换向阀工作原理

换向阀工作原理
换向阀工作原理

换向阀

利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。

按阀芯相对于阀体的运动方式:滑阀和转阀

按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等

按换向阀所控制的通路数不同:二通、三通、四通和五通等。

1、工作原理

图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。

2、换向阀的结构

1)手动换向阀

利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。

2)机动换向阀

机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。

3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。

图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图4-9b为其图形符号。

4)液动换向阀

利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。

5)电液换向阀

由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。

3、换向阀的性能和特点

1)滑阀的中位机能

各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“O”型、“H”型、“P”型、K”型、“M”型等。

分析和选择三位换向阀的中位机能时,通常考虑:

(1)系统保压P口堵塞时,系统保压,液压泵用于多缸系统。

(2)系统卸荷P口通畅地与T口相通,系统卸荷。(H K X M型)

(3)换向平稳与精度A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T 口,换向平稳,但精度低。

(4)启动平稳性阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。

(5)液压缸浮动和在任意位置上停止

2)滑阀的液动力

由液流的动量定律可知,油液通过换向阀时作用在阀芯上的液动力有稳态液动力和瞬态液动力两种。

(1)稳态液动力:阀芯移动完毕,开口固定后,液流流过阀口时因动量变化而作用在阀芯上有使阀口关小的趋势的力,与阀的流量有关。

(2)瞬态液动力:滑阀在移动过程中,阀腔液流因加速或减速而作用在阀芯上的力,与移动速度有关。3)液压卡紧现象

卡紧原因:脏物进入缝隙;温度升高,阀芯膨胀;但主要原因是滑阀副几何形状和同心度变化引起的径向不平衡力的作用,其主要包括:

a阀芯和阀体间无几何形状误差,轴心线平行但不重合

b 阀芯因加工误差而带有倒锥,轴心线平行但不重合

c 阀芯表面有局部突起

减小径向不平衡力措施:

1)提高制造和装配精度

2)阀芯上开环形均压槽

液压比例阀工作原理.

液压比例阀工作原理 间电网投资的快速增长为公司提供了良好的发展机遇。2)置信电气生产非晶合金变压器,属于国家推广的节能类产品,公司为国内唯一的规模化生产非晶合金变压器的企业,市场占有率达到80%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。 电力行业“节能减排”形势严峻 在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。“十一五”期间节能减排目标:实现国内生产总值能耗降低20%、主要污染物排放总量减少10%。但电力行业节能减排形势很严峻,具体表现为:1)2006年,发电用煤超过12亿吨,排放的二氧化碳占全国排放总量的54%,火电用水占工业用水的40%,烟尘排放量占全国排放量的20%。2)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。3)电网建设滞后,“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏低,高耗能变压器使用量太大。 电气设备将在“节能减排”中发挥重要作用 我们认为,未来国内电力行业节能的主要途径为:大力发展特高压电网;加强现有电厂设备改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页 >>产品中心>>比例式减压阀 一、产品[固定比例式减压阀]的详细资料: 产品名称:固定比例式减压阀

产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:1,3:2,S 2等,亦可根据用户的要求设计特殊比例的减压阀.固定比例式减压阀,减压阀。 二、主要技术参数: 适用介质水、气体 适用温度≤90℃ 压力误差≤8% 最小开启2:1 0.2MPa 压力3:1 0.3MPO 连接形式法兰、内螺纹 主要零件阀体锡青铜不锈钢铸铁 材料内件锡青铜不锈钢锡青铜或不锈钢 三、比例式减压阀主要外形尺寸(法兰连接尺寸PNl.OMPa按GB4216.4—84标准): 公称通径DN (mm)A1 25 115 32 124 40 132 50 140 65 155 80 155 100 200 125 220 150 230 200 270 订货须知: 一、①比例式减压阀产品名称与型号②比例式减压阀口径③比例式减压阀是否带附件二、若已经由设计单位选定公司的比例式减压阀型号,请按比例式减压阀型号 三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数,

