(N),弹出“多行文字编辑器”对话框,在<>符号前输入%%C,符号后输入f7,单击[确定],选择已标注的线性尺寸→回车。 方法三:利用“特性”对话框编辑尺寸 在执行线性尺寸标注命令后,双击已标注的线性尺寸,弹出“特性”对话框,在[文字替代]输入%%C20f7后,关闭“特性”对话框。 方法四:利用“替代当前样式”标注 调出“标注样式管理器”对话框,选择“替代当前样式”,在“主单位选项卡”对话框中[前缀]输入%%C;[后缀]输入f7 。执行线性标注命令标注尺寸。 2、标注极限偏差 方法一:使用输入尺寸文本标注 在执行线性尺寸标注命令后,从尺寸标注提 示中选择多行文字(M),弹出“多行文字编辑 器”对话框,在<>符号前输入%%C,符号后输 入-0.020^-0.041并且选取进行堆叠,单击

形位公差检测方法

一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度

工程图标注方法与技巧

1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

机械制图的公差与配合及其标注方法

一、公差与配合的概念 (一)零件的互换性 在成批生产进行机器装配时,要求一批相配合的零件只要按零件图要求加工出来,不经任何选择或修配,任取一对装配起来,就能达到设计的工作性能要求,零件间的这种性质称为互换性。零件具有互换性,可给机器装配、修理带来方便,也为机器的现代化大生产提供了可性。 (二)公差的有关术语 零件在加工过程中,足球机床精度、刀具磨损、测量误差等的影响,不可能把零件的尺寸加工得绝对准确。为了保证互换性,必须将零件尺寸的加工误差限制在一定范围内,为例,说明公差的有关术语(轴,类同)。 1、基本尺寸 根据零件的强度与结构要求,设计时确定的尺寸。其数值应优先用标准直径或标准长度。 2、实际尺寸 通过测量所得到的尺寸。 3、极限尺寸 允许尺寸变动的两个界限值。它就是以基本尺寸为基数来确定的。两个界限值中较大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。

4、尺寸偏差(简称偏差) 某一尺寸减去其基本尺寸所得的代数差。尺寸偏差有: 上偏差=最大极限尺寸—基本尺寸 下偏差=最小极限尺寸—基本尺寸 上、下偏差统称为极限偏差,上、下偏差可以就是正值、负值或零。 国家标准规定:孔的上偏差代号为ES,孔的下偏差代号为EI;轴的上偏差代号为es,轴的下偏差代号为ei、 5、尺寸公差(简称公差) 允许尺寸的变动量。 尺寸公差=最大极限尺寸—最小极限尺寸=上偏差—下偏差 因为最大极限尺寸总就是大于最小极限尺寸,亦即上偏差总就是大于下偏差,所以尺寸公差一定为正值。 如图1a所示的孔径: 基本尺寸=?30 最大极限尺寸=?30、010 最小极限尺寸= ?29、990 上偏差ES=最大极限尺寸—基本尺寸 =30、010-30=+0。010 下偏差EI=最小极限尺寸—基本尺寸 =29、990-30=-0、010 公差=最大极限尺寸—最小极限尺寸

