湿膜测量

湿膜测量

湿膜厚度测定一般是涂覆者用于指导人们确定获得预期干膜厚度需要涂覆的规定涂料用量。湿膜测厚仪一般有两种:湿膜厚度轮规和湿膜厚度梳规。采用湿膜厚度测厚仪的优点在于可以在涂覆过程中检查和改正不适当的涂膜厚度。如果涂覆者知道了湿膜厚度,当以此数据乘以涂料固体份的体积百分率,就可估算出干膜厚度。

干膜厚度(μm)=湿膜厚度(μm)*涂料固体分(体积%)

涂料实际用量(kg)=(1+α)*涂料理论涂布量(kg/m2)*涂装面积(m2)(α为涂料消耗系数)

在实际施工中,由于被涂物表面不平整,涂装过程中的消耗,环境条件中风速等影响,以及施工工具种类不同等影响,涂料必然存在不同程度的损耗,α值不是一个常数,由各种因素综合决定。一般高压无气喷涂平整表面α为0.6—0.8;喷涂复杂表面0.8—1.0;手工涂装平整表面α为0.3—0.4;手工涂装复杂表面α值为0.4—0.6。

涂装作业人员可利用湿膜厚度计边检测、边施工、随时调整湿膜厚度。在施工中,温膜厚度的检测频数可以是任意的,在喷涂大而平整的表面,操作熟练时,检测频数可小些。在被涂物面结构复杂,操作不熟练的情况下,检测频数可大些。一般要求在每10 m2的涂覆表面均匀分布测量点,一般1 m2分布5个测量点,各测量三次,测平均值,以提高湿膜厚度的可靠性。在建筑涂料中,钢筋水泥的表面,不可要求也不允许进行破坏性试验,则湿膜厚度的测定可用于取代干膜厚度测定。

大多情况下,湿膜厚度的测定,只是保证干膜膜厚的辅助手段,对无机富锌涂料和一些快挥发性的涂料,干、湿膜比例变化很大,仅用湿膜厚度估算干膜厚度,可能会带来错误的结果,评价总厚度,还是以干膜厚度为准。

污水的生物处理方法生物膜法

污水的生物处理方法生 物膜法 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

污水的生物处理方法——生物膜法 教学要求: 1)掌握生物膜法的微生物学特征和工艺特征 2)掌握高负荷生物滤池、曝气生物滤池、塔式生物滤池以及生物转盘三 相传质和工艺运行特点。 3)掌握生物接触氧化特点及其工艺设计 第一节概述 生物膜——是使细菌、放线菌、蓝绿细菌一类的微生物和原生动 物、后生动物、藻类、真菌一类的真核微生物附着在滤料或某些载体上 生长繁殖,并在其上形成膜状生物污泥。 生物膜法:污水经过从前往后具有细菌→原生动物→后生动物、从 表至里具好氧→兼氧→厌氧的生物处理系统而得到净化的生物处理技 术。 一、生物构造及其对有机物的降解 1 生物膜的构造特征 生物膜(好氧层+兼氧层+厌氧层) Array+附着水层(高亲水性)。 2 降解有机物的机理 1)微生物:沿水流方向为细菌—— 原生动物——后生动物的食物链 或生态系统。具体生物以菌胶团 为主、辅以球衣菌、藻类等,含

有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。 2) 污染物:重→轻(相当多污带→α中污带→β中污带→寡污带). 3) 供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供 氧。 4) 传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经 兼氧层和厌氧层分解,分解后产生的H 2S ,NH 3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO 3--N 、NO 2--N 等经厌氧层发生反硝化,产生的N2也向外而散入大气中。 5) 生物膜更新:经水力冲刷,使膜表面不断更新(DO 及污染物),维持 生物活性(老化膜固着不紧)。 二、生物膜的主要特征 1 微生物相方面的特征 1) 参与净化反应微生物多样化; 2) 食物链长,污泥产率低; 3) 能够存活世代较长的微生物; 4) 可分段运行,形成优势微生物种群,提高降解能力。 2 工艺方面的特征 1) 对水质水量变动有较强适应性; 2) 污泥沉降性能好,宜于固液分离; 3) 能处理低浓度污水;

膜法水处理行业分析报告

目录 一、膜技术及市场分析 (2) 1.1 中国膜产业和市场 (2) 1.1.1 RO膜市场 (4) 1.1.2 UF/MF膜市场 (5) 1.1.3 MBR市场状况 (6) 1.2 中国膜产业企业情况 (7) 二、膜法水处理行业分析 (9) 2.1 水处理行业概况 (9) 2.2 膜法水处理技术概述 (15) 2.3 膜法水处理产业链 (18) 2.4 主要水务公司运营情况 (21) 三、膜法水处理主要公司 (24) 3.1 碧水源 (24) 3.2 津膜科技 (25) 3.3 万邦达 (26) 3.4 南方汇通 (26)

一、膜技术及市场分析 膜技术是膜分离技术的简称,是仿生物学膜,通过人工材料(膜材料)实现不同介质分离的技术,分离的过程多由压力、浓度差、电势差等因素驱动。按照分离精度的不同,膜又可以分为微滤(MF)膜、超滤(UF)膜、纳滤(NF)膜和反渗透(RO)膜等等。 膜技术广泛用于环境、能源、电子、医药等各个方面,近二十年来,由于膜技术可以去除常规处理工艺难以去除的水污染物,在水处理领域的应用越发受到各国重视,不同种类的膜技术分别应用于不同的细分领域,主要下游包括市政污水处理及再生、自来水处理、工业水回用、海水淡化、家用净水器等。 膜技术图谱 1.1 中国膜产业和市场 1999年,全球膜及膜组件市场销售额为44亿美元,21世纪初全球膜市场开始强劲增长,2012年全球膜制品的销售额超过120亿美元,CAGR在7-8%。 最近十几年是中国膜产业的高速增长期,我国膜产业总产值从1993年2亿元人民币上升到2012年近400亿元(膜行业总产值是指膜制品、膜组件、膜附属设备及相关工程的总值,其中膜制品与膜组件是整个行业的核心),复合增长