电磁换向阀原理

电磁换向阀是利用电磁铁推动阀芯来控制液流方向的。采用电磁换向阀可以使操作轻便,容易实现自动化操作,因此应用极广。 电磁换向阀只是采用电磁铁来操纵滑阀阀芯运动,而阀芯的结构及型式可以是各种各样的,所以电磁滑阀可以是二位二通、二位三通、二位四通、三位四通和三位五通等多种型式。 一般二位阀用一个电磁铁,三位阀需用两个电磁铁。 操纵电磁阀用的电磁铁分为交、直流两种,交流电磁铁的电压一般为220 伏。其特点是启动力 较大,换向时间短,价廉。但当阀芯卡住或吸力不够而使铁芯吸不上时,电磁铁容易因电流过 大而烧坏,故工作可靠性较差,动作时有冲击,寿命较低。直流电磁铁电压一般为24伏。其 优点是工作可靠,不会因阀芯卡住而烧坏,寿命长,体积小,但启动力较交流电磁铁小,而且 在无直流电源时,需整流设备。为了提高电磁换向阀的工作可靠性和寿命,近年来,国内外正 日益广泛地采用湿电磁铁,这种电磁铁与滑阀推杆间无须密封,消除了O形密封圈处的摩擦力,它的电磁线圈外面直接用工程塑料封固,不另作金属外壳,这样既保证了绝缘,又利于散热, 所以工作可靠,冲击小,寿命长。 换向阀 作用:变换阀心在阀体内的相对工作位置,使阀体各油口连通或断开, 从而 控制执行元件的换向或启停。 1换向阀的分类 座阀式换向阀 按结构形式分 < 滑阀式换向阀 转阀式换向阀 2 滑阀式换向阀 (1)换向阀的结构和工作原理 阀体:有多级沉割槽的圆柱孔 结构〈 阀芯:有多段环行槽的圆柱体 分类: 二位 按工作位置数分< 三位位:阀心相对于阀体的工作位置数。 四位

二通 按通路数分< 三通通: 阀体对外连接的主要油口数 四通(不包括控制油和泄漏油口) 五通 电磁换向阀 液动换向阀 按控制方式分< 电液换向阀 机动换向阀 手动换向阀

换向阀工作原理

换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。 按阀芯相对于阀体的运动方式:滑阀和转阀 按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等 按换向阀所控制的通路数不同:二通、三通、四通和五通等。 1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。 2、换向阀的结构 1)手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。

2)机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。 3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图4-9b为其图形符号。 4)液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。

比例阀设计

内部资料 比 例 阀 设 计 2005年3月19日

目录 三制动压力调解阀(比例阀)的设计 (3) 3.1制动压力调解阀结构及工作原理 (3) 3.1.1制动力限压阀(BG) (3) 3.1.2制动力调解阀(BR16 BR18) (4) 3.1.3带有支路的制动力调解阀(BRMS) (5) 3.1.4串联的制动力调解阀 (7) 3.1.5带关闭特性的感载比例阀 (9) 3.1.6介绍几种实用的比例阀及惯性阀 (9) 3.2制动力调解阀的参数设计 (11) 3.3 比例阀特性曲线及其偏差的确定 (12) 3.4 尺寸链计算 (12) 3.5 装配过盈量的确定 (12) 3.6 比例阀零件材料选用 (12) 3.7液压感载式制动压力调解阀性能要求及台架试验方法 (14) 1 主题内容与适用范围 (15) 2 引用标准 (15) 3 技术要求 (15) 4试验方法 (17) 5 验收规则 (21) 6 标志包装运输储运 (21) 2005年3月19日星期六

三 制动压力调解阀(比例阀)的设计 3.1制动压力调解阀结构及工作原理 当汽车制动时, 随着汽车减速度的增加,从后轴转移到前轴的汽车载荷也将增加,然而, 由于制动力的分配在设计时已经确定了,因此仅允许其变化在相对的范围内。而在其它情况下,无论是前轴还是后轴的制动力超过允许值都存在着汽车侧滑或操纵失灵的危险。 为了避免这些不足,就要在制动时,按着载荷的变化而改变制动力的分配,以便在各种情况下,基本上得到最佳的制动力分配,至少防止了后轴的抱死。 3.1.1制动力限压阀(BG) 在末达到阀的关闭点之前,输入端和输出端的压力相同,当压力增加超过了关闭点的压力时,输出端保持恒定值,压力不在增加。见图 1。 图 1 制动力限压阀特性曲线 工作原理: 由制动主缸产生的液压由A1端进入环形空间(1),穿过阀(2)和腔(3)经A2端输出到制动分泵,当液压增大到关闭点时,阀的活塞(4)向下移动压迫弹簧(5)直到阀(2)的锥座关闭。腔(1)和腔(2)隔开,在这种情况下,即使压力再增加也不影响阀的功能。因为活塞(4)平衡了这种关系。如果制动分泵的体积增大,例如热膨胀导致腔(3)的压力下降,则弹簧(5)将使锥座(2)打开,继续保持腔(1)和腔(3)的关系。便利压力再次达到预定值。如果由于制动器液体膨胀,腔(3)中的压力超过腔(1)中的压力,则弹簧阀座(6)向下移动,并且锥阀(2)打开,又实现了新的平衡。见图 2 。