形位误差测量与实验

形位误差测量与实验 实验3-1直线度误差的测量 (一)实验目的 1.掌握用水平仪测量直线度误差的方法及数据处理。 2.加深对直线度误差含义的理解。 3.掌握直线度误差的评定方法。 (二)实验内容 用合象或框式水平仪按节距法测量导轨在给定平面内的直线度误差,并判断其合格性。(三)实验器具: 1.合象水平仪或框式水平仪 2.桥板 (四)测量原理及器具介绍 为了控制机床、仪器导轨及长轴的直线度误差,常在给定平面(垂直平面或水平平面)内进行检测,常用的测量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等测定微小角度变化的精密量仪。 由于被测表面存在直线度误差,测量器具置于不同的被测部位上时,其倾斜角将发生变化,若节距(相邻两点的距离)一经确定,这个微小倾角与被测两点的高度差就有明确的函数关系,通过逐个节距的测量,得出每一变化的倾斜度,经过作图或计算,即可求出被测表面的直线度误差值。合象水平仪因具有测量准确、效率高、价格便宜、携带方便等特点,在直线度误差的检测工作中得到广泛采用。 合象水平仪的结构,主要由微动螺杆、螺母、底盘水准仪、棱镜、放大镜、杠杆以及具有平面和V形工作面和底座等组成。 合象水平仪是利用棱镜将水准器中的气泡像复合放大,以提高读数时的对准精度,利用杠杆和微动螺杆传动机构来提高读的精度和灵敏度,其工作原理见本指导书第二篇。合象水平仪置于被测工件表面上,若被测两点相对自然水平线不等高时,将引起两端的气泡像不重合,转动度盘使气泡像重合,此时合象水平仪的读数值即为该两点相对自然水平面的高度差,刻度盘读数与桥板跨距L之间的关系为: h=i·L·a 框式水平仪是一种测量偏离水平面的微小角度变化量的常用量仪,它的主要工作部分是水准器。水准器是一个封闭的玻璃管,内表面的纵剖面具有一定的曲率半径,管内装乙醚或酒精,并留有一定长度的气泡。由于地心引力作用,玻璃管内的液面总是保持水平,即气泡总是在圆弧玻璃管的最上方。当水准器的下平面处于水平时,气泡处于玻璃管外壁刻度的正中间,若水准器倾斜一个角度α,则气泡就要偏离最高点,移动的格数与倾斜的角度α成正比。由此,可根据气泡偏离中间位置的大小来确定水准器下平面偏离水平的角度。 框式水平仪的分度值有0.1mm/m,0.05mm/m,0.02mm/m三种。如果水平仪分度值为0.02mm/m,则气泡每移动一格,表示导轨面在1m长度上两测量点高度差为0.02mm(或倾斜角为4〞)。

机械制图-尺寸公差标注

第八节尺寸公差与配合注法(GB/T 4458.5-2003) 公差是反映对制造零件精度要求的,配合是反映相配零件之间存在的间隙或过盈情况的,即互相结合的松紧关系。所以,标注公差与配合是图样中不可缺少的内容。 本标准规定了机械图样中尺寸公差与配合公差的标注方法, 适用于机械图样中尺寸公差(线性尺寸公差和角度尺寸公差)与配合的标注方法。本标准从2003年12月1日实施,并自实施之日起代替GB/T 4458.5-1984《机械制图尺寸公差与配合注法》。 一、基本要求 1、公差带的代号及公差等级的代号等要符合GB/T 1800《极限与配合基础》的规定。 2、字体的写法应符合GB/T 14691-1993《技术制图字体》的规定。 3、尺寸注法要符合GB/T 4458.4-2003《机械制图尺寸注法》的规定。 二、在零件图上的公差注法 (一)线性尺寸公差的注法 在图样中标注线性尺寸公差的方法,常用的有标注公差带代号、标注极限偏差、同时标注公差带代号和极限偏差等三种形式。 1、标注公差带代号 随着公差与配合标准化工作的进展,对于采用标准公差的尺寸,可以直接标注公差带代号,这对于用量规(公差带的代号往往就是量规的代号)检验的场合十分简便。标注公差带代号对公差等级和配合性质的概念都比较明确,在图样中标注也简单。但缺点是具体的尺寸极限偏差不能直接看出。 (注意:当采用公差带代号标注线性尺寸的公差时,公差带的代号应注在基本尺寸的右边,如图2-160、图2-161)。 图2-160 注写公差带代号的公差注法(一) 图2-161 注写公差带代号的公差注法(二) 2、标注极限偏差