实验三 干涉显微镜测量薄膜厚度

实验三干涉显微镜测量薄膜厚度 一、实验目的 1. 掌握干涉显微镜的工作原理及使用方法; 2. 用干涉显微镜测量薄膜厚度。 二、实验说明 2.1 实验原理 把显微镜和光波干涉仪结合起来设计而成的显微镜为干涉显微镜。干涉显微镜的类型很多,常用的干涉显微镜是以迈克耳逊干涉仪为原型,其原理却都是以劈尖干涉为基础的,下图1为劈尖干涉的示意图: 若在两块平面玻璃间垫一细丝,即形成一个空气劈尖(为便于说明问题图中夸大了细丝的直径)。当一束单色光射入时,则在空气劈尖(n=1)上下两表面所引起的反射光线将相互干涉。若这两束光的光程差恰为半波长的奇数倍时,则发生相消干涉而呈现暗色条纹;若光程差为半波长的偶数倍时,发生加强干涉而得到明亮条纹。一定的明暗条纹对应一定的厚度,所以这些干涉条纹也叫等厚条纹。条纹间的距离l ,随劈尖的夹角而变化,越小,l 越大。 在迈克耳逊干涉仪中,只要某一光程差发生变化,就要引起干涉场中条纹移动,光程差每改变半个波长(),则干涉条纹移动一个条纹间距。故待测样品表面若存在局部不平, 结果会导致干涉条纹发生弯曲, 条纹弯曲的程度是样品表面微观凹凸不平程度的反映, 只要测出条纹的弯曲量就可以求出样品表面的凹凸量。根据这一原理, 可借助该仪器来测量镀膜膜层的厚度. 设M 1、M 2是两个不严格垂直的理想平面,则得到等厚干涉直线条纹。若表面M 2上有沟槽,干涉条纹将发生弯曲或断折,如图2所示。沟槽的深度h 由式(4—1)决定。 (4—1) θθ2λe H h ?= 2λ 图 1 劈尖干涉的示意图图2表面沟槽及干涉条纹的形状图3薄膜与其干涉条纹的形状

式中,H为干涉条纹曲折量,e 为条纹的间距。若用白光照明,e 是指两根接近黑色的干涉条纹中心间的距离。这时λ取540nm (绿光λ=0.53μm=5300?)。若被测件的部分表面镀有厚度为h 的薄膜,则只要测量出干涉条纹间距e 和因镀膜而引起的干涉条纹位移量H,就可算出该薄膜的厚度。如图3所示。 2.26JA 型干涉显微镜的光学系统及构造 2.2.1 6JA 型干涉显微镜的光学系统 本实验用的是6JA 型干涉显微镜, 其光学系统如图1所示, 属于双光束干涉系统。光源1发出的光经聚光镜2投射到孔径光阑4平面上, 视场光阑5不在照明物镜6的前焦面上, 光经分光板7, 被分成两部分: 一部分反射, 另一部分透射. 被反射的光经物镜8射向标准反射镜M1, 再由M1 反射, 射向目镜14; 而从分光板上透射的光线通过补偿板9、物镜10射向工件表面M2, 再由M2反射, 射向目镜14. 在目镜分划板13上两束光产生干涉. 从目镜中可以观察到干涉条纹. 若样品表面平滑,则干涉条纹是平直的. 图五 6JA 型干涉显微镜构造 11a 5b 5a 105 131113 2 2a 2b 2c 14897a 44a 3 15 8 7 16 1b 1c 图4 6JA 型干涉显微镜光学系统 1-光源 2-聚光镜 3,11,15-反光镜 4-孔径光阑 5-视场光阑 6-照明物镜 7-分光板 8,10-物镜 9-补偿板 12-转向棱镜 13-分划板 14-目镜 16-摄影物镜

生物膜法在市政水处理中的应用

生物膜法在市政水处理中的应用 摘要:前我国不少城市饮用水水源为微污染水源,原水受到生活性有机污染,水中总氮、总磷、氨氮、亚硝酸盐氮、生化需氧量、高锰酸钾指数等均有不同程度的超标。为满足日益提高的出水水质标准,在常规处理工艺上增加生物预处理工艺是无疑是提高水质的最佳选择。 关键词:生物膜法有机污染生物转盘生物反应器 生物膜法水处理技术在市政水处理中的运用领域主要有:市政给水中的微污染水体水处理,其主要目的是去除水体中的氨氮、亚硝酸盐氮以及CODMn等指标;市政污水处理中采用生物膜法去除水体中COD、BOD、氨氮等污染物,降低出水中N、P等导致水体富营养化元素;以及对污水厂二级出水的深度处理,以达到回用水水质标准,提高水的重复利用率,节约有限的水资源。 生物膜法技术在市政给水处理中的运用 目前我国不少城市饮用水水源为微污染水源,原水受到生活性有机污染,水中总氮、总磷、氨氮、亚硝酸盐氮、生化需氧量、高锰酸钾指数等均有不同程度的超标。对各常规给水处理工艺流程的常规项目测定分析表明,浊度的去除主要是靠常规处理工艺,而对氨氮、亚硝酸盐氮和生化需氧量的去除必须靠生物作用才能获得满意效果。为满足日益提高的出水水质标准,在常规处理工艺上增加生物预处理工艺是无疑是提高水质的最佳选择。 八十年代以来,由于生物预处理工艺因其在处理有机污染物、氨氮、色、嗅、味等方面的特点及其经济上的优势,越来越受到重视并得到较快的发展。这一领域的研究和应用,总体上都处于以去除氨氮、BOD5、CODCr等有机物综合指标为代表的污染质的阶段。 用于市政给水处理中生物预处理工艺主要有:生物过滤反应器、生物滤塔、生物接触氧化反应器、生物转盘反应器、生物流化床以及土地处理系统等。其中以生物过滤反应器中的生物陶粒滤池与生物接触氧化反应器最为常用。前者有一定的机械过滤能力适合处理较低浓度或低温原水,后者则因为填料空隙率大,不易堵塞,适合处理较高浓度的微污染原水。 国内采用生物接触氧化池对滦河以及黄河水处理后表明该法对多项主要水质指标均有良好去除效果,高锰酸钾指数去除率为10-25%,氨氮去除率为40-70%,藻类去除率为15-30%。 在臭氧—生物活性炭吸附工艺这一生物膜法处理工艺中,颗粒活性炭是微生物生长的载体。活性炭表面及微孔形成的微生物膜通过生物降解作用,可进一步降解在活性炭表面及微孔富集的有机物,从而降低了活性炭的吸附饱和度,延长了其使用寿命。70年代中期,德国对臭氧—生物活性炭吸附工艺的研究发现,与单纯的活性炭吸附比较,活性炭的再生周期延长4~6倍。其后,欧洲的许多现代化水厂逐步推广使用了臭氧-生物活性炭吸附对微污染水源的深度净化工艺。 在“八五”、“九五”国家科技攻关计划中,“饮用水微污染净化技术”作为专题进行研究,并将取得的重要成果中的生物预处理技术成果成功运用于工程实践。其中位于深圳水库库尾,设计处理规模400万m3/d的广东省东深源水生物硝化工程是国内目前规模最大的采用生物接触氧化法的预处理工程。源水经沉砂区、粗、细隔栅后,进入采用YDT弹性立体填料的生物处理池,水力停留时间55min.填料接触时间40min.,气水比1:1。自1998年12月试运行以来,通过工艺启动过程的自然接种,培养驯化,使填料挂膜,形成系统的生物硝化能力,并使氨氮去除率和硝酸盐氮生成率趋于稳定。试运行得出的初步结论是:生物接触氧化工艺适合于处理东深微污染源水,对氨氮的处理效果显著。氨氮去除率在75%以