液压比例阀工作原理

液压比例阀工作原理)置信电气生产非晶合金变压器,2间电网投资的快速增长为公司提供了良好的发展机遇。市场占公司为国内唯一的规模化生产非晶合金变压器的企业,属于国家推广的节能类产品,%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,80有率达到得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。电力行业“节能减排”形势严峻“十一五”期间在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。%。但电力%、主要污染物排放总量减少10节能减排目标:实现国内生产总值能耗降低20亿吨,排放的二氧年,发电用煤超过121)2006行业节能减排形势很严峻,具体表现为:%,烟尘排放量占全国排放量的40化碳占全国排放总量的54%,火电用水占工业用水的)电网32)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。%。20“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏建设滞后,低,高耗能变压器使用量太大。电气设备将在“节能减排”中发挥重要作用加强现有电厂设备未来国内电力行业节能的主要途径为:大力发展特高压电网;我们认为,改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页>>产品中心>>比例式减压阀 的详细资料:固定比例式减压阀一、产品[] 产品名称:固定比例式减压阀. 产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

制动力分配调节装置

前后轮制动力分配的调节装置 一、概述 1.目的 如本章第一节所述,最大制动力f bmax,受轮胎与地面之间附着力fψ的限制。即: f ≤fψ=gψ bma x 当f b一旦等于fψ后,车轮便停止转动被“抱死”,而在地面上滑拖。制动管路中的工作压力再增大,也不可能使制动力f b增加。车轮一旦抱死便会失去抗侧滑的能力。如前轮抱死时,会使汽车失去方向操纵性,无法转向;如后轮抱死而前轮滚动时,会使汽车失去方向稳定性,丧失了对侧向力的抵抗能力而侧滑(甩尾),造成极为严重的恶果。可见,后轮抱死的危险性远大于前轮。因此,要使汽车既能得到尽可能大的制动力,又能保持行驶方向的操纵性和稳定性(不失控、不甩尾),即最佳制动状态,就必须使汽车前后轮同时达到“抱死”的边缘。其同步条件是:前后车轮制动力之比等于前后车轮对路面垂直载荷之比。 但是,随着装载量不同和汽车制动时减速度所引起载荷的转移不同,汽车前后车轮的实际垂直载荷比是变化的。因此,要满足最佳制动状态的条件,汽车前后轮制动力的比例也应是变化的。 2.前后轮制动管路压力分配特性曲线 (1)无制动力调节装置的汽车,其前后车轮控制管路的工作压力p1、p2基本是相等的,其压力比p2/ p1永远等于1(如图20-71虚线所示)。这就使得不论前后车轮制动器的型式、尺寸如何不同,但制动力的分配比例却永远是个常数,不可能使汽车在各种条件下都能获得最佳的制动状态。

图20-71 理想的前后轮制动管路压力分配特性曲线 p1-前轮制动管路中的压力;p2-后轮制动管路中的压力;c-质心 (2)理想的前后轮制动管路压力分配特性曲线如图20-71实线所示。由于汽车满载较空载时质心c后移,p2应相应增加,故其曲线较空载曲线上移。又因制动强度的增加(即工作压力p的增加),质心向前转移程度的增加,压力比p2/ p1应相应减小(小于1),故随压力p1的增加,曲线变得平缓。 为满足上述理想特性的要求,在一些汽车上采用了各种制动力调节装置,来调节前后车轮制动管路中的工作压力。常用的有限压阀、比例阀和感载比例阀。 二、液压式限压阀 1.安装位置 限压阀是一种最简单的压力调节阀,串联在制动主缸与后轮制动器的管路之间。 2.作用 它的作用是当前后制动管路压力p1和p2由零同步增长到一定值后,即自动将后轮制动器管路中的液压限定在该值不变,防止后轮抱死。

