钢筋混凝土框架结构抗震性能分析

钢筋混凝土框架结构抗震性能分析
钢筋混凝土框架结构抗震性能分析

钢筋混凝土框架结构抗震性能分析

摘要:根据汶川地震震害现场调查记录及欧洲抗震规范的相关抗震条文,探讨了造成钢筋混凝土框架结构震害的原因,对框架结构的震害进行了分析,特别详细介绍了地震中填充墙框架结构的各种表现,分析其破坏机理,在此基础上为该类建筑物的抗震设计提出建议。

关键词:欧洲规范;钢筋混凝土;框架结构;抗震性能

Abstract: according to wenchuan earthquake damage scene investigation records and European seismic code of seismic provisions related, discusses the cause of reinforced concrete frame structure, the causes of the earthquake damage to frame structure of the earthquake damage are analyzed, especially introduced the earthquake in the frame structure of the fill walls of performance, analyzed its failure mechanism, and in this foundation for the building of the seismic design are proposed.

Keywords: European standard; Reinforced concrete; Frame structure; Seismic performance

1引言

2008年5月12日14时28分,在四川省汶川县映秀镇附近发生8.0级的地震。此次地震倒塌较多的是砖混结构、底层框架上部砖混结构和钢筋混凝土框架结构的建筑,震害统计资料如表1所示[1]。

从各地震害看,经过抗震设计的房屋基本上经受住地震考验。在倒塌和严重破坏的结构中,钢筋混凝土框架结构一直被认为是抗震性能较好的一种,因此其破坏倒塌的原因受到格外关注。本文通过框架结构震害介绍,探讨其倒塌和破坏的原因及解决办法, 详细介绍了地震中填充墙框架结构的各种表现,分析其破坏机理,在此基础上为该类建筑物的抗震设计提出建议。

表1.建筑震害情况统计(按结构形式分类)

填充墙对框架结构抗震性能影响的研究

填充墙对框架结构抗震性能影响的研究摘要:本文先从结构概念分析入手,分析了不考虑填充墙对框 架结构的计算的影响,然后以填充墙与框架结构共同作用为机理,通过分析在水平力作用下各类填充墙-框架结构体系的层间侧移 刚度,探讨填充墙对框架结构动力特性的影响程度.结果表明,填充墙一框架结构体系的侧移刚度比纯框架有不同程度的提高,在工程设计中应充分考虑这种影响,使框架结构在地震作用下的计算结果更加符合实际情况,提高结构设计的安全性与经济性。 关键词:填充墙框架结构抗震性能 abstract: this paper first from the structure analysis of the concept, this paper analyzes the don’t consider fill walls in the framework structure calculation effect, then to fill the wall and frame structure for joint action mechanism, through the analysis in the level of all kinds of forces fill walls-frame structure between layers of the lateral stiffness, fill walls of frame construction discusses the dynamic characteristics of the influence degree. the results show that fill walls a frame structure of the lateral stiffness than pure frame have different degrees of improvement in engineering design should fully consider the effect, make the frame structure under the action of earthquake in the result of calculation is more tally with the actual situation,

钢结构抗震性能分析

钢结构抗震性能分析 摘要:钢结构建筑具有建设速度快、工业化程度比较高、技术经济指标好、抗震性能相比较其他建筑材料比较优越,所以能够广泛地应用于建筑的各个领域,有着得天独厚的发展优势。本文对钢结构建筑的抗震性能进行分析,总结出钢结构抗震的特点及在建设中的应用,分析了几种钢结构所具有的抗震性能,为建筑中明确钢结构的抗震性能找到了依据。 关键词:建筑;钢结构;发展;抗震;分析 引言 近几年,随着我国建筑产业高速发展,钢铁材料和结构体逐渐呈现多元化的发展趋势,建筑行业的发展也更是各具特色。作为现代建筑领域新兴的钢结构建筑,也越来越被建筑界所重视,这对地震多发的地区,建筑在地震中由于倒坍所造成的灾害,将会成为地震灾害中,对于生命和财产安全中,最具破坏力和杀伤力的直接因素,这就需要不断加强钢结构的抗震性能,提升钢结构建筑抗震的能力 1 钢结构的特点 优质的钢结构具有良好的延伸性,能够将震动时发生的波动抵消掉。对于钢结构在抗拉、抗压、抗剪的强度要求上都很高,特别是钢结构需要凭着工艺制造,利用其所具有的高延性,提升其在地震中的抗震能力[1]。钢结构通过自身的塑性变形特点,达到吸收和消耗震动过程中,抵抗强烈地震的能力。 2 建筑中的钢结构体系 在钢结构建筑中,用的较多钢结构框架体系有纯框架结构、中心支撑结构、偏心支撑结构等。纯框架结构延性和抗震性能比较好,但是由于抗侧刚度比较差,一般不太适合用于层数比较高的建筑。以中心支撑的钢结构框架结构抗侧刚度大,适用于层数较高的建筑。由于一些钢结构支撑构件,具有的滞回性能较差,对于耗散的震动的能量有限,抗震性能没有钢结构纯框架的性能好。钢结构的框架偏心支撑结构,还可以通过偏心连梁进行剪切,达到耗散地震的能量,保证通过钢结构框架的支撑不丧失稳定,这种抗震性能的效果,优于中心支撑的钢结构框架[2],并且其弹性阶段的刚度也接近中心支撑框架。如果采用能与钢结构框架抗侧刚度相匹配含有钢板的剪力墙,还有带竖缝剪力墙的钢结构代替支撑,可以构成具有钢结构框架的抗震墙板结构,其抗震的性能强于由钢结构框架构成的中心支撑结构。当房屋建筑的刚度要求更高时,一般都可以采用沿着建筑周边,有秩序地进行设置一些密柱深梁框架,来构成钢结构的框筒结构。这样设计安装的框筒结构抗侧刚度大,能够起到具有良好抗震性能的效果。 3 建筑中钢结构的抗震性能分析