膜法水处理技术在农村饮用水工程中的研究与应用

膜法水处理技术在农村饮用水工程中的研究与应用

膜法水处理技术在农村饮用水工程中的研究与应用 董浩1董福平2杨新新1 (1.浙江省农田水利总站,浙江杭州310009;2.浙江省水利学会,浙江杭州310020)摘要:浙江内陆地区农村饮用水工程存在服务对象分散、源水水质差、地形复杂等特点,而东南沿海及海岛地区具有资源型缺水,但滩涂水库亚海水资源丰富的现状,与城市供水之间有着明显的差异。本文着重论述了超滤技术在农村饮用水工程中的应用研究以及利用反渗透技术进行亚海水淡化的研究成果。 关键词:膜;超滤(UF);反渗透(RO);饮用水;农村 1. 概述 浙江内陆地区农村饮用水工程存在服务对象分散、源水水质差、地形复杂等特点,而东南沿海及海岛地区具有资源型缺水,但滩涂水库亚海水资源丰富的现状,与城市供水之间有着明显的差异。为推广应用先进适用技术,多途径解决农村饮用水水源问题,我们开展了膜法水处理技术在农村饮用水工程中的研究与应用,取得了较好的效果。 目前,国内外的饮用水处理技术主要有常规处理技术、强化常规处理技术、深度处理技术、膜处理技术等。传统的饮用水处理工艺一般为:混凝—沉淀—过滤—消毒,以去除水中的悬浮物、胶体颗粒物为主,相对受污染水源中溶解性有机物的去除能力则明显不足。同时,随着对消毒副产物、微生物指标和内分泌干扰物质研究的深入,人类对水质标准不断提升,部分常规水处理技术已经无法适应需求。 膜技术是20世纪水处理领域的关键技术,常用的膜技术包括微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,NF)、电渗析(Electro Dialysis,ED)和反渗透(Reverse Osmosis,RO)。该技术依据原水水质,选用不同的膜来截留水中物质,所以它是一种严格的物理的和绝对的分离技术。 表1.1显示了水中各种杂质的大小和去除它们所使用的分离方法。微滤是传统过滤法的直接延伸,属于亚微米级范围,用以过滤胶体和细菌(<10-2~10-7m);超滤比微滤晋升一级,可去除病毒和大分子量有机物质(10-7~10-8m);纳滤可去除小分子量

椭偏仪测量薄膜厚度与折射率

椭偏仪测量薄膜厚度和折射率 近代科学技术中对各种薄膜的研究和应用日益广泛。因此,能够更加迅速和精确地测量薄膜的光学参数例如厚度和折射率已变得非常迫切。 在实际工作中可以利用各种传统的方法来测定薄膜的光学参数,如布儒斯特角法测介质膜的折射率,干涉法测膜。另外,还有称重法、X 射线法、电容法、椭偏法等等。其中,椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。因为椭偏法具有测量精度高,灵敏度高,非破坏性等优点,已广泛用于各种薄膜的光学参数测量,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。 实验目的 了解椭圆偏振测量的基本原理,并掌握一些偏振光学实验技术。 实验原理 光是一种电磁波,是横波。电场强度E 、磁场强度H 和光的传播方向构成一个右旋的正交三矢族。光矢量存在着各种方位值。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉。 这里我们用2δ表示相邻两分波的相位差,其中222cos /dn δπφλ=,用r 1p 、 r 1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r 2p 、r 2s 表示光线的p 分量、s 分量在界面2、3间的反射系数。 由多光束干涉的复振幅计算可知: 2122121i p p rp ip i p p r r e E E r r e ?δ --+= + (1) 2122121i s s rs is i s s r r e E E r r e ? δ --+=+ (2) 其中E ip 和E is 分别代表入射光波电矢量的p 分量和s 分量,E rp 和E rs 分别代表反射光波电矢量的p 分量和s 分量。现将上述E ip 、E is 、E rp 、E rs 四个量写成一个量G ,即:

废水好氧生物处理工艺生物膜法水处理教案

第四章废水好氧生物处理工艺(2)——生物膜法 第一节生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力; 主要的生物膜法有:①生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等; ②生物转盘;③生物接触氧化法;④好氧生物流化床等。 一、生物膜的结构 1、生物膜的形成 生物膜的形成必须具有以下几个前提条件:①起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;②供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③作为接种的微生物。 (1) 生物膜的形成: 含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 (2) 生物膜的成熟: 在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20 C) 2、生物膜的结构 生物膜的基本结构如图1所示。 图1 生物膜结构示意图