电磁阀工作原理

气动控制元件-各类控制阀 1、压力控制阀 压力控制阀的作用是控制、调整压缩空气的压力, 使气动执行元件的输出力保持在一定的范围。压力控制阀可分为四类: 1.普通调压阀 2.精密调压阀 3.电控调压阀(E/P调压阀) 4.增压阀 2、方向控制阀 方向控制阀作用是控制气流方向, 如控制气缸的移动方向。 方向控制阀如按操纵方式分类, 可分为机械操作, 手动操作, 气控操作及电磁操作等形式。 电磁阀操作双可分为两大类: A)直动型:直接用电磁铁的产生的力推动主阀芯, 符号是 B)先导型:用电磁力控制一小阀, 再使作用在主阀两端的气压来推动主阀。分内先导式和外先导式 气控式的换向阀是利用气压来直接驱动主阀芯换向, 这类换向阀通常用在那些不允许使用电气讯号的地方, 在那些防爆要求较高的环境下经常使用这一类气控换向阀。 机械式的换向阀常见的有滚轮式, 它通过机械接触来控制换向。 人工操作换向阀主要有手柄驱动方式, 按钮方式和脚踏方式。 方向控制阀按气口数, 切换的位置数分类可分为: 开关功能主要用途 2/2 ON/OFF没有 气马达和气动工具 排气 3/2 常闭(N.C.) 单作用气缸(推出型),气 动信号 3/2 常开(N.O.) 单作用气缸(拉进型)

4/2 输出口A和B 之间的换带共同排气口双作用气缸、我厂的调速器锁定电磁阀(双电磁铁)、球阀控制柜旁通阀电磁阀(原先为三位)。 5/2 输出A和B之间换向,带独立排气口双作用气缸、我厂的刹车控制柜、及空气围带电磁阀(将两位五通当两位三通用)。 5/3 中间排气式,如5/2中位时输出AB均为排气双作用气缸,气缸可能均卸压 5/3 中间封闭式,如5/2中位时完全密封住气双作用气缸,气缸可能在任意位置停止 5/3 中间加压式特殊用途

制动系

汽车制动系 一、名词解释 1.人力制动系 2.动力制动系 3.伺服制动系 4.制动器 5.鼓式制动器 6.盘式制动器 7.领蹄 8.从蹄 9.制动踏板感 10.制动控制阀的随动作用 11.附着力 12.制动力 13.理想的前后轮制动器制动力分配曲线 14.实际的前后轮制动器制动力分配曲线 15.辅助制动 16.缓速器 17.缓速作用 18.排气缓速式辅助制动 *19.液力缓速式辅助制动 *20.全液压动力制动系 二、填空 1.汽车制动系的功用包括:,,。 2.汽车制动系按作用不同可分为、、、、。 3.汽车制动系按制动能源不同可分为、、。 4.汽车制动系按制动能量的传输方式不同可分为、、、等。 5.汽车必须具备的制动系包括和。 6.摩擦式制动器根据旋转元件不同可分为、。 7.摩擦式制动器根据旋转元件的安装位置不同可分为、。 8.鼓式制动器按促动装置不同可分为、、。 9.等促动力制动器是指。 10.非平衡式制动器是指。 11.鼓式制动器间隙调整分为和两种。 12.在基本结构参数和轮缸工作压力相同的条件下,轮缸式制动器按制动效能从大到小排列顺序为、、、。 13.对于轮缸式制动器,进行全面调整的方法是;进行局部调整的方法是。 14.对于凸轮式制动器,进行全面调整的方法是;进行局部调整的方法是。 15.轮缸式制动器的间隙自调装置可分为和。 16.钳盘式制动器可分为和两种。 17.人力制动系中产生制动力的力源由___________供给的,人力制动系的优点是________________。