在基本尺寸后标注极限偏差的方法,尺寸的实际大小比较直观,为单件、小批生产所欢迎。至于标注极限偏差的具体方法,现说明如下: ①极限偏差数字的高度:GB/T 4458.5-2003仍规定极限偏差数字比基本尺寸的数字小一号,其优点是突出了基本尺寸,标注极限偏差所占地位较小。 ②极限偏差标注的位置:上偏差应注在基本尺寸数字的右上方,下偏差注在基本尺寸数字的右下方,并且下偏差的数字必须与基本尺寸数字注在同一底线上,如图2-162、图2-163。 图2-162 注写极限偏差的公差注法(一) 图2-163注写极限偏差的公差注法(二) ③在标注极限偏差时,上下偏差的小数点必须对齐,小数点后右端的“0”一般不予注出;如果为了使上、下偏差值的小数点后的位数相同,可以用“0”补齐,如图2-164。 图2-164 极限偏差的注法(一) ④当极限偏差中的某一偏差(上偏差或下偏差)为“零”时,用数字“0”标出,这个“0”为个位数,应与另一偏差(下偏差或上偏差)小数点前的个位数对齐,但“0”前不加符号“+”或“-”,后不加小数点,如图2-165。 图2-165 极限偏差的注法(二) ⑤当公差带相对于基本尺寸对称地配置,即上下偏差的绝对值相同时,极限偏差数字可以只注写一次,并应在极限偏差数字与基本尺寸之间注出符号“±”,且两者数字高度相同,如图2-166。 图2-166 极限偏差的注法(三)

公差与配合的标注

3、公差与配合的标注 (l)在装配图中的标注 国家标准规定,在装配图上标注公差与配合时,配合代号一般用相结合的孔与轴的公差带代号组合表示,即在基本尺寸的后面将代号写成分数的形式,分子为孔的公差带代号。分母为轴的公差带代号。孔和轴的公差带代号分别由基本偏差代号与公差等级两部件组成。 也可以注写成Φ50H7/K6和Φ50F8/h7的形式。 当配合代号的分子中出现基孔制代号H,而分母中同时出现基轴制代号h 时,则称为基准件相互配合,如Φ50H7/K6,它既可以视为基孔制,也可视为基轴制,是一种最小间隙为零的间隙配合。如分子分母均无基准件代号,则属于某一孔公差带与某一轴公差带组成的配合.在装配图中公差号配合的标注见图8. (2)零件图中尺寸公差的标注 在零件图中尺寸公差的标注形式有三种:

l)在基本尺寸后面只标注公差带代号。公差带代号应注写在基本尺寸的右边,如图9 所示,这种标注形式适合于大批量生产的零件。 2)在基本尺寸后面标注极限偏差、表示极限偏差的数字要比基本尺寸的数字小一号,如图9.b所示,偏差值一般要注写三位有效数字,上偏差注写在基本尺寸的右上力;下偏差应与基本尺寸注写在同一底线上。若其中有一个偏差值为零时,要以占位,并与上偏差或下偏差小数点前的个位数字对齐。如果上下偏差数值相同。符号相反,则应首先在基本尺寸的右边注上“士”号,再填写偏差数字,其高度与基本尺寸数字相同,如图10所示.这种标注形式适合于单件或小批量生产的零件。 3)在基本尺寸的后面同时标注公差带代号和极限偏差数值,此时极限偏差数值应加括号,如图9c所示。 如有侵权请联系告知删除,感谢你们的配合! 如有侵权请联系告知删除,感谢你们的配合!

形位公差表示方法及其误差的测量

形位公差表示方法及其误差的测量 零件加工后,不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 形位公差的项目与符号 形位公差包括开状公差与位置公差,而位置公差又包括定向公差和定位公差,具体包括的内容及公差表示符号如下图所示: 形状公差 1、直线度符号为一短横线(-),是限制实际直线对理想直线变动量的一项指标。它是针对直线发生不直而提出的要求。 2、平面度符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 3、圆度符号为一圆(○),是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。 4、圆柱度符号为两斜线中间夹一圆(/○/),是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。

5、线轮廓度符号为一上凸的曲线(⌒),是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 定向公差 1、平行度(∥) 用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 2、垂直度(⊥) 用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 3、倾斜度(∠) 用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差 1、同轴度(◎) 用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。 2、对称度符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 3、位置度符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。