(1) 生物膜的性质: ①高度亲水,存在着附着水层; ②微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物)的食物链。 (2) 生物膜降解有机物的过程: 3、生物膜的更新与脱落 (1) 厌氧膜的出现: ①生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态;②成熟的生物膜一般都由厌氧膜和好氧膜组成;③好氧膜是有机物降解的主要场所,一般厚度为2mm。 (2) 厌氧膜的加厚: ①厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;②气态产物的不断逸出,减弱了生物膜在填料上的附着能力;③成为老化生物膜,其净化功能较差,且易于脱落。 (3) 生物膜的更新: ①老化膜脱落,新生生物膜又会生长起来;②新生生物膜的净化功能较强。 (4) 生物膜法的运行原则: ①减缓生物膜的老化进程;②控制厌氧膜的厚度;③加快好氧膜的更新;④尽量控制使生物膜不集中脱落。 二、生物膜处理工艺的特点 1、微生物方面的特征 (1) 微生物种类多样化: ①相对安静稳定环境;②SRT相对较长;③丝状菌也可以大量生长,无污泥膨胀之虞;④线虫类、轮虫类等微型动物出现的频率较高;⑤藻类、甚至昆虫类也会出现;⑥生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。 (2) 生物膜上微生物的食物链较长: ①动物性营养者所占比例较大,微型动物的存活率较高;②食物链长;③污泥产量少于活性污泥系统(仅为1/4左右)。

膜分离的原理

膜分离的原理是什么? 何为纳滤膜? 答:纳滤膜的透过物大小在1-10nm,科学家们推测纳滤膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜净化原理? 答:(1)溶解--扩散原理:渗透物溶解在膜中,并沿着它的推动力梯度扩散传递,在膜的表面形成物相之间的化学平衡,传递的形式是:能量=浓度o淌度o推动力,使得一种物质通过膜的时候必须克服渗透压力。 (2)电效应:纳滤膜与电解质离子间形成静电作用,电解质盐离子的电荷强度不同,造成膜对离子的截留率有差异,在含有不同价态离子的多元体系中,由于道南(DONNAN)效应,使得膜对不同离子的选择性不一样,不同的离子通过膜的比例也不相同。 道南平衡:当把荷电膜置于盐溶液中会发生动力学平衡。膜相中的反离子浓度比主体溶液中的离子浓度高而同性离子的浓度低,从而在主体溶液中产生道南能位势,该能位势阻止了反离子从膜相向主体溶液的扩散和同性离子从主体溶液向膜的扩散。当压力梯度驱动水通过膜进同样会产生一个能位势,道南能位势排斥同性离子进入膜,同时保持电中性,反离子也被排斥。 三达纳滤膜具有哪些特点? 答:①超低压力下工作(0.15Mpa的压力下就可以稳定工作)。 ②大通量供水。在普通的市政水压下就可以使用,水通量可达15m2/小时。 ③选择性离子脱除。在去除细菌、病毒、过量金属离子、低分子有机物、氟、砷等有害物质的同时,保留一定量钾、钠、钙、铁等对人体有益矿物质。 ④使用领域广。在淡水处理、工业废水处理、医药和食品领域都有广泛的应用。 如何保存纳滤膜? 答:纳滤膜的保存目标是防止微生物在膜表布的繁殖及破坏,防止膜的水解,冻结及膜的收缩变形。前人就有微生物对膜性能的影响进行过多种试验,结果表明:不同的微生物对膜的性能产生不同的影响。防止膜的水解,对任何膜都很重要。温度和PH值是醋酸纤维素膜水解的两个主要因素。对芳香聚酰胺膜,PH值及水中游离氯的含量则是其水解的主要因素。纳滤膜的冻结在冬季运输过程中常常发生。经验表明膜的冻结使膜中的水分形成冰晶而使膜结构膨胀,造成膜的性能大幅度下降或破坏。膜的收缩变形,发生在湿态膜保存时的失水、及膜在与高深度溶液接触时膜中的水急剧向溶液中扩散。不同种类的纳滤膜,其保存方法不同。醋酸纤维素纳滤膜在干态时应避免阳光直接照射,要保存在荫凉、干燥的地方。保存温度以8~35℃。 三达纳滤膜用在水处理时与反渗透膜有什么区别? 答:纳滤膜是荷电膜,能进行电性吸附,它具有敏锐的分子截留区,对不同物质能有目的地提纯或去除的优越分离效果。反渗透膜的滤分子量在100以下,只能过滤掉水中的水分子和气体。在相同的水质及环境下制水,纳滤膜所需的压力小于反渗透膜所需的压力。 三达纳滤膜与反渗透制水水质有何不同? 答:经纳滤膜过滤后的自来水能脱除细菌、病毒、低分子有机物、重金属等物质,保留部分