18.驻车制动系多用机械式传动装置的主要原因是 ______________。 19.制动轮缸的作用是__________________ 。 *20.伺服制动系统按伺服系统的输出力作用部位和对其控制装置的操纵方式不同,伺服制动系可分为 _______________和_______________两类。 *21.伺服制动系按伺服能量的形式分为____________、____________和____________三种,其伺服能量分别为____________、____________和___________ _。 22.动力制动系有______________、______________和______________三种。 23.一般来说,汽车气压制动系各元件之间的连接管路有___________、__________和__________三种。 24.国产斯太尔6×4和6×6型重型汽车气压制动系回路中,在中、后行车制动回路中还装有气压感载比例阀作为制动调节装置,其作用是。 25.在动力制动系中,防冻器的工作原理是 ____。 26.在动力制动系中,多回路压力保护阀的作用是 _________。 27.解放CAl091型汽车的双腔串联活塞式制动控制阀,当驾驶员踩下制动踏板并保持在某一位置(即维持制动状态)时,制动阀处于_______位置。上腔中___________及___________之和与_____________相平衡;下腔中____________与____________及_____________之和相平衡。 28.在动力制动系中,快放阀的作用是 _______________;继动阀的作用是____________。 29.东风EQl090E汽车双回路气压制动系中梭阀的作用是________ 。 30.在动力制动系中,制动气室的作用是 _______。 31.气压制动系作为一种动力制动系,比人力液压制动系更容易满足在踏板力不过________,而踏板行程又不过________的条件下产生较________制动力的要求。 32.南京NJ2045汽车装用的制动力调节装置为;陕汽SX2190汽车装用的制动力调节装置为。 33.常见的制动力调节装置及系统有、、、、。 34.辅助制动系的作用是。 35.制动系中产生缓速作用的方法有、、、、。 36.陕汽SX2190汽车装用的辅助制动系为。 37.陕汽SX2190汽车排气缓速式辅助制动系主要由组成。 三、判断正误(对的打√,错的打×,并改正) 1.行车制动系必须能实现渐进制动。() 2.液压制动的动力源是由发动机带动油泵提供的,属于动力制动。() 3.所谓的双回路制动就是指每个制动器上同时有两套制动回路。() 4.轴线固定的凸轮式制动器是一种等位移式制动器。() 5.汽车制动鼓外表面铸有若干肋片,以增加散热面积和增加刚度。() 6.以车轮制动器为驻车制动器的驻车制动系可用于应急制动。() 7.在对制动器间隙进行全面调整时,可调整蹄鼓的正确接触部位和间隙。() 8制动器间隙在踏板上的反映是制动踏板自由行程。() 9.在动力制动系中,制动器间隙过大将使制动踏板行程太长。() 10.在制动器工作过程中,摩擦片的不断磨损必将导致制动器间隙逐渐增大。() 11.盘式制动器中,密封圈的极限变形量等于制动器间隙为设定值时的完全制动所需活塞行程。() 12.伺服制动系在正常情况下,制动能量大部分仍由驾驶员的操纵力供给,动力伺服系统起辅助作用;而在动力伺服系统失效时,则全靠驾驶员供给。() 13.气压制动系的供能装置包括:空压机、贮气筒、调压阀、安全阀、滤清器、油水分离器、空气干燥器、制动控制阀、防冻器、多回路压力保护阀、快放阀、继动阀等部件。() 14.解放CAl091汽车的双腔串联活塞式制动控制阀,当后轮回路失效时,前轮回路是利用下腔室大、小活塞和平衡弹簧的张力相互平衡起随动作用。()