钢结构工程优点

钢结构工程优点 抗震性:低层别墅的屋面大都为坡屋面,因此屋面结构基本上采用的是由冷弯型钢构件做成的三角型屋架体系,轻钢构件在封完结构性板材及石膏板之后,形成了非常坚固的"板肋结构体系",这种结构体系有着更强的抗震及抵抗水平荷载的能力,适用于抗震烈度为8度以上的地区。 抗风性:型钢结构建筑重量轻、强度高、整体刚性好、防变形能力强。建筑物自重仅是砖混结构的五分之一,可抵抗每秒70米的飓风,使生命财产能得到有效的保护。 耐久性:轻钢结构住宅结构全部采用冷弯薄壁钢构件体系组成,钢骨采用超级防腐高强冷轧镀锌板制造,有效避免钢板在施工和使用过程中的锈蚀的影响,增加了轻钢构件的使用寿命。结构寿命可达100年。保温性:采用的保温隔热材料以玻纤棉为主,具有良好的保温隔热效果。用以外墙的保温板,有效的避免墙体的“冷桥”现象,达到了更好的保温效果。100mm左右厚的R15保温棉热阻值可相当于1m厚的砖墙。隔音性:隔音效果是评估住宅的一个重要指标,轻钢体系安装的窗均采用中空玻璃,隔音效果好,隔音达40分贝以上;由轻钢龙骨、保温材料石膏板组成的墙体,其隔音效果可高达60分贝。 健康性:干作业施工,减少废弃物对环境造成的污染,房屋钢结构材料可100%回收,其他配套材料也可大部分回收,符合当前环保意识;所有材料为绿色建材,满足生态环境要求,有利于健康。

舒适性:轻钢墙体采用高效节能体系,具有呼吸功能,可调节室内空气干湿度;屋顶具有通风功能,可以使屋内部上空形成流动的空气间,保证屋顶内部的通风及散热需求。 快捷:全部干作业施工,不受环境季节影响。一栋300平方米左右的建筑,只需5个工人30个工作日可以完成从地基到装修的全过程。环保:材料可100%回收,真正做到绿色无污染。 节能:全部采用高效节能墙体,保温、隔热、隔音效果好,可达到50%的节能标准。

高层钢结构震害现象及原因

高层震害现象及原因是非常重要的,了解现象以及发生的原因,才能根据专业知识制定对应 的方案,防范于未然。小编就高层钢结构震害现象及原因和大家说一下。 钢结构被认为具有卓越的抗震性能,在历次的地震中,钢结构房屋的震害要小于钢筋混凝土 结构房屋。很少发生整体破坏或倒塌现象。尽管如此,由于焊接、连接、冷加工等工艺技术 以及外部环境的影响,钢材材料的优点将受到影响。特别是因设计、施工以及维护不当,就 很可能造成结构的破坏。根据钢结构在历次地震中的破坏形态,可能破坏形式分为以下几类:1、结构倒塌 结构倒塌是地震中结构破坏最严重的形式。造成结构倒塌的主要原因是结构薄弱层的形成, 而薄弱层的形成是由于结构楼层屈服强度系数和抗变4刚度沿高度分布不均匀造成的。这就 要求在设计过程中应尽量避免上述不利因素的出现。 2、节点破坏 节点破坏是地震中发生最多的一种破坏形式。剐性连接的结构构件一般采用铆接或焊接形式 连接。如果在节点的设计和施工中,构造及焊缝存在缺陷,节点区就可能出现应力集中、受 力小均的现象,在地震中很容易出现连接破坏。梁柱节点可能出现的破坏现象主要表现为: 铆接断裂,焊接部位位脱,加劲板断型、屈曲,腹板断裂、屈曲等。 3、构件破坏 在以往所有地震中,多钢结构构件破坏的主要形式有支撑的破坏与失稳以及梁柱局部破坏两种。(1)支撑的破坏与失稳。当地震强度较大时,支撑承受反复拉压的轴向力作用,一旦 压力超出支撑的屈曲临界力时,就会出现破坏或失稳。(2)梁柱局部破坏。对于框架柱, 主要有翼缘屈曲、翼缝撕裂,甚至框架柱会出现水平裂缝或断裂破坏。对于框架梁,主要有 翼缘屈曲、腹板屈曲和开裂、扭转屈曲等破坏形态。 4、基础锚固破坏 件与基础的锚固破坏主要表现为柱脚处的地脚螺栓脱开、混凝土破碎导致锚固失效、连接板 断裂等,这种破坏形式曾发生多起,根据对上述钢结构房屋震害特征的分析可知,尽管钢结 构抗震性能较好,但在历次的地震中,也会出现不同程度的震害。究其原因,元素是和、结 构构造、施工质量、材料质量、日常维护等有关,为了预防以上震害的出现,减轻震害带来 的损失,多高层钢结构房屋抗震设计必须严格遵循有关规程进行。

框架填充墙结构抗震性能研究的回顾与展望_刘猛_李烁_高中山_匡景瑞 (1)

第35卷第3期辽宁工业大学学报(自然科学版)V ol.35, No.3 2015年 6 月Journal of Liaoning University of Technology(Natural Science Edition) Jun. 2015 收稿日期:2014-03-24 作者简介:刘猛(1968-),男,辽宁凌海人,副教授,博士。DOI:10.15916/j.issn1674-3261.2015.03.005 框架填充墙结构抗震性能研究的回顾与展望 刘 猛,李 烁,高中山,匡景瑞 (辽宁工业大学 土木建筑工程学院,辽宁 锦州 121001) 摘 要:为研究和改进框架填充墙结构的抗震性能,分析了框架与填充墙之间连接方法和新型填充墙的研究现状,其中连接方法包括柔性连接、刚性连接。在此基础上,分析了柔性连接和刚性连接的优缺点,并展望了框架填充墙结构抗震性能研究的发展方向。 关键词:框架;填充墙;抗震;连接 中图分类号:TU323.5 文献标识码:A文章编号:1674-3261(2015)03-0157-03 Review and Prospect of Seismic Performance of Infilled-wall Frame Structure LIU Meng, LI Shuo, GAO Zhong-shan, KUANG Jing-rui (Civil and Architectural Engineering College, Liaoning University of Technology, Jinzhou 121001, China) Abstract: In order to study and improve the seismic performance of infilled-wall frame structure, the status of connecting methods between infilled wall and frames was analyzed, as well as the new type of infilled wall. And the connecting methods include flexible connection and rigid connection. The advantages and disadvantages of the flexible connection and rigid connection were analyzed. Outlook of the development direction on the research of seismic performance of infilled-wall frame structure was made in the end. Key words: frame; infilled wall; seismic; connection 2008年汶川地震、2010年玉树地震、2013年雅安地震的震害现象表明,框架填充墙结构在这些地区受到地震作用后破坏非常严重,特别是填充墙发生了不同程度的破坏,造成了重大的经济损失和人员伤亡[1-2]。框架填充墙结构广泛应用于多、高层建筑中,其中框架是主要的受力结构,填充墙作为非结构构件起着围护和分隔的作用。从地震中填充墙的破坏情况来看,开裂和倒塌是填充墙震害的集中体现。框架填充墙结构抗震性能的好坏直接关系到人民生命和财产安全,因此如何提高框架填充墙结构的抗震性能,保证其在地震作用下的安全性,已成为设计人员和研究者必须高度重视的问题。 1 国内外研究现状 各国学者对填充墙的受力性能和抗震性能做了大量研究,并且取得了很多研究成果。本文通过回顾分析国内外对框架填充墙抗震性能的研究现状,总结了框架与填充墙之间的连接方法,包括刚性连接、柔性连接等,以及新型填充墙的研究。 1.1 柔性连接研究现状 框架与填充墙柔性连接一般有2种做法(如图1所示)。一种是在填充墙与框架间留缝隙,通过填塞软性材料提高结构延性,另一种是通过添加阻尼装置,吸收地震能量,减轻框架填充墙的破坏。 张广寿等[3]提出了在墙体中设置水平耗能横缝的构造措施,试验结果表明,设置了水平耗能横缝的填充墙在受到地震作用时横缝发生相对运动,从而吸收地震能量。李哲明等[4]证明了相对于刚性连接,采用柔性连接的墙体有着更好的整体性和变形能力,能够保证在地震发生时墙体不至于瞬间倒