形位公差之圆度误差测量方法介绍

形位公差之圆度误差测量方法介绍 摘要 在机械制造中,经常会加工轴、套筒等回转体类零件,这些零件需要配合起来使用,这就要求不仅满足尺 寸精度要求,同时还要满足形位精度要求。圆度属于形位公差中的一种,其测量方法主要有回转轴法、三 点法、两点法、投影法和坐标法以及利用数据采集仪连接百分表法等。 圆度 圆度是表示零件上圆的要素实际形状,与其中心保持等距的情况。即通常所说的圆整程度。 圆度公差 圆度是限制实际圆对理想圆变动量的一项指标,其公差带是以公差值t为半径差的两同心圆之间的区域。 圆度公差属于形状公差,圆度误差值不大于相应的公差值,则认为合格,下图为圆度公差标注图: 圆度误差的评定原则 圆度误差评定有4种主要方法。 ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。 ②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测 圆轮廓的两同心圆的半径差即为圆度误差。 ③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆 轮廓的两同心圆半径差即为圆度误差。 ④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测 圆轮廓两同心圆的半径差即为圆度误差. 圆度误差测量方法 圆度测量方法主要有回转轴法、三点法、两点法、投影法和坐标法、直接利用我们太友科技的数据采集仪 连接百分表法。 1、回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度

传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 2、三点法 常将被测工件置于V形块中进行测量。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 3、两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 4、投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。 5、坐标法 一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 6、利用数据采集仪连接百分表法

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

机械设计中尺寸几何公差标注类知识

一、关于尺寸 (1)功能尺寸系指对于机件的工作性能、装配精度及互换性起重要作用的尺寸。功能尺寸对于零件的装配位置或配合关系有决定性的作用,因而常具有较高的精度。这些尺寸是尺寸链中重要的一环,常为了满足设计要求而直接注出。例如,有装配要求的配合尺寸,有连接关系的定位尺寸、中心距等。 (2)非功能尺寸系指不影响机件的装配关系和配合性能的一般结构尺寸。这些尺寸一般精度都不高。例如,无装配关系的外形轮廓尺寸、不重要的工艺结构(如倒角、倒圆、退刀槽、凹槽、凸台、沉孔)的尺寸等。 (3)公称尺寸是某一要素或零件尺寸的名义值。例如,平垫圈的公称尺寸是与之相配的螺栓的公称直径,而实际上该垫圈的孔径要大于这个公称尺寸。 (4)基本尺寸是设计时给定的、用以确定结构大小或位置的尺寸。基本尺寸又是确定尺寸公差的基数,它与公称尺寸的性质是不同的。 (5)参考尺寸是指在图样中不起指导生产和检验作用的尺寸。它仅仅是为了便于看图方便而给出的参考性尺寸。参考尺寸只有基本尺寸而不带公差,为了区别于其他未注公差的尺寸,标注时应加圆括号表示。 (6)重复尺寸是指某一要素的同一尺寸在图样中重复注出,或对机件的结构尺寸注成封闭的尺寸链,因其中一环由图样中的其他尺寸和存在的几何关系可以推算出来,此时又不加圆括号者,这都称为重复尺寸。机件每一要素的尺寸一般都只能标注一次,不应重复出现,以避免尺寸之间产生不一致或相互矛盾的错误。 二、正确地选择尺寸基准 要合理标注尺寸,必须恰当地选择尺寸基准,即尺寸基准的选择应符合零件的设计要求并便于加工和测量。零件的底面、端面、对称面、主要的轴线、中心线等都可作为基准。

图7-7 轴承座的尺寸基准 1.设计基准和工艺基准 根据机器的结构和设计要求,用以确定零件在机器中位置的一些面、线、点,称为设计基准。根据零件加工制造、测量和检验等工艺要求所选定的一些面、线、点,称为工艺基准。 图7-7所示为轴承座。轴承孔的高度是影响轴承座工作性能的功能尺寸,图中尺寸40±0.02以底面为基准,以保证轴承孔到底面的高度。其他高度方向的尺寸,如10、12、58均以底面为基准。 在标注底板上两孔的定位尺寸时,长度方向应以底板的对称面为基准,以保证底板上两孔的对称关系,如俯视图中尺寸65。其他长度方向的尺寸,如主视图中φ10、45、35,俯视图中90、8均以对称面为基准。

机械制图形位公差的标注常识

形位公差的标注 (1)代号中的指引线前头与被测要素的连接方法当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的前头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。