刍议环境保护中全膜法水处理工艺技术探讨

刍议环境保护中全膜法水处理工艺技术探讨 发表时间:2019-01-17T11:44:52.890Z 来源:《防护工程》2018年第30期作者:董丽娜王晓岩刘娜 [导读] 进一步提高相关工作人员对全膜法水处理工艺技术应用的认识。 陕西省环境监测中心站陕西省西安市 710054 摘要:全膜法水处理工艺技术是一种新型水环境处理保护的应用措施,它没有繁琐的操作步骤,却能保证水质的纯净和稳定,在各项工业水系统应用中都有较高的使用效率,下面本文对传统水处理工艺和全膜法水处理工艺分别进行分析,对比全膜法水处理技术的优点,同时对全膜法水处理技术在水环境处理中的应用进行探讨,进一步提高相关工作人员对全膜法水处理工艺技术应用的认识。 关键词:全膜法水处理;工艺技术;环境保护 引言 可大幅降低耗水量的有效手段有:回收利用工业污水、市政污水,废水零排放,循环水处理等方式。“全膜法”水处理工艺不仅水处理效率高,而且效果显著,同时,具有经济性的新技术,可有效地解决不断严重的脱盐工艺中酸碱的使用及排污问题。 1 分析全膜法水处理工艺技术 通过超滤或微滤预处理原水,然后进行反渗透处理,最后通过电渗析除盐(简称EDI)形成高纯水,即“全膜法”(IMS)水处理技术的流程。 1.1 膜法预处理 采取膜法预处理,可将水中的微粒、胶体、细菌及高分子有机物等有效地去除,其过滤精度一般是0.005μm—0.01μm之间,大幅提高了下游脱盐系统的进水水质。超滤过程具有较好的耐氧化性、耐温性、以及耐酸碱性,且无相转化。超滤膜的材料和工艺设计,根据不同的水质条件和分离功能,选择了相应的孔径以及截留分子量。 1.2 反渗透 反渗透又叫RO,主要由两部分组成,一是高压泵,二是反渗透膜。在高压的情况下,水中的微生物、有机物、矿物质、以及其它物质等都会被阻截在膜外,且会受到高压水流的冲击,而渗透到另一面的水则是纯净的、安全的,卫生的。利用反渗透的分离特性能够将水中的细菌、有机物、溶解盐、及胶体等杂质有效的去除,实现低能耗、零污染,从而使反渗透出水水质达到EDI设备的进水要求。 1.3 EDI技术 EDI技术是一种高新技术,它有机相结合了电渗析技术与离子交换技术,因此,又被称为“填充床电渗析”或“电混床”。它的应用不需要酸碱参与,摒弃酸碱对树脂的再生作用,而持续提取高纯水的一种先进技术。由于二级除盐加上反渗透的系统或者是混床加反渗透系统的废液排放较繁琐以及再生操作的问题,EDI成功克服了其缺点,彻底解决了其酸碱排放的问题。 EDI技术的应用机制是在模堆里添加能够改善膜发生极化的树脂,利用电极促使模堆发生电位差,借助通过离子交换膜吸附作用,吸附并去除源水中的离子。操作中,将直流电连接模堆两侧电极,通电后模堆发生电位差,促使水中的阳离子物质移向发生阴极作用的阳离子交换膜,促使水中的阴离子物质移向产生阳极作用的阴离子交换膜,不同极吸附的阴阳物质聚集,同时利用树脂防止极化作用,升高电阻率将其再次分解进行电离再生作用,形成H+与OH-,从而反复进行水质盐离子聚集和电解,最终电渗析生产高纯水。EDI技术在运行过程中,水电导率可达到0.057us/cm—0.062us/cm,这基本上相同于纯水电导率的理想探讨值0.055us/cm,另外,EDI技术不需要酸碱的使用,通过树脂电离再生,不断脱盐,进而生成高纯水,充分体现了全膜法的显著优势。 2 在环境保护中,全膜法水处理工艺技术的应用 全膜法水处理工艺已越来越多的推广施予在工业水污染处理中,现在,电子产品生产企业、半导体生产厂商等许多企业,在水处理中都已使用了全膜法技术,根据相关研究证明,在小于25℃以下的水中,电阻率都比较稳定在18MΩ以上。另外,在全膜法水处理技术的流程中,通过仔细观察超滤系统,NAHSO灭菌剂的使用,可有效杀灭细菌,避免超滤使用中发生断丝或膜被污染的现象,另外,为了提高膜的使用效率,避免膜被氧化,需加装ORP表以此优化设置。 在进行反渗透过程中,为了高效阻滞各分子杂质,需选择特殊材质的反渗透膜,其不仅要具备较高的细腻度较、较强融水性,还需有效阻截水质中杂质,以防止膜被污染,另外,还需有利于水分子的透过,并可高效处理矿物质及微生物等杂质,为避免单纯高压泵的直接冲击力,可通过高压泵变频进行加压。在全膜水处理工艺中,其最关键的一个流程即是反渗透,它对EDI膜起着有效的保护作用,所以,在该过程中,为了阻滞镁及钙等不溶于水的物质形成污垢,需添加适当的阻垢剂,以促进反渗透作用。另外,企业为了提高水质的纯度,实现环境保护,在全膜法反渗透中还利用了双极反渗透。双极反渗透使用的是抗污染性能强、脱盐效果好的低压复合膜,其利用率超过了97%,而且该膜具有较长的生命周期,一般使用寿命在五年以上。 在EDI技术的应用中,利用电极作用,结合离子交换技术,对树脂进行再生作用,反复对水质进行电解脱盐,因此,使水的纯度大幅提高,在加上抛光床技术的使用,有效的排除了水质中含有的浓度较低的离子,充分发挥了EDI技术的作用,从而大幅提高了水的质量以及纯净度,确保了水质的安全性。抛光床的使用是不可再生的,每年可定期更换一次,它的作用就是加强微粒的释放,从而弥补树脂再生达不到的要求,更进一步提纯水质。而在锅炉补给水的工艺中,传统的过滤净化是先进行混凝澄清,再通过砂滤过滤较大悬浮物,之后利用交换技术去除水中的盐,该过程不仅操作复杂,而且会产生大量的酸碱污水。 近年的化学水处理通过有效结合应用超滤技术、反渗透技术与EDI技术,能够大幅提高水处理水质。同时为了进一步提高水质处理的精度,降低水环境污染,仍需不断研究和优化全膜法水处理工艺技术,以及其操作流程,以不断提高其水处理技术水平。 3 结语 全膜法水处理工艺技术是集超滤、反渗透技术及EDI技术为一体的综合运用,该技术操作简单、方便,其通过过滤、脱盐及持续净化等过程,净化了水质,提高了水的质量、纯度、以及安全性,另外,在水处理过程中不会排出酸碱废液,可实现所有有害物质的回收利用,有效的保护了环境,因此,该技术被广泛地应用于水处理中。

生物膜法处理水产养殖废水

生物膜法处理水产养殖废水 生物膜法主要有生物滤池、生物转盘、生物接触氧化设备和生物硫化床等,这些技术因为其 微生物的多样化,在水产养殖废水的封闭循环使用中得到广泛利用。 是与活性污泥法并列的一类废水好氧生物处理技术,是一种固定膜法,是土壤自净过程的 人工化和强化;主要去除废水中溶解性的和胶体状的有机污染物。 生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的 生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的 好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新 的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥 法的3/4)且易于固液分离;(4)动力费用省。 生物膜法又称固定膜法,基本特征是: 在污水处理构筑物内设置微生物生长聚集的载体(一般称填料),在充氧的条件下,微生 物在填料表面聚附着形成生物膜,经过充氧的污水以一定的流速流过填料时,生物膜中的 微生物吸收分解水中的有机物,使污水得到净化,同时微生物也得到增殖,生物膜随之增厚。当生物膜增长到一定厚度时,向生物膜内部扩散的氧受到限制,其表面仍是好氧状态,而内层则会呈缺氧甚至厌氧状态,并最终导致生物膜的脱落。随后,填料表面还会继续生 长新的生物膜,周而复始,使污水得到净化。 微生物在填料表面聚附着形成生物膜后,由于生物膜的吸附作用,其表面存在一层薄薄的