从结构抗震的角度论述钢结构的性能

题目: 从结构抗震的角度论述钢结构的性能,优缺点及发展前景 学院:土木工程学院 专业:建筑工程技术专业 班级:建工一班 姓名:杨星星 指导教师:盛朝晖 2014年04月10日从结构抗震的角度论述钢结构的性能,优缺点及发展前景 论文摘要: 本文简要分析了钢结构建筑的结构体系及性能特点,优缺点,抗震性能以及日后良好的发展前景。 关键词: 钢结构,抗震性能好,施工方便,耐火性差,质量轻,强度大,发展前景好。 目录: 一、摘要 二、绪论 三1.1钢结构的性能及特点。 1.1.1钢结构的特点: 1.1.2钢结构的性能 四、1.2钢结构的优缺点 1.2.1钢结构的优点

1.2.2钢结构的缺点 五、1.3钢结构的发展前景 1.3.1钢结构的应用范围 1.3.2钢结构的发展前景 1.3.3发展方向 六、 1.4结论 七、参考文献 二、绪论 三 1.1钢结构的性能及特点。 近年来,全世界地震频频发生,对人们是生命财产安全造成了很大的威胁。在地震中造成人员财产损失的因素之一是建筑物的倒塌,如 何提高建筑物的抗震性能就显得尤为重要。目前建筑使用较多的轻钢结构建筑其抗震的能力有明显成果。 1.1.1钢结构的特点 1.钢材的材质均匀,质量稳定,可靠度高;自重轻,变形大,可以吸收很大能量,而且可以通过构造实现强梁弱柱、强剪弱弯。 2.钢材的强度高,塑性和韧性好,抗冲击和抗振动能力强; 3.钢结构工业化程度高,工厂制造,工地安装,加工精度高,制造周期短,生产效率高,建造速度快; 4.钢结构抗震性能好; 5.耐腐蚀和耐火性差,单价较高。 1.1.2钢结构的性能

钢结构轻质高强,所以地震时受地震作用小。而钢结构具有良好的延展性,可以将地震波的能耗抵消掉。钢材基本上属各向同性材料,扛拉、抗压、扛剪强度均很高,而且具有良好的延展性,特别是钢结构凭着自己特有的高延展性减轻了地震反应。钢结构还可以看作比较理想的弹塑性结构,可以通过结构的塑性变形吸收和消耗地震输入能量,从而具有较高的抵抗强烈地震的能力。钢结构相对于其他结构自重轻,这也大大减轻了地震作用的影响。不同的结构形式,抗震性能明显不同。混凝土结构的房屋受压较好,但不抗拉力,两种力的差距达10倍。当地震来临时,房屋在地震波循环荷载情况下,极易发生整体垮塌。钢结构除了抗震性能高,施工周期短、工业化程度高、环保性能好的特点也显著优于混凝土结构。 三1.2 钢结构的优缺点 1.2.1钢结构工程优点 钢结构住宅建筑是以工厂化生产的钢梁、钢柱为骨架,同时配以新型轻质、保温、隔热、高强的墙体材料作为围护结构建造而成,其中主要承重骨架是由钢构件或钢管(圆管或矩形管)混凝土构件所组成。在建筑中应用钢结构的优势主要体现在以下几个方面: .1 强度高、自重轻、抗震性能好 钢结构体系轻质高强,可减轻建筑结构自重的30%,大大降低基础的造价;钢结构是柔性结构,有很好的抗震,同时结构安全度高,受损轻,而且由于钢材便于加工,灾后容易修复。型钢结构建筑重量轻、强度高、整体刚性好、变形能力好。低层别墅的屋面大都为坡屋面,因此屋面结构基本上采用的是由冷弯型钢构件做成的三角型屋架体系,轻钢构件在封完结构性板材及石膏板之后,形成了非常坚固的“板肋结构体系”,这种结构体系有很明显的抗震及抵抗水平荷载的能力,用于抗震烈度为八度以上的地区。 .2 功能区分割灵活 传统的砖混、钢筋混凝土的结构自重大,进深和开间相对较小,梁、柱粗大,空间利用