(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。 (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。 形状和位置公差 形状和位置公差的基本概念 零件经加工后,不仅会存在尺寸的误差,而且会产生几何形状及相互位置的误差。如下图所示的圆柱体,即使在尺寸合格时,也有可能出现一端大、另一端小或中间细两端粗等情况,其截面也有可能不圆,这属于形状方面的误差; 再如下图所示的阶梯轴、加工后可能出现各轴段不同轴线的情况,这属于位置方面的误差。

形位公差及其检测方法

形位公差及其检测方法 一、概念: 定义: 形状公差:单一实际要素形状所允许的变动全量。 位置公差:关联实际要素的位置对基准所允许的变动全量。 形位公差:形状公差与位置公差的总称。它控制着零件的实际要素在形状、位置及方向上的变化。 形位公差带:用以限制实际要素形状或位置变动的区域。由形状、大小、方向和位置四个要素所确定。 公差原则:形位公差与尺寸公差之间的相互关系。包括独立原则与相关要求。 独立原则:图样上给出的尺寸公差与形位公差各自独立,彼此无关,分别满足要求的公差原则。 相关要求:图样上给定的尺寸公差和形位公差相互有关的公差要求。具体可分为

形位公差带的形式: 二、形状误差与形状公差:

项目 公差带定义示 例说 明 公差带是距离为公差值t 的两平行直线之间的区域 在给定平面内 圆柱表面上的任一素线必须位于轴向平面内,距离为0.02的两平行线之间 0.02 在给定方向上、当给定一个方向 公差带是距 离为公差值t的两 平行平面之间的区域 棱线必须位于箭头所示方向距离为公差 值0.02的两平行平面内 0.02 、当给定两 个互相垂直的两个 方向 公差带为截面边长t1*t2的四 棱柱内的区域 棱线必须位于水平方向距离为公差值0.02,垂直方向距离为0.01的四棱柱内 0.01 0.02 3、在任意方向 公差带是直径为公差值t的圆柱面的区域 d 圆柱体的轴线必须位于直径为公差值0.02的圆柱面内 直 线 度平面度 公差带是距离为公差值t的两平行平面之间的区域 上表面必须位于距离为公差值0.1的两平行平面内 0.1 圆度 公差带是在同一正截面上半径差为公差值t的两同心圆之间的区域 在垂直于轴线的任一正截面上,该圆必须位于半径差为公差值0.02的两同心圆之间

[全]机械制图的公差与配合及其标注方法

机械制图的公差与配合及其标注方法一、公差与配合的概念 (一)零件的互换性 在成批生产进行机器装配时,要求一批相配合的零件只要按零件图要求加工出来,不经任何选择或修配,任取一对装配起来,就能达到设计的工作性能要求,零件间的这种性质称为互换性。零件具有互换性,可给机器装配、修理带来方便,也为机器的现代化大生产提供了可性。 (二)公差的有关术语 零件在加工过程中,足球机床精度、刀具磨损、测量误差等的影响,不可能把零件的尺寸加工得绝对准确。为了保证互换性,必须将零件尺寸的加工误差限制在一定范围内,为例,说明公差的有关术语(轴,类同)。 1、基本尺寸

根据零件的强度和结构要求,设计时确定的尺寸。其数值应优先用标准直径或标准长度。 2、实际尺寸 通过测量所得到的尺寸。 3、极限尺寸 允许尺寸变动的两个界限值。它是以基本尺寸为基数来确定的。两个界限值中较大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。 4、尺寸偏差(简称偏差) 某一尺寸减去其基本尺寸所得的代数差。尺寸偏差有: 上偏差=最大极限尺寸—基本尺寸 下偏差=最小极限尺寸—基本尺寸 上、下偏差统称为极限偏差,上、下偏差可以是正值、负值或零。 国家标准规定:孔的上偏差代号为ES,孔的下偏差代号为EI;轴的上偏差代号为es,轴的下偏差代号为ei. 5、尺寸公差(简称公差) 允许尺寸的变动量。 尺寸公差=最大极限尺寸—最小极限尺寸=上偏差—下偏差