ATOS电磁阀工作原理 - Burkert电磁阀

阿托斯ATOS电磁阀工作原理和特点 ATOS是世界领先的电液元件制造商,总部位于意大利的Sesto Calende,靠近阿尔卑斯山。ATOS产品主要包括泵、阀和系统,油缸伺服油缸,叠加阀阀板,常规阀,ATOS所有产品均通过质量检测,拥有专业技术人员加质量保证。 ATOS电磁阀主要特点 ATOS电磁阀的主要特点电磁阀外漏堵绝,内漏易控,使用安全。内外泄漏是危及安全 的要素。其它自控阀通常将阀杆伸出,由电动、气动、液动执行机构控制阀芯的转动或移动。这都要解决长期动作阀杆动密封的外泄漏难题;唯有电磁阀是用电磁力作用于密封在电动调节阀隔磁套管内的铁芯完成,不存在动密封,所以外漏易堵绝。电动阀力矩控制不易,容易产生内漏,甚至拉断阀杆头部;电磁阀的结构型式容易控制内泄漏,直至降为零。所以,电磁阀使用特别安全,尤其适用于腐蚀性、有毒或高低温的介质。 ATOS电磁阀系统简单,便接电脑,价格低谦。电磁阀本身结构简单,价格也低,比 起调节阀等其它种类执行器易于安装维护。更显著的是所组成的自控系统简单得多,价格要低得多。由于电磁阀是开关信号控制,与工控计算机连接十分方便。在当今电脑普及,价格大幅下降的时代, 电磁阀的优势就更加明显。ATOS电磁阀动作快递,功率微小,外形轻巧。电磁阀响应时间可以短至 几个毫秒,即使是先导式电磁阀也可以控制在几十毫秒内。由于自成回路,比之其它自控阀反应更灵敏。设计得当的电磁阀线圈功率消耗很低,属节能产品;还可做到只需触发动作,自动保持阀位,平时一点也不耗电。电磁阀外形尺寸小,既节省空间,又轻巧美观。电磁阀调节精度受限,适用介质受限。电磁阀通常只有开关两种状态,阀芯只能处于两个极限位置,不能连续调节,(力图突破的新构思不少,但还都处于试验试用阶段)所以调节精度还受到一定限制。 ATOS电磁阀对介质洁净度有较高要求,含颗粒状的介质不能适用,如属杂质须先滤

高压电磁阀工作原理

高压电磁阀工作原理图 电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移 动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然 后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通 过控制电磁铁的电流就控制了机械运动。 分类: 国内外的电磁阀从原理上分为三大类(即:直动式、分步直动式、先导式),而从阀 瓣结构和材料上的不同与原理上的区别又分为六个分支小类(直动膜片结构、分步重片结构、先导膜式结构、直动活塞结构、分步直动活塞结构、先导活塞结构),按照气路数分为2位2通,2位3通,2位4通,2位5通。 电磁阀分为单电控和双电控,指的是电磁线圈的个数,单线圈的称为单电控,双线圈的称 为双电控,2位2通,2位3通一般时是单电控(单线圈),2位4通,2位5通可以是单 电控(单线圈),也可以是双电控(双线圈)。 一、按被控制管路内的介质及使用工况的不同可将电磁阀分为:液用电磁阀、气用电磁阀、蒸汽电磁阀、燃气电磁阀、油用电磁阀、消防专用电磁阀、制冷电磁阀、防腐电磁阀、高 温电磁阀、高压电磁阀、无压差电磁阀、超低温电磁阀(深冷电磁阀)、真空电磁阀等。 二、按电磁阀内部结构不同可分为先导式、直动式、复合式、反冲式、自保持式、脉 冲式、双稳态、双向型等。 三、按电磁阀的使用材质不同可分为:铸铁体(灰口铸铁、球墨铸铁)、铜体(铸铜、锻铜)、铸钢体、全不锈钢体(304、316)、非金属材料(ABS、聚四氟乙烯)。 四、按管道中介质的压力不同可分为:真空型(-0.1~0Mpa)、低压型(0~0.8Mpa)、中压型(1.0~2.5Mpa)、高压型(4.0~6.4Mpa)、超高压型(10~21Mpa) 五、按介质温度不同可分为:常温型(~)、中温型(~)、高温型(~)、超高温型(~)、低温型(~)、超低温型()。 六、按工作电压不同分为:交流电压:AC220V 380V 110V 24V;直流电压:

电磁阀工作原理

电磁阀工作原理 纵观国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移

动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。 三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔内形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔内形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差范围受限,必须满足压差条件。两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装@_@)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和

比例阀原理

比例阀结构及工作原理 比例阀结构及工作原理 1 引言 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(scr ewin cartridge proportional valve),另一类是滑阀式比例阀(spool proporti onal valve)。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