影响框架结构抗震性能的因素浅析

影响框架结构抗震性能的因素浅析 摘要:建筑结构抗震设计在框架结构设计中的地位日益重要,文章对影响工业与民用框架结构抗震性能的因素进行了简要的总结,为了减轻地震对建筑物顶部突出部分的破坏作用及影响,文章通过简要阐释,得出地震荷载作用下,结构的“鞭梢效应”产生的原因和条件,并为结构抗震设计提出建议。 关键词:建筑结构;刚度;延性;主振型;鞭梢效应建筑结构具有很多形式,包括砌体结构、框架结构、框架剪力墙结构、剪力墙结构、索膜结构、筒体结构等,不同的结构形式,其抗震性能有明显的不同。 建筑的抗震等级一般是由多层和高层钢筋混凝土结构、构件进行抗震设计计算和确定并最终构造措施的标准。为了抗震设计的安全可靠与经济合理,应充分考虑多方面因素及各种不同情况,并且针对钢筋混凝土结构、构件的抗震要求,在计算和构造上应区别对待。因此,地震作用越大(或房屋高度越大),抗震要求亦越高;对于不同的结构体系,应有不同的抗震要求。此外,同一结构中的不同部位以及同一种结构形式在不同结构体系中所起的作用不同,其抗震要求也应有所区别。例如,在框架结构中,框架是主要抗侧力构件,而在框架一抗震墙结构中,框架是次要抗侧力构件(抗震墙是主要抗侧力构件),因此框架结构中的框架应比框架一抗震墙结构中的框架抗震要求高。又如,在部分框支抗震墙结构中,框支层由于刚度和强度的削弱,往往成为塑性变形集中的薄弱楼层,因此其落地抗震墙底部加强部位的抗震要求就应高于一般抗震墙的抗震要求。 为此,我国抗震规范和高层规程综合考虑建筑抗震重要性类别、地震作用(包括区分设防烈度和场地类别)、结构类型(包括区分主、次抗侧力构件)和房屋高度等因素,对钢筋混凝土结构划分了不同的抗震等级。抗震等级的高低,体现了对抗震性能要求的严格程度。不同的抗震等级有不同的抗震计算方法及相应的构造措施要求,从最高等级四级到一级,抗震要求依次提高;高层规程中还规定了抗震等级更高的特一级。 对于砌体结构,由于整体性比较差,抗震性能较差,对其进行科学的配筋,可有效的提高其抗震性能,但也只限于多层建筑,已经逐渐退出建筑市场。框架结构其具有较大的刚度,用自身的刚度进行抗震,但是在水平地震作用下框架结构将发生侧向变形,由于框架结构的整体抗侧刚度对称处理不利,会导致结构整体在地震过程中产生整体的扭转,发生复合破坏,因此,框架结构对抗震来说并不理想。根据此种问题,产生框架剪力墙结构、筒体结构,在抗震性能上有明显的提高,成为高层建筑的首选结构形式。 1 问题的提出 随着高层建筑的建造,高层建筑抗震在建筑设计中占有很大的比重,由于地震作用的复杂性于人类对地震规律认识的局限性,目前对建筑物的抗震设计水平还停留在一个初步的阶段,尚无法做出精确的计算,现有的地震作用力的计算方法和结构抗震设计的计算大都是近似方法。因此结构设计对抗震的设计内容应包括概念设计与计算设计两方面,本文论述就属于概念设计的理论阐述,建筑物结构抗震设计应考虑到在六度与九度范围内设防,不同场地根据不同的烈度进行地震作用力计算与截面抗震验算,同时应符合相应的抗震构造要求。 2 两种抗震因素分析 地震作用力实际上是建筑物对地面运动的反应,他与许多因素有关。人们针

浅析框架结构的楼梯斜撑效应

浅析框架结构的楼梯斜撑效应 摘要:楼梯作为混凝土框架结构重要的逃生通道,在大量的震害统计中,表现 出先于框架主体结构的严重破坏,使其丧失应有的作用。本文针对该现象,通过 文献检索对其主要因素“楼梯斜撑效应”进行了分析,并探索了相应的解决措施。 关键词:框架结构;楼梯;斜撑效应;混凝土 前言 钢筋混凝土框架结构在国内仍被广泛应用,其中的楼梯作为重要的逃生通道,在大量的震害统计中,表现出先于主体结构的严重破坏,使其丧失安全岛的作用。究其原因,以前的相关研究在肯定楼梯对结构刚度和承载力影响的条件下,旨在 通过相应的抗震设计增强楼梯间结构的耗能能力,使其成为第一道抗震防线;抗 震设计方案则是将楼梯间与框架结构主体分开计算,结构分析中将楼梯间作开洞 处理,将其荷载作为重力荷载代表值的一部分考虑其对框架结构的抗震影响。传 统的设计方法,忽略了楼梯间与框架结构的整体性,忽略了楼梯梯段斜撑作用及 其对框架结构整体抗震性能的影响,导致楼梯间与其周边框架结构构件的联系不 够紧密,成为地震中的第一道防线优先被破坏。 1楼梯斜撑效应 国内关于楼梯斜撑效应的研究可追溯到20世纪80年代。1986年,设计大师傅学怡[1]在“高层建筑结构正现浇楼梯对抗侧刚度的影响分析”中,提出楼梯斜撑 效应及其对框架结构抗侧刚度的影响,并推导了抗侧刚度增大系数。90年代,曹万林教授等人[2]对混凝土异形柱框架楼梯结构进行试验研究,重点分析了楼梯耗 能的原因,并对提高楼梯耗能性能提出建设性意见。21世纪初,清华大学王奇教授[3]从工程实例出发,分别对框架结构、框架-剪力墙结构、剪力墙结构在考虑楼梯作用下的结构自振特性和受力性能进行分析,结果表明,楼梯的参与对框架结 构的自振特性、整体刚度及构件内力影响更为明显。随后,设计人员胡庆昌[4]从 工程经验及数次震害的统计中,对楼梯间的震害表现做了统计,并提出在不同的 设计体系中都应加强楼梯和楼梯间结构的概念设计与构造措施。2008年汶川地震后,楼梯间先于框架主体发生的严重破坏,让专家学者们意识到之前将楼梯设计 成第一道抗震防线的做法是错误的。随后,便出现大量关于楼梯对框架结构抗震 性能影响、框架结构考虑楼梯斜撑作用的抗震分析的研究文献。西南交通大学刘俊、沈火明[13]通过对不带楼梯、带楼梯、带采用活动支座楼梯模型进行静力推 覆(pushover)分析,得出采用滑动支座可释放楼梯斜撑作用、减少楼梯地震作 用效应的结论;同时指出,该方法会造成结构变柔、层间位移过大的不利影响。 2 楼梯的震害表现 由汶川地震的震害统计[5]得知,框架结构楼梯的破坏主要集中于梯段板、楼 梯间角柱、梯柱和平台梁处。 (1)梯段板。梯段板的破坏主要表现为沿梯段宽方向的水平裂缝,且在水 平裂缝处混凝土压碎、梯段板弯曲下挠甚至断裂。水平裂缝主要集中在距离两端 支座约1/4处和楼梯施工缝(梯段板1/3跨)处。 (2)楼梯间角柱。角柱破坏主要表现为半柱高处的剪切破坏,破坏面处钢 筋屈曲,混凝土压碎。 (3)楼梯间梯柱。梯柱一般为构造构件,截面尺寸和配筋均偏小,故在大