因为最大极限尺寸总是大于最小极限尺寸,亦即上偏差总是大于下偏差,所以尺寸公差一定为正值。 如图1a所示的孔径: 基本尺寸=?30 最大极限尺寸=?30.010 最小极限尺寸= ?29.990 上偏差ES=最大极限尺寸—基本尺寸 =30.010-30=+0。010 下偏差EI=最小极限尺寸—基本尺寸 =29.990-30=-0.010 公差=最大极限尺寸—最小极限尺寸 =3。010-29.990=0.020 =ES-EI=+0.010-(-0.010)=0.020 如果实际尺寸在?30.010与?29.990这间,即为合格。 6、零线、公关带和公差带图 如图1b所示,零线是在公差带图中用以确定偏差的一条基准线,即零偏差线。通常零线表示基本尺寸。在零线左端标上“0”“+”、“—”号,零线上方偏

形位公差的测量方法

在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

形位公差特殊标注方法

名称 标注规定 示例 公共公差带 1.图a 是三个表面 用同一公差带控制以 达到共面要求的示 例,应在公差表格上 方标注“共面” 2.图b 为同一要求 的另一种标注形式, 即公差框格不与被测 要素相连。每一个被 测要素上标以符号及 字母,框格上方标上 被测要素的数量及字 母代号3xA ,并在其 后加注“共面” 3.除“共线”、 “共面”要求外,其 他要素需由公共公差 带控制时,可加注 “公共公差带” 全周符号 1.图a 为外轮廓线 的全周统一要求 2.图b 为外轮廓面 的全周统一要求 对误差值的进一步限制 1.对同一棱滑要 素,如在全长上给出 公差值的同时,又要 求在任一长度上进行 进一步的限制,可同 给出全长上和任意长 度上两项要求,任一 长度的公差值要求用 分数表示,如a 图所 示 同时给出全长和任 一长度上的公差值 时,全长上的公差值 框格并置于任一长度 的公差值框格上面,

如b 图所示 2.对被测要素形状误差的变化方向有进一步限制要求时,应在公差值后加注限定符号。图c 表示该 平面的平面度误差只允许两边高中间低,即外边向中心凹下。图d 表示该圆柱面的圆柱度误差只允许从左端向右端减小 说明性内容 表示被测要素的数量,应注在框格的上 方,其他说明性内容应注在框格的下方。但也允许例外的情况,如上方或下方没有位置标注时,可注在框格的周围或指引线上 螺纹 一般情况下,以螺 纹的中径轴线作为被测要素或基准要素时,不需另加说明 如需以螺纹大径或小径作为被测要素或基准要素时,应在框格下方或基准符号中的圆圈下方加注“ MD ”或“LD ” 齿轮、花键 由齿轮和花键作为被测要素或基准要素时,其分度圆轴线用 “PD ”表示。大径(对外齿轮是顶圆直径,内齿轮是根圆直径)轴线用“MD ”表

机械制图 尺寸公差标注

第八节尺寸公差与配合注法(GB/T ) 公差是反映对制造零件精度要求的,配合是反映相配零件之间存在的间隙或过盈情况的,即互相结合的松紧关系。所以,标注公差与配合是图样中不可缺少的内容。 本标准规定了机械图样中尺寸公差与配合公差的标注方法, 适用于机械图样中尺寸公差(线性尺寸公差和角度尺寸公差)与配合的标注方法。本标准从2003年12月1日实施,并自实施之日起代替GB/T 《机械制图尺寸公差与配合注法》。 一、基本要求 1、公差带的代号及公差等级的代号等要符合GB/T 1800《极限与配合基础》的规定。 2、字体的写法应符合GB/T 14691-1993《技术制图字体》的规定。 3、尺寸注法要符合GB/T 《机械制图尺寸注法》的规定。 二、在零件图上的公差注法 (一)线性尺寸公差的注法 在图样中标注线性尺寸公差的方法,常用的有标注公差带代号、标注极限偏差、同时标注公差带代号和极限偏差等三种形式。 1、标注公差带代号 随着公差与配合标准化工作的进展,对于采用标准公差的尺寸,可以直接标注公差带代号,这对于用量规(公差带的代号往往就是量规的代号)检验的场合十分简便。标注公差带代号对公差等级和配合性质的概念都比较明确,在图样中标注也简单。但缺点是具体的尺寸极限偏差不能直接看出。 (注意:当采用公差带代号标注线性尺寸的公差时,公差带的代号应注在基本尺寸的右边,如图2-160、图2-161)。 图2-160 注写公差带代号的公差注法(一) 图2-161 注写公差带代号的公差注法(二) 2、标注极限偏差 在基本尺寸后标注极限偏差的方法,尺寸的实际大小比较直观,为单件、小