台阶仪测试薄膜厚度实验

东南大学材料科学与工程 实验报告 学生姓名班级学号实验日期2014.9.5 批改教师 课程名称电子信息材料专业方向大型实验批改日期 实验名称台阶仪测试薄膜厚度实验报告成绩 一、实验目的: 掌握测试薄膜厚度原理和方法,了解台阶仪操作技术。 二、实验原理: LVDT是线性差动变压器的缩写,为机电转换器的一种。利用细探针扫描样品表面,当检测到一个高度差别则探针做上下起伏之变化,此变化在仪器内部的螺旋管先圈内造成磁通量的变化,再有内部电子电路转换成电压讯号,进而求出膜厚。LVDT线性位置感应器,可测量的位移量小到几万分之一英寸至几英寸。 LVDT的工作原理是由振荡器产生一高频的参考电磁场,并内建一支可动的铁磁主轴以及两组感应线圈,当主轴移动造成强度改变由感应线圈感应出两电压值,相比较后即可推算出移动量。三、实验步骤: (1)开机准备 (2)放置样品 (3)参数设置 (4)扫描结果分析 (5)数据保存 四、实验内容: Si基底上沉积金属Cr薄膜的厚度的测量 五、实验结果与分析: 样品:硅片上镀铬薄膜; 实验参数:长度1000μm;持续时间40s;针压力3mg;表面轮廓是Hills and Valleys.

由实验曲线及数据,可得薄膜厚度约为(868.8-617.0)=251.8μm。 六、思考题: 1、对于用台阶仪对非完美薄膜的厚度测量,Step Hight的M和R Cursor点 的选择? 两个点分别选在图线中的拐点处,这样倾斜的曲线会水平,比较容易得到薄膜的厚度 2、怎么样才能得到一个比较shape的台阶? 在制备时在衬底上覆盖一个形状规则比如长方形的陪片,且覆盖片要尽量薄,边缘应整齐,这样产生的台阶才会陡峭,方便测量

最新污水的生物处理方法(二)生物膜法

第五章污水的生物处理方法(二)——生物膜法 教学要求: 1)掌握生物膜法的微生物学特征和工艺特征 2)掌握高负荷生物滤池、曝气生物滤池、塔式生物滤池以及生物转盘三相传质和工艺运行 特点。 3)掌握生物接触氧化特点及其工艺设计 第一节概述 生物膜——是使细菌、放线菌、蓝绿细菌一类的微生物和原生动物、后生动物、藻类、真菌一类的真核微生物附着在滤料或某些载体上生长繁殖,并在其上形成膜状生物污泥。 生物膜法:污水经过从前往后具有细菌→原生动物→后生动物、从表至里具好氧→兼氧→厌氧的生物处理系统而得到净化的生物处理技术。 一、生物构造及其对有机物的降解 1 生物膜的构造特征 生物膜(好氧层+兼氧层+厌氧层)+附着Array水层(高亲水性)。 2 降解有机物的机理 1)微生物:沿水流方向为细菌——原生动物— —后生动物的食物链或生态系统。具体生物 以菌胶团为主、辅以球衣菌、藻类等,含有 大量固着型纤毛虫(钟虫、等枝虫、独缩虫 等)和游泳型纤毛虫(楯纤虫、豆形虫、斜 管虫等),它们起到了污染物净化和清除池 内生物(防堵塞)作用。 2)污染物:重→轻(相当多污带→α中污带→ β中污带→寡污带). 3)供氧:借助流动水层厚薄变化以及气水逆向 流动,向生物膜表面供氧。 4)传质与降解:有机物降解主要是在好氧层进 行,部分难降解有机物经兼氧层和厌氧层分解,分解后产生的H2S,NH3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO3--N、NO2--N等经厌氧层发生反硝化,产生的N2也向外而散入大气中。 5)生物膜更新:经水力冲刷,使膜表面不断更新(DO及污染物),维持生物活性(老化 膜固着不紧)。 二、生物膜的主要特征 1 微生物相方面的特征 1)参与净化反应微生物多样化; 2)食物链长,污泥产率低; 3)能够存活世代较长的微生物; 4)可分段运行,形成优势微生物种群,提高降解能力。 2 工艺方面的特征 1)对水质水量变动有较强适应性;

膜分离技术及其原理的介绍

膜分离技术及其原理的介绍

人们对膜进行科学研究是近几十年来的事。反渗透膜是膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。 一、膜分离原理 膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等。 二、膜分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 反渗透膜(RO)

反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。CA膜耐氯性强,但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,高温度大约是60℃左右,这使其在食品加工领域的应用中受到限制。 超滤膜(UF) 超滤膜也是使用CA做材料,后来各种合成高分子材料得以广泛应用。其材料多种多样,共同特点是具有耐热、耐酸碱、耐生物腐蚀等优点。 以上就是为大家介绍的全部内容,希望对大家有帮助。