钢结构抗震优缺点

钢结构工程学习小节 钢结构就是指用钢板与热扎、冷弯或焊接型材通过连接件连接而成得能承受与传递荷载得结构形式。钢结构体系具有自重轻、工厂化制造、安装快捷、施工周期短、抗震性能好、投资回收快、环境污染少等综合优势,与钢筋混凝土结构相比,更具有在“高、大、轻”三个方面发展得独特优势,在全球范围内,特别就是发达国家与地区,钢结构在建筑工程领域中得到合理、广泛得应用。钢结构行业通常分为轻型钢结构、高层钢结构、住宅钢结构、空间钢结构与桥梁结构五大子类,钢结构在各项工程建设中得应用极为广泛,如钢桥、钢厂房、钢闸门、各种大型管道容器、高层建筑与塔轨机构等。根据每平米用钢量及主要构件钢板厚度,钢结构有轻钢与重钢之分,轻钢结构住宅得墙体主要由墙架柱、墙顶梁、墙底梁、墙体支撑、墙板与连接件组成。钢结构与其它建设相比,在使用中、设计、施工及综合经济方面都具有优势,造价低,可随时移动,钢结构与普通钢筋混凝土结构相比,其匀质、高强、施工速度快、抗震性好与回收率高等优越性,钢比砖石与砼得强度与弹性模量要高出很多倍,因此在荷载相同得条件下,钢构件得质量轻。从被破坏方面瞧,钢结构就是在事先有较大变形预兆,属于延性破坏结构,能够预先发现危险,从而避免。 钢结构工程优点 抗震性:低层别墅得屋面大都为坡屋面,因此屋面结构基本上采用得就是由冷弯型钢构件做成得三角型屋架体系,轻钢构件在封完结构性板材及石膏板之后,形成了非常坚固得“板肋结构体系”,这种结构体系有着更强得抗震及抵抗水平荷载得能力,适用于抗震烈度为八度以上得地区。 抗风性:型钢结构建筑重量轻、强度高、整体刚性好、变形能力强。建筑物自重仅就是砖混结构得五分之一,可抵抗每秒七十米得飓风,使生命财产能得到有效得保护。 耐久性:轻钢结构住宅结构全部采用冷弯薄壁钢构件体系组成,钢骨采用超级防腐高强冷轧镀锌板制造,有效避免钢板在施工与使用过程中得锈蚀得影响,增加了轻钢构件得使用寿命。结构寿命可达一百年。 保温性:采用得保温隔热材料以玻纤棉为主,具有良好得保温隔热效果。用以外墙得保温板,有效得避免墙体得“冷桥”现象,达到了更好得保温效果。 隔音性:隔音效果就是评估住宅得一个重要指标,轻钢体系安装得窗均采用中空玻璃,隔音效果好,隔音达四十分贝以上;由轻钢龙骨、保温材料石膏板组成得墙体,其隔音效果可高达六十分贝。 健康性:干作业施工,减少废弃物对环境造成得污染,房屋钢结构材料可完全回收,其她配套材料也可大部分回收,符合当前环保意识;所有材料为绿色建材,满足生态环境要求,有利于健康。 舒适性:轻钢墙体采用高效节能体系,具有呼吸功能,可调节室内空气干湿度;屋顶具有通风功能,可以使屋内部上空形成流动得空气间,保证屋顶内部得通风及散热需求。 快捷:全部干作业施工,不受环境季节影响。 环保:材料可回收,真正做到绿色无污染。 节能:全部采用高效节能墙体,保温、隔热、隔音效果好,可达到50%得节能标准。

楼梯对结构设计计算的影响

楼梯对结构设计计算的影响 楼梯作为重要的疏散工具,在抗震防灾中起着重要的作用。《抗震规范》第3. 6. 6条的局部修订中要求“计算中应考虑楼梯构件的影响”,结构设计中该如何考虑? 泣川地震震害表明,楼梯对结构安全及人生安全影响重大,2010版《抗震规范》增加了“计算中应考虑楼梯构件的影响”的要求。“考虑楼梯构件的影响”应注意下列两方面:一是,楼梯对竖向构件的影响(使竖向构件中间受力,形成短柱或局部错层等);二是,要考虑楼梯的传力需要(楼梯作为水平传力构件之一,应确保其传力及疏散功能的实现)。 理论研究及震害调查表明,楼梯对主体结构的影响,取决于楼梯与主体结构的相对刚度之比。楼梯对主体结构影响的程度取决于主体结构的结构体系,主体结构的刚度越大、整体性越好(如采用剪力墙、框架-剪力墙结构等),楼梯对主体结构的影响越小;而主体结构的刚度越小、整体性越差(如框架结构、装配式楼盖结构、砌体结构等),楼梯对主体结构的影响就越大。 楼梯对主体结构的影响主要集中在砌体结构、框架结构和装配式结构中。在多遇地震作用下,由于结构基本处于弹性工作状态,填充墙、砌体承重墙开裂程度较低,刚度退化不严重,装配式楼盖的整体性尚可,楼梯刚度在主体结构刚度中的比值很小,楼梯对主体结构的影响不大。而在设防烈度地震及罕遇地震作用下,结构进入弹塑性状态,填充墙、砌体承重墙开裂严重,刚度急剧降低,装配式楼盖的整体性很差,楼梯刚度在主体结构刚度中的比值逐步加大,楼梯对主体结构的影响也随之加大。现浇梯板起局部刚性楼板的作用,传递水平地震剪力,导致梯板拉裂,框架柱形成短柱及错层柱而破坏。 在剪力墙结构、框架-剪力墙结构、筒体结构中,由于结构刚度大,整体性好,楼梯自身刚度在主体结构中的刚度比值不大,楼梯受主体结构的“呵护”而很少破坏。 考虑楼梯对主体结构的影响及主体结构对楼梯的影响时,应根据主体结构与楼梯的侧向刚度大小,采取相应的设计措施: 楼梯采用现浇或装配整体式钢筋混凝土结构,不应采用装配式楼梯。 对框架结构、砌体结构及楼盖整体性较差的结构,在结构计算中应考虑楼梯对主体结构的影响及主体结构对楼梯的影响,并宜进行包络设计。 现阶段,在对结构进行规则性判别及位移计算时,可不考虑楼梯的影响; 构件设计时,应考虑楼梯的影响,对相关构件按考虑与不考虑楼梯的影响进行分 别计算,包络设计。 对剪力墙结构、框架-剪力墙结构等主体结构侧向刚度大、楼盖整体性好的结构,当楼梯周围有剪力墙围合时,计算中可不考虑楼梯的影响,而采取有效的构造措施(加配梯跑跨中板顶通长钢筋、框架柱箍筋加密等)确保楼梯及相应框架柱的安全。 楼梯对主体结构的影响及主体结构对楼梯的反作用主要集中在结构的底部,因此 应加强楼梯底部的抗震措施,如:明确楼梯梯板的传力途径,加强梯板的配筋,同时应加强与梯板相连之框架柱的受剪承载力。. 无地下室时,当楼梯在底层直接支承在孤独楼梯梁上时,地震时楼梯板吸收的水平地震作用在楼梯梁处的水平传递路径被截断,而梯板外的孤独楼梯梁将无法承担梯板传来的水平推力,破坏常发生在梯板边缘的孤独梁截面处,因此应避免采 用此做法。必须采用时,应适当加大楼梯梁的平面外配筋并加密箍筋。