批生产所欢迎。至于标注极限偏差的具体方法,现说明如下: ①极限偏差数字的高度:GB/T 仍规定极限偏差数字比基本尺寸的数字小一号,其优点是突出了基本尺寸,标注极限偏差所占地位较小。 ②极限偏差标注的位置:上偏差应注在基本尺寸数字的右上方,下偏差注在基本尺寸数字的右下方,并且下偏差的数字必须与基本尺寸数字注在同一底线上,如图2-162、图2-163。 图2-162 注写极限偏差的公差注法(一) 图2-163注写极限偏差的公差注法(二) ③在标注极限偏差时,上下偏差的小数点必须对齐,小数点后右端的“0”一般不予注出;如果为了使上、下偏差值的小数点后的位数相同,可以用“0”补齐,如图2-164。 图2-164 极限偏差的注法(一) ④当极限偏差中的某一偏差(上偏差或下偏差)为“零”时,用数字“0”标出,这个“0”为个位数,应与另一偏差(下偏差或上偏差)小数点前的个位数对齐,但“0”前不加符号“+”或“-”,后不加小数点,如图2-165。 图2-165 极限偏差的注法(二) ⑤当公差带相对于基本尺寸对称地配置,即上下偏差的绝对值相同时,极限偏差数字可以只注写一次,并应在极限偏差数字与基本尺寸之间注出符号“±”,且两者数字高度相同,如图2-166。 图2-166 极限偏差的注法(三) 3、同时标注公差带代号和极限偏差

实验报告 形位公差

目录实验一零件形状误差的测量与检验实验1—1直线度测量与检验 实验1—2平面度测量与检验 实验1—3圆度测量与检验 实验1—4圆柱度测量与检验 实验二零件位置误差的测量 实验2—1 平行度测量与检验 实验2—2 垂直度测量与检验 实验2—3 同轴度测量与检验 实验2—4圆柱跳动测量与检验 实验2—4—1圆柱径向跳动测量与检验 实验2—4—2圆柱全跳动测量与检验 实验2—5端面跳动测量与检验 实验2—5—1端面圆跳动测量与检验 实验2—5—1端面全跳动测量与检验 实验2—6 对称度测量与检验 实验三齿轮形位误差的测量与检验实验3—1齿圈径向跳动测量与检验 实验3—2齿轮齿向误差测量与检验

实验一零件形状误差的测量与检验 实验1—1直线度测量与检验 一、实验目的 1、通过测量与检验加深理解直线度误差与公差的定义; 2、熟练掌握直线度误差的测量及数据处理方法和技能; 3、掌握判断零件直线度误差是否合格的方法和技能。 二、实验内容 用百分表测量直线度误差。 三、测量工具及零件 平板、支承座、百分表(架)、测量块(图纸一)。 四、实验步骤 1、将测量块2组装在支承块3上,并用调整座4支承在平板上,再将测量块两端点调整到与平板等高(百分表示值为零),图1-1-1所示。 图1-1-1 用百分表测量直线度误差 2、在被测素线的全长范围内取8点测量(两端点为0和7点,示值为零),将测量数据填入表1-1-1中。 表1-1-1:单位:μm 3、按图1-1-1示例将测量数据绘成坐标图线,分别用两端点连线法和最小条件法计算测量块直线度误差。

图1-1-1 直线度误差数据处理方法 4、用计算出的测量块直线度误差与图纸直线度公差进行比较,判断该零件的直线度误差是否合格。并将结果填入表1-1-1中。 5、分析两端点连线法与最小条件法计算导轨直线度误差精度的高低。(法)精度高。

相关文档
最新文档