光学膜厚测量仪

Filmetrics光学膜厚测量仪 产品名称: Filmetrics光学膜厚测量仪 产品型号: F20、F30、F40、F50、F70、F10-RT、PARTS 产品展商: 岱美有限公司 简单介绍 美国Filmetrics光学膜厚测量仪,测量膜层厚度从1nm到3.5mm。利用反射干涉的原理进行无损测量,可测量薄膜厚度及光学常数。测量精度达到埃级的分辩率,测量迅速,操作简单,界面友好,是目前市场上最具性价比的膜厚测量仪设备。设备光谱测量范围从近红外到紫外线,波长范围从200nm到1700nm可选。凡是光滑的,透明或半透明的和所有半导体膜层都可以测量。 Filmetrics光学膜厚测量仪的详细介绍 其可测量薄膜厚度在1nm到1mm之间,测量精度高达1埃,测量稳定性高达0.7埃,测量时间只需一到二秒, 并有手动及自动机型可选。可应用领域包括:生物医学(Biomedical), 液晶显示(Displays), 硬涂层(Hard coats), 金属膜(Metal), 眼镜涂层(Ophthalmic) , 聚对二甲笨(Parylene), 电路板(PCBs&PWBs), 多孔硅(Porous Silicon), 光阻材料(Thick Resist),半导体材料(Semiconductors) , 太阳光伏(Solar photovolt aics), 真空镀层(Vacuum Coatings), 圈筒检查(Web inspection applications)等。 通过Filmetrics膜厚测量仪最新反射式光谱测量技术,最多4层透明薄膜厚度、n、k值及粗糙度能在数秒钟测得。其应用广泛,例如: 半导体工业: 光阻、氧化物、氮化物。 LCD工业: 间距(cell gaps),ito电极、polyimide 保护膜。 光电镀膜应用: 硬化镀膜、抗反射镀膜、过滤片。 极易操作、快速、准确、机身轻巧及价格便宜为其主要优点,Filmetrics提供以下型号以供选择: F20 : 这简单入门型号有三种不同波长选择(由220nm紫外线区至1700nm近红外线区)为任意携带型,可以实现反射、膜厚、n、k值测量。 F30:这型号可安装在任何真空镀膜机腔体外的窗口。可实时监控长晶速度、实时提供膜厚、n、k值。并可切定某一波长或固定测量时间间距。更可加装至三个探头,同时测量三个样品,具紫外线区或标准波长可供选择。

生物膜法-废水好氧生物处理工艺-废水物化处理的原理与工艺-水汇总

第四章废水好氧生物处理工艺(2——生物膜法 第一节生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力; 主要的生物膜法有:①生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等; ②生物转盘;③生物接触氧化法;④好氧生物流化床等。 一、生物膜的结构 1、生物膜的形成 生物膜的形成必须具有以下几个前提条件:①起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;②供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③作为接种的微生物。 (1 生物膜的形成: 含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 (2 生物膜的成熟: 在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20 C

2、生物膜的结构 生物膜的基本结构如图1所示。 图1 生物膜结构示意图 (1 生物膜的性质: ①高度亲水,存在着附着水层; ②微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物的食物链。 (2 生物膜降解有机物的过程: 3、生物膜的更新与脱落 (1 厌氧膜的出现:

污水处理生物膜法 生物接触氧化池

污水处理生物膜法-生物接触氧化池 一、概述 生物接触氧化处理技术的实质之一是在池内充填填料,已充氧的污水将填料浸没全部,并以一定的流速流经填料。而填料上布满生物膜,污水与生物膜通过接触,在生物膜上微生物的新陈代谢功能的作用下,污水中有机污染物得到去除,污水得到净化,因此,生物接触氧化处理技术又称为淹没式曝气生物滤池。 二、生物接触氧化池的构造 接触氧化池是由池体、填料及支架、曝气装置、进出水装置以及排泥管道等部件所组成。生物接触氧化池的构造示意图见图 生物接触氧化池的构造示意图 (一)池体 池体的作用除了进行净化污水外,还要考虑填料,布水、布气等设施的安装。当池体容积较小时可采用圆形钢结构,池体容积较大时可采用矩形钢筋混凝土结构。池体的平面尺寸以满足布水、布气均匀,填料安装、维护管理方便为准。池体的底壁须有支承填料的框架和进水进气管的支座。池体厚度根据池的结构强度要求来计算。高度则由填料、布水布气层、稳定水层以及超高的高度来计算。同时,还必须考虑到充氧设备的供气压力或提升高度。各部位的尺寸一般为:池内填料高度为3.0~3.5m;底部布气层高为0.6~0.7m;顶部稳定水层0.5~0.6m,总高度约为4.5~5.0m。 (二)填料 1.填料的要求 填料是生物膜的载体,所以也称之为载体。填料是接触氧化处理工艺的关键部位,它直接影响处理效果,同时,它的费用在接触氧化系统的建设费用中占的比重较大,约占55%~60%;同时载体填料直接关系到接触氧化法的经济效果,所以选定适宜的填料是具有经济和技术意义的。接触氧化处理工艺对填料的要求如下: (1)在水力特性方面,比表面积大、空隙率高、水流通畅、阻力小、流速均一; (2)要求形状规则、尺寸均一,表面粗糙度较大;填料表面电位高,附着性强; (3)化学与生物稳定性较强,经久耐用,不溶出有害物质,不导致产生二次污染; (4)在经济方面要考虑货源、价格,也要考虑便于运输与安装等。 2. 填料类型 填料可分为悬挂式填料、悬浮式填料和固形块状填料三种类型。 (1)悬挂式填料 悬挂式填料有四个品种,分别为半软性填料、组合填料、软性填料和弹性立体填料; (2)悬浮式填料 常用的有空心柱状、空心球状、外形呈笼架、内装丝形或条形编织物以及海绵块状的软性悬浮式填料; (3)固形块状填料 固形块状填料主要有蜂窝直管形块状填料和立体波纹块状填料两种。目前常采用的填料是聚氯乙烯塑料、聚丙烯塑料、环氧玻璃钢等做成的蜂窝状和波纹板状填料。近年来国内外都进行纤维状填料的研究,纤维状填料是用尼龙、维纶、晴纶、涤沦等化学纤维编结成束,呈绳状连接。为安装检修方便,填料常以料框组装,带框放入池中。当需要清洗检修时,可逐框轮替取出,池子无需停止工作。 3. 填料的性能