钢结构抗震性能设计

第四章抗震性能设计 4.2b 综述适用于钢构件、钢节点、钢连接的几种滞回模型和损伤指数。(重点阐述有关钢结构的内容) 答: 1、滞回模型 (1)钢构件的滞回模型: a、轴心受力构件 反复荷载作用下轴心受力钢构件滞回模型 b、受弯构件

反复荷载作用下受弯钢构件的滞回模型 c、钢板 反复荷载作用下受弯钢构件板的滞回模型 (2)钢连接的几种滞回模型 线性模型非线性模型

(3)钢节点的滞回性能模型 反复荷载作用下受弯钢节点的几种滞回模型 2、损伤指数综述 为了定量描述结构防止在地震中倒塌的安全度,提出了损伤指数的概念。对结构在其寿命周期内所能承受的地震破坏总量的预测由损伤指数(Damage Index)控制,而损伤指数由刚度、强度和延性确定。对于其中的延性而言,损伤指数分别从构件级别、楼层级别和整体结构级别代表了塑性铰的塑性转动能力。 (1)构件损伤指数 可以由所需塑性转动能力和可提供的塑性主动能力之间的比值计算得出。 a dm I θθ/r (2)楼层损伤指数 代表了楼层抵御地震破坏的能力: (3)整体损伤指数 描述整个结构的损伤指数,包括地震作用下的结构整体性能。

4.3c综述屈曲约束支撑(无粘结支撑、防屈曲支撑)的特点、类型、设计要点以及国内外最新研究进展和工程应用现状。答: 1、特点 在普通支撑外部设置套管,约束支撑的受压屈曲,构成屈曲约束支撑。屈曲约束支撑仅芯板与其他构件连接,所受的荷载全部由芯板承担,外套筒和填充材料仅约束芯板受压屈曲,使芯板在受拉和受压下均能进入屈服,因而,屈曲约束支撑的滞回性能优良。 .屈曲约束支撑与普通支撑滞回性能对比 优点: (1)承载力与刚度分离 普通支撑因需要考虑其自身的稳定性,使截面和支撑刚度过大,从而导致结构的刚度过大,这就间接地造成地震力过大,形成了不可避免的恶性循环。选用防屈曲支撑,即可避免此类现象,在不增加结构刚度的情况下满足结构对于承载力的要求。 (2)承载力高 抗震设计中,普通支撑和屈曲约束支撑的轴向承载力设计值为:

不同形式楼梯对框架结构的抗震影响初探

不同形式楼梯对框架结构的抗震影响初探 发表时间:2014-12-23T13:43:47.187Z 来源:《防护工程》2014年第9期供稿作者:孟亚丹[导读] 楼梯是高层及多层建筑的重要组成结构,其在建筑物中发挥着重要的交通枢纽作用。孟亚丹 巨力索具股份有限公司 072550 [摘要]为探究不同形式楼梯对框架结构抗震能力的影响,本文总结了依照不同标准划分的多种类型的楼梯形式,并借助构建的四种形式的楼梯模型,利用构件不计入与计入楼梯的4种不同框架结构模型及GSSAP软件分析与计算,得出了框架结构动力特性及楼梯和有关构建的一些特性。旨在掌握各种不同形式楼梯对框架结构的抗震影响力。 [关键词]楼梯;抗震能力;框架结构 楼梯是高层及多层建筑的重要组成结构,其在建筑物中发挥着重要的交通枢纽作用,更是灾难发生时的主要疏散通道。所以,在设计楼梯时,不仅要确保其正常的交通功能,还要确保其危急情况下的牢固性及整体性,预防的非结构与结构性破坏。本文借助GSSAP软件构建了四种不同的楼梯模型,通过计算并分析对比了不同形式楼梯对框架结构的抗震影响,以期获得有价值的结论。 一、楼梯类型。 依照不同的参考标准,可把楼梯分成以多种类型。依照用途可分为:特殊楼梯、一般楼梯等。普通楼梯依照材料的不同还可分成:金属楼梯、混合楼梯、钢筋混凝土楼梯、木楼梯等。特殊楼梯依照功能可分为:自动梯、消防梯、安全梯三种。 依照楼梯的结构特点,可将其分为:悬挑式、吊挂式、整体式、支撑式等。笔者将对这4种形式的楼梯进行详细分析:①支撑式。该形式楼梯是传统的从上至下的体系,楼梯荷载及自重先转移到楼梯的平台梁及斜梁上,再从这些部位转移到建筑物主体结构的墙体、柱子或者梁等位置。该结构形式在力学模型中被称为简支梁,具有受力合理、简明的特点。三是因为支撑式楼梯必须具备一定的承重结构,所以该类型楼梯灵活性较差。②悬挑式。该形式楼梯的梯段板、踏步、休息平台从框架或者墙体上悬挑出来。在力矩图中,可明确看到该形式楼梯的形态十分简捷,并具有很强的力量感,甚至部分楼梯极其精简,只有踏板自墙体中伸出,具有很强的视觉冲击力。③吊挂式。一般情况下楼梯的踏步与休息平台是由钢管、钢丝等吊挂起来,除了构件吊挂外,通常还需要一些较为稳定的构件以确保楼梯具有较高的稳定性。依据楼梯不同的踏步位置,所用到的吊挂杆件也各不相同。如果想要进行精确的理学计算,就应该详细计算各个杆件所具有的应力值。一般情况下,栏杆、扶手都会和拉杆连接为一体,以展现统一、完整的形象。④整体式。楼梯应该是一个完整的整体结构,其自重与荷载时借助构件应力实现荷载转移的,最终把力转移到和其连接在一起的楼板或者框架上。该形式的楼梯整体刚性很好,受力情况也十分合理。该形式楼梯通常都属于现浇混凝土结构,显著体现了混凝土的整体性与可塑性。 二、框架结构的四种模型。 第一,四种模型类别。本文借助同一混凝土框架结构为分析对象,在第一个模型中只分析楼梯在竖向上的荷载传递,不输入构建;第二个模型也不输入有关楼梯构件,楼梯是由梯柱、梯梁、梯板三部门组成,外侧的平台两构建在两侧的框架柱上;在第三个模型中设置楼梯构件,但是梯梁构建在和框架柱相互分离的楼梯梯柱上;第四个模型中同样设计有楼梯构建,但是位于半层位置的平台板必须使悬挑板,主体结构不可和平台板相连。 第二,模型的各种参数计算。算例中的框架结构是第五层,第一层层高是4.2米,第二层及以上每层高度都是3.90米,建筑物高度共计19.8米;楼梯、梁、柱的钢筋混凝土刚性等级都是C30;主要构建的横截面大小分别为:基本风压是0.60KN/M2;梯板厚度是140毫米、楼板厚度是120毫米、梯梁尺寸是300毫米×400毫米、梯柱尺寸是300毫米×300毫米、次梁尺寸是300毫米×600毫米、框架梁尺寸是300毫米×700毫米、框架柱尺寸平均是600毫米×600毫米,地表的粗糙等级是B级;抗震烈度是7度,地震设计分组是第三组,场地类别是Ⅱ类,抗能能力属三级。 三、楼梯对框架柱的内力影响。 通常情况下,楼梯在Y轴上对框架结构影响最为显著,最能体现楼梯对框架柱的内力影响情况,所以笔者楼梯的框架柱作为研究对象,以探究Y轴方向地震条件下楼梯对第一层框架柱的作用。Y轴方向地震环境中的第一层框架柱的轴力曲线如下图。从图中我们可以看出,第二个模型楼梯四周的框架柱轴力发生了显著变化,第三个、第四个模型也都有一定变化,但均未第二个模型明显,剩余编号的框架柱轴力也未明显变化;第二个模型重的楼梯平台位置的框架柱轴力也发生了显著变化,剩余位置变化也不大,第三个及第四个模型的框架柱在各处的弯矩也没有明显变化。从这里我们可以指导,当我们将楼梯纳入计算之后,主要对楼梯四周框架柱产生内力影响,第三及第四模型中框架柱受影响不明显,但是第二个模型中楼梯对框架柱的内力作用较明显,在设计时必须全面考虑各种影响因素。 四、分析楼梯构件。 楼梯各个部分在地震环境下的受力很复杂,地震中梯柱可承担很大拉力,导致其在上端节点位置极易被破坏,梯板在受到较大拉力情况下也很可能被拉断,甚至梯梁也会被毁坏。我们将第一个模型中的楼梯作为研究对象,第二、第三、第四个模型中的楼梯的构件最大内力详见表2,在该研究中所选取的梯梁是半层平台与梯板连接位置的梁。从表4中我们通过

高层钢结构抗震措施

浅谈高层钢结构抗震措施 【摘要】随着城市建设的发展,钢结构在高层建筑中的应用越来越广泛,因为高层钢结构抗震性能卓越,材料强度、延性良好,施工便利,便于回收,能够可持续利用,空间使用率高、有效节省土地以及节能、降耗等特点。本文主要从高层钢结构的抗震性能及措施进行探讨。 【关键词】高层建筑钢结构抗震 【 abstract 】 with the development of urban construction, steel structures in high-rise building more and more wide application, for high-rise steel structure seismic performance is remarkable, material strength and ductility is good, construction is convenient, easy recycling, able to sustainable use, the space utilization rate is high, effectively save the land and energy saving, consumption reduction etc. characteristics. this article mainly from the high-rise steel structure seismic performance and measures are discussed. 【 key words 】 high-rise; steel structure; seismic 中图分类号:[tu208.3] 文献标识码:a文章编号: 前言 我国地处地震带附近,地质灾害影响特别大,而地震对不同的结构产生着不同的影响,不同的结构在地震中的破坏程度和形式也

钢结构与钢筋混凝土结构抗震优势比较

钢结构与钢筋混凝土结构抗震优势比较 支架对于我们来说并不陌生,在生活的每个角落,只要你稍加注意,就会有支架的出现,下面南通正道就详细为你介绍一下钢结构与钢筋混凝土结构抗震优势比较。 一、材料分析比较 “地震力”是惯性力,混凝土结构质量大,惯性力大;钢结构质量小,惯性小。所以在相同的地震作用下,混凝土结构受到很大的力,钢结构受到的力小。这是外因。 内因,钢结构材料强度高,耗能强,是延性材料,有屈服台阶,通过包络曲线来耗能。而混凝土是脆性材料! 钢结构所用的是钢材最低是用Q235,大部分的钢结构材料用的都是Q345。钢结构的阻尼比一般在0.01-0.02之间,钢筋混凝土结构的阻尼比一般在0.03-0.08之间。阻尼比小,在地震力作用下,变形大,因为钢结构韧性好,通过变形消耗地震能量,且容易恢复。钢结构较为柔软主要通过弹塑性变形吸收能量,较混凝土而言脆断的可能性低得多,一般认为10层以下的钢结构建筑物基本不会发生倒塌事故。 二、结构设计计算方式分析 钢结构采用弹性理论设计的,其构件能够在地震小幅度变形后再恢复;而钢筋混凝土结构是刚性理论设计的,不能变形,就不能吸收地震的能量。跨度越大越实惠,可回收,环保符合绿色建筑理念 由于钢材塑性、韧性好,可有较大变形,能很好地承受动力荷载,其次钢材匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定,因此,钢结构的抗震性能比钢筋混凝土结构的抗震性能好。 三、模型分析 两种结构在相同的荷载作用下,钢结构沿1、2、3轴的位移分别是0.00919mm、-0.00570 mm、-15746 mm。钢筋混凝土沿1、2、3轴的位移分别是0.00909mm、-0.00909 mm、-0.15255mm。从模型位移分析里看,加上钢结构震后快速恢复的特点,而混凝土结构属于刚性结构,变形后不可恢复原形,从而钢结构在抗震的方面要优于钢筋混凝土结构四、综合分析