电磁控制换向阀的工作原理

电磁控制换向阀的工作原理 电气转化组件将电讯号转化为气动讯号,电气讯号输入控制了气动输出。最常用的电-气转换组件是电磁阀(Solenoid actuated valves) 。电磁阀既是电器控制部分和气动执行部分的接口,也是和气源系统的接口。电磁阀接受命令去释放,停止或改变压缩空气的流向,在电-气动控制中,电磁阀可以实现的功能有:气动执行组件动作的方向控制,ON/OFF开关量控制,OR/NOT/AND 逻辑控制。在电磁阀家族中,最重要的是电磁控制换向阀(Solenoid actuated directional control valves) 。 电磁控制换向阀的工作原理 在气动回路中,电磁控制换向阀的作用是控制气流通道的通、断或改变压缩空气的流动方向。主要工作原理是利用电磁线圈产生的电磁力的作用,推动阀芯切换,实现气流的换向。按电磁控制部分对换向阀推动方式的不同,可以分为直动式电磁阀和先导式电磁阀。直动式电磁阀直接利用电磁力推动阀芯换向,而先导式换向阀则利用电磁先导阀输出的先导气压推动阀芯换向。 图4.2a表示3/2(三路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。线圈通电时,静铁芯产生电磁力,阀芯受到电磁力作用向上移动,密封垫抬起,使1、2接通,2、3断开,阀处于进气状态,可以控制气缸动作。当断电时,阀芯靠弹簧力的作用恢复原状,即1、2断,2、3通,阀处于排气状态。

图4.2b表示5/2(五路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。起始状态,1,2进气﹔4,5排气﹔线圈通电时,静铁芯产生电磁力,使先导阀动作,压缩空气通过气路进入阀先导活塞使活塞启动,在活塞中间,密封圆面打开通道,1,4进气,2,3排气﹔当断电时,先导阀在弹簧作用下复位,恢复到原 来的状态。 阀的功能:(Function) 电磁阀的菜单示它的电-气转换复杂性。阀的功能由两个数字表示:M和N,称为M路N位电磁阀,“N位”表示换向阀的切换位置,也表示阀的状态。阀的位置数目就是N的数值,如二位阀有两个位置选择亦即有两种状态,三位阀则有三个位置选择亦即有三种不同的状态。“M路”表示阀对外接口的通路,包括进气口,出气口和排气口,通路的数目便是M的数值,如二路阀,三路阀等。图4.1a例子中的阀为3/2直动式电磁阀,念作“三路二位阀” ,表示该阀有两个位,即“通”和“断” 两个状态,有三个气口,分别为1:进气口, 2:出气口,3:排气口。

制动主缸装车基础理论及常出问题汇总解说

制动主缸装车基础理论及常出问题汇总简析图例一

按图说明:图为制动主缸在车身上正确安装图例,任何的故障或现象均在“正确安装的基础之上进行判断、验证” 1.首先保证制动主缸活塞与助力器挺杆之间的间隙或过盈配合合理。即总成的主缸空行程在1- 2.5mm之间; 2.图中尺寸2除以尺寸1为踏板比、在踏行程和制动力判断上均会考虑到此数值。见尺寸3,此尺寸只允许短不允许长, 这里的长、短只表示在未踩刹车时不能让主缸有预压缩而导致主缸无空行程。这也是各种故障及现象查找验证的基础条件之一; 3.在现场处理问题时如发现有踏板预压情况,可适当调节刹车灯开关来解决,或调整推叉的尺寸即尺寸3。 注:原则上制动踏板的高度与油门踏板的高度持平或高于油门踏板,不允许低于油门踏板的高度; 知识:商品承用车制动踏板的设计要满足制动主缸的全行程及主缸单腔失效后的制动效果,但是制动踏板全程不允许超过150mm; 踏板力不允许超500N;综合路面的整车减速度达0.8g时的踏板有效行程约为踏板总行程的三分之一为适,管路液压一般不超10MPa。 GB/T7258的标准里有相关规定