全膜法水处理工艺技术在环境保护中的应用 徐远

全膜法水处理工艺技术在环境保护中的应用徐远 发表时间:2020-01-13T14:38:16.537Z 来源:《基层建设》2019年第28期作者:徐远 [导读] 摘要:近年来,现代化建设的发展迅速,人们对环境保护的意识也逐渐的加强。 江苏泗阳海峡环保有限公司江苏泗阳 223700 摘要:近年来,现代化建设的发展迅速,人们对环境保护的意识也逐渐的加强。经济的发展带动着我国各项科学技术的进步,推广全膜法水处理工艺技术已成为我国目前生态环境保护工作中不可忽视的一部分。将全膜法水处理工艺技术应用在环境保护中,不仅可以提高水质的纯度,还能实现水资源的循环利用,确保水资源利用效率的提高,具有非常大的价值。随着我国社会经济的不断发展,人们愈发认识到环境保护的重要性,开始积极控制和治理环境污染。污水对环境危害较大,人们需要重点研究,提升污水处理效果,避免污水危害周围环境。全膜法水处理工艺应用较为理想,在环境保护中具有积极作用。 关键词:全膜法水处理工艺技术;环境保护;应用 引言 水污染是环境污染中最为重要的类型,其会影响到人们的生命安全,其中污染的源头来自工业废水排放、市政居民废水等多个方面。随着国家经济的不断发展,人们逐渐将目光集中到了对水污染的治理上,并且开始探寻解决水污染的技术和方案。将新近研发的科技应用于水污染的处理上,能够促进科技与环境保护的共同发展。传统的水资源处理技术的效果十分有限,使得水资源污染状况持续恶化,而全膜法技术的出现,使得这一难题得到有效解决。其不需要对污水进行酸碱脱盐处理就能使水资源得到净化,从而使得大量的水源能够得到二次利用,下面将对这一技术进行分析。 1全膜法水处理工艺概述 通常情况下全膜法工艺就是将多种膜分离技术进行统一整合,将单一过滤综合成为整套水处理流程。目前我国废水、污水种类较多,其中微生物、大分子形态并不固定,各种膜分离技术也各有缺陷,所以通过一体化过滤流程能够实现全方位的处理,保证水质纯度较高,实现资源高效回收利用。全膜法也被成为“第三代水处理工艺”,其工艺流程为预处理(超滤)——反渗透——EDI,全方位保障水质的可靠性,解决传统工艺一直以来有待解决的盐分物质分离问题,为实现环境保护起到不可忽视的作用。随着研究力度的加大,其应用范围与领域也在持续拓宽,不仅是水处理行业,科技研究也开始应用膜技术,部分企业还开始加入灭菌物质与氧化还原专职,保证效率的持续提升。全膜法水处理工艺技术属于一种新型水处理技术,主要是利用超滤、微滤、反渗透和EDI技术等,对工业废水、市政污水等水质当中的微生物、大分子、矿物质等杂质进行处理。该技术不仅可以实现杂质的高度去除,还可以进行深度脱盐处理,属于一种高强的水处理技术。该技术还可以结合电渗析与离子交换技术,实现高纯度水质的提取,保证水质的完全循环利用,提高处理和利用效率。另外,该技术还能有效降低废水对环境的污染率。全膜法水处理工艺技术,不仅是一种排污高效,脱盐深度的先进工艺技术,还可以直接应用到锅炉水补给、工业用水等领域,也能够满足电子超纯水、循环用水等的高标准和高要求。 2全膜法水处理工艺技术在环境保护中的应用与优化措施 2.1完善规章制度 在应用全膜法水处理工艺时,人们应当加强管理,构建完善的管理制度,有效保证全膜法各个子系统的应用效果。依据全膜法工艺流程,人们要明确细节,制定上岗制度,让工作人员自觉依据相关规范进行操作。同时,要建立监督制度,定期检查各个子系统运行情况,查看技术人员操作的规范性,保证污水处理系统参数处于合理范围内。要定期维护保养设备,以免出现设备损坏,影响整体污水处理效果。要填写保养日记,方便及时发现系统潜在的问题。 2.2膜法预处理 膜法预处理能够对污水的净化处理工作得到有效落实,其主要是将待处理的污水使用超滤膜对其展开过滤操作,能够将污水中含有的各种颗粒较大的杂志全部得到有效清除,从而保证对应的膜处理效果可靠有效。通过使用该种膜法预处理技术,能够将旧式的活性炭处理技术得到有效的落实,而且净化效率也非常高,不但可以显著提升污水的净化速度,而且能够使得处理得到的水资源的清洁度具有高标准的优化质量,从而为下一阶段的污水净化工序提供良好的基础。 2.3?EDI技术 EDI技术也可以称之为“电混床”“填充床电渗析”等,该技术操作原理就是将电渗析和离子交换两种技术进行高效融合,从而实现协同应用。在该工艺使用过程中并不需要酸碱的加入,避免出现酸碱对已净化水质的二次再生污染,保证全膜法提取的水资源更加纯净、安全。该技术发展时间较短,但科技含金量较高。EDI技术在全膜水处理流程中应用效果较为显著,是提纯水质的最后也是最关键的一个环节,EDI设备占地面积小、可持续生产、续航性能稳定、能够保证水质安全性,且操作起来更加简便,成本投入较少。最重要的是经过EDI提纯后的水质不会发生二次化学污染,实现了对生态环境的精准保护,也有效降低了污水再次处理的资金投入。具体操作时,技术人员需要把直流电连接模堆两侧电极,通电后模堆发生电位差,从而使废水污水中的阳离子物质在内部发生阴极作用,最终与阳离子交换膜,促使水中的阴离子物质移向产生阳极作用的阴离子交换膜,不同极吸附的阴阳物质聚集,形成氢离子与氢氧离子,从而反复进行水质盐离子聚集和电解,最终电渗析生产高纯水。EDI技术最终实际应用效果的水电导率可达到0.052~0.069us/cm,该数值与纯净水电导率基本持平。另外EDI技术还能够实现电离再生效果,可以对污水进行持续脱盐处理,进而生产出高纯度的水,在整个工艺流程中完全不需要酸碱操作,充分表现出全膜法的科学性。 2.4连续电解除盐技术 连续电解除盐技术对污染水进行处理时应该要应用专业的系统,包括EDI膜堆、交换树脂、交换膜等,其中EDI膜堆是由很多夹在两个电极间的单位所构成的,各个单位中都包括浓水室和淡水室两个部分,其中淡水室中含有阴、阳离子均匀混合的交换树脂,树脂在阴离子交换膜和阳离子交换膜之间填充。该技术的原理是:污水中的杂质离子经过树脂进入交换膜,再进入到浓水室中,但是交换膜会阻止杂质离子向对应电极上移动,并且在浓水室中富集起来,然后再统一将杂质离子排出系统之外,达到净化水资源的目的。目前连续电解除盐技术的应用也很广泛,因为该技术所需要的结构比较紧凑,占地面积较小,运行以及维护费用都比较低。 2.5强化全膜法水处理工艺在水环境保护中的作用 为了积极改善环境污染问题,必须要采取各种先进的技术对污染问题进行处理,污水处理是环境保护中的重要内容之一,必须要加强

相关文档
最新文档