板式建筑物楼梯对框架结构整体计算的影响分析

板式建筑物楼梯对框架结构整体计算的影响分析 在框架结构建筑物不断增多的今天,我们对框架结构的建筑物进行计算的过程中,不可忽视一些关键性的因素,比如板式建筑物楼梯的影响就比较大,它对框架结构会造成的影响也是比较多的。所以,本文进一步分析了板式建筑物楼梯对框架结构整体的计算影响,总结了影响的诸多方面,供参考和借鉴。 标签:板式建筑物;楼梯;框架结构;整体计算;影响 我们研究和计算框架结构建筑物,不得不重视板式建筑物楼梯的影响力,在分析和计算的过程中,要将板式建筑物楼梯的影响放在重点位置,才能够保证框架结构整体计算更加科学。 1、楼梯概念设计的理论分析 建筑框架结构设计是主要设计依据、抗震等级、人防等级、地基情况及承载力、防潮抗渗做法、活荷载值、材料等级、施工中的注意事项,选用详图,通用详图或节点,以及施工图中未画而通过说明来表达的信息,如混凝土的含碱量不得超过3kg/m3等。 楼梯在建筑物中是一个空间结构,各种构件以相当复杂的方式共同工作,这种复杂的、非弹性性质的、材料的时效、阻尼变化等多种因素,在实际计算中存在着不准确性。故在建筑抗震理论远未达到很科学严密的情况下,单靠理论计算很难使楼梯具有良好的抗震能力,因而在实际工程设计中我们多了许多概念,假定与简化。如楼梯不宜放在建筑物的角部和边部,以便于荷载的传递;同时减少水平地震力作用下空间扭转作用的影响。实际上踏步和平台梁是整体连接,计算时需要在支座处加构造负筋;以往在建筑工程中负筋一端锚入楼梯梁,另一端伸进楼梯板四分之一的踏步板跨度。但通过实际工程震害发现,在梯板四分之一处梯板断裂或梯板混凝土剥落。 再次,楼梯板在水平地震力作用下具有桁架中的腹杆效应,将产生较大的拉压力。楼梯板由原先我们只考虑竖向力时的受弯构件,转变为“拉压弯”构件,加强了楼梯处的局部抗侧刚度;结构刚度越大,地震作用效应越大,配筋越多。楼梯参与整体计算时的楼梯板配筋要比常规做法计算出来的钢筋面积大出40%左右,当楼梯板不能承受地震力所产生的轴力及弯矩,势必出现梯段被拉断的情况。这样为抵御地震而配的钢筋,增加了结构的刚度,反而又使地震作用效应增强。这样不仅加大了结构构件的设计难度,还增加了造价成本。 传统板式楼梯在进行设计时,没有考虑楼梯在地震作用下对结构整体抗震设计的影响,只是将楼梯单独进行设计和配筋,并且简单的将其按照简支梁、简支板进行荷载计算和配筋设计。传统板式楼梯在进行整体建模分析时也只是将竖向传递过来的荷载施加到框架梁、柱等主体结构上进行计算,对于楼梯间的楼板进行开洞处理,并且在进行配筋时没有采用双层双向的配筋形式。

钢结构和钢筋混凝土结构抗震优势比较

钢结构与钢筋混凝土结构抗震优势比较 一、材料分析比较 “地震力”是惯性力,混凝土结构质量大,惯性力大;钢结构质量小,惯性小。所以在相同的地震作用下,混凝土结构受到很大的力,钢结构受到的力小。这是外因。 内因,钢结构材料强度高,耗能强,是延性材料,有屈服台阶,通过包络曲线来耗能。而混凝土是脆性材料! 钢结构所用的是钢材最低是用Q235,大部分的钢结构材料用的都是Q345。钢结构的阻尼比一般在0.01-0.02之间,钢筋混凝土结构的阻尼比一般在0.03-0.08之间。阻尼比小,在地震力作用下,变形大,因为钢结构韧性好,通过变形消耗地震能量,且容易恢复。钢结构较为柔软主要通过弹塑性变形吸收能量,较混凝土而言脆断的可能性低得多,一般认为10层以下的钢结构建筑物基本不会发生倒塌事故。 二、结构设计计算方式分析 钢结构采用弹性理论设计的,其构件能够在地震小幅度变形后再恢复;而钢筋混凝土结构是刚性理论设计的,不能变形,就不能吸收地震的能量。跨度越大越实惠,可回收,环保符合绿色建筑理念 由于钢材塑性、韧性好,可有较大变形,能很好地承受动力荷载,其次钢材匀质性和各向同性好,属理想弹性体,最符合一般工程力学

的基本假定,因此,钢结构的抗震性能比钢筋混凝土结构的抗震性能好。 三、模型分析 1、钢结构在荷载作用下的位移变形 2、混凝土在相同荷载作用下的位移变形 荷载表格 2层梁恒载 2层楼板活 荷载 2层楼板恒荷载 屋顶板活荷载 屋顶板横荷载 屋顶梁恒载 10KN/M2 3KN/M2 3KN/M2 3KN/M2 5KN/M2 5KN/M2

以上结构为钢结构和钢筋混凝土结构模型,两种结构在相同的荷载作用下,钢结构沿1、2、3轴的位移分别是0.00919mm、-0.00570 mm、-15746 mm。钢筋混凝土沿1、2、3轴的位移分别是0.00909mm、-0.00909 mm、-0.15255mm。从模型位移分析里看,加上钢结构震后快速恢复的特点,而混凝土结构属于刚性结构,变形后不可恢复原形,从而钢结构在抗震的方面要优于钢筋混凝土结构。 四、综合分析 从两种结构的材料分析和设计计算方式比较,模型分析比较,能很

相关文档
最新文档