二、真空助力器带制动总泵总成基本原理/主要技术参数介绍 基本功能: 真空助力器带泵总成是由真空助力器、制动主缸、贮液油壶三部分组成。真空助力器带制动主缸总成为制动系统中的驱动机构。制动主缸、制动油管、ABS/ESP压力调节系统(比例阀、三通)、制动轮缸组成一个封闭的液压回路系统。当驾驶员踩刹车时,由制动踏板将驾驶员的下踩力,成比例的传递到真空助力器,再由助力器产生助力后成比例的传递到制动主缸,由助力推杆推动主缸活塞。主缸活塞再推动液压回路中的制动液,使之在这个回路中建立起相应的压力。然后再由制动系统中执行机构――制动器,将回路中的压力转换成理想制动力,因而达到一个良好的制动效果。 真空助力器的基本结构及工作原理简述: 真空助力器原则是不可拆卸的零部件总成,它是由前壳、后壳铆接成型的,其内部结构分:真空腔、变压腔、皮膜、控制阀体、阀门总成、柱塞总成等重要部件,皮膜前端为真空腔皮膜后端为变压腔,阀门总成与控制动阀体组成大气通道与真空通道的开启机构,由柱塞总成来完成大气通道与真空通道的开启与关闭。 工作原理:即无工作时真空腔与变压腔是相通,两腔均为真空状态,当助力器推杆向前推动柱塞,关闭真空阀门,此时两腔为第一个平衡点即两腔均为真空平衡状态,继续向前推动柱塞则会打开打气阀门,此时外部的大气进入到变压腔。那么皮膜的前端的为真空腔为真空状态,皮膜后端的变压腔冲入大气,此时会有一个伺服力产生,助力器开始助力并会向前移动,而推动制动主缸活塞。 制动主缸的基本结构及工作原理简述: 制动主缸是可拆卸,可更换内部零件(需专业人员),制动主缸为双腔串列式主缸。其特性是其中一腔失效另一腔仍能建立起最高工作液压。其内部结构分为第一腔(与助力器连接端)与第二腔(尾端),如果为补偿孔结构,不易与ABS或ESP连接使用。它是由第一活塞、第一副皮碗、主皮碗、第二活塞、第二副皮碗、主皮碗、阀门、回位弹簧等主要部件组成。 工作原理:当助力器推杆推动第一活塞时,由于是串连结构且第二回位弹簧力小于第一回位弹簧力,所以两腔活塞会带动皮碗同时向前移动,当第二腔阀门关闭第一腔主皮碗走过补偿孔时开始建压,0.1MPa时为此制动主缸的初始建压行程(空行程),再向前推动开始建压直至制动所需要的液压,即良好的制动压力。

电磁阀动作原理

电磁阀的工作原理 【气动元件】 利用电磁线圈通电时,静铁芯对动铁芯产生电磁吸力使阀切换以改变气流方向的阀,称为电磁控制方向阀,简称电磁阀。这种阀易于实现电、气联合控制,能实现远距离操作,故得到广泛应用。 一、电磁阀的分类 国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式。 1、直动式电磁阀: 原理:常闭型通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。 2、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作。 3、先导式电磁阀: 原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。

特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 一、电磁阀的工作原理 阀芯的工作位置有几个,该电磁阀就叫几位电磁阀:阀体上的接口,也就是电磁阀的通路数,有几个通路口,该电磁阀就叫几通电磁阀。即两位是指有两个工作位置可切换,三通是有三个通道通气。 比如: 二位二通电磁阀是一进一出(二个通道、最普通常见);1个通道与气源连接,另外一个通道与执行机构的进气口连接。 二位三通电磁阀控制气体是一进一出一排气(工作位置有二个);1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接。 二位五通电磁阀控制气体是一进二出一排气(工作位置也是二个);1个进气孔(接进气气源)、1个正动作出气孔和1个*作出气孔(分别提供给目标设备的一正一*作的气源)、1个正动作排气孔和1个*作排气孔(安装*)。 三位五通电磁阀控制气体是一进二出一排气(但工作位置有三个);1个进气孔(接进气气源)、1个正动作出气孔和1个*作出气孔(分别提供给目标设备的一正一*作的气源)、1个正动作排气孔和1个*作排气孔(安装*)。 1.两位三通单电控电磁阀动作原理

感载比例阀工作原理

感载比例阀 一、功能 该总成串联于行车液压制动管路之中,按比例调节车辆在不同载荷下的后轮制动压力,充分利用附着条件,产生尽可能大的制动力;同时避免行车制动时因后轮先抱死而产生的滑移现象,保证车辆制动的方向稳定性。 二、工作原理 阀体中的随动阀芯是一个差径活塞。根据其差径面积来实现输入-输出的比例分配。当车辆载荷不同时,作用在阀芯上的力F(合)将发生变化,通过F(合)的变化来实现该阀对车辆载荷的感应功能。当前制动失效时(P1=0),该阀将失去比例分配功能和感载功能,输出压力(P2)等于输入压力(P3),从而增大后轮制动力。

富康轿车感载比例阀的检查和调整 轿车的轴荷随着乘客人数、行李质量、制动时车速及道路情况(如坡度)的变化而变化,因此,轿车前、后轮与路面间的附着力Fφ也随之变化。由于地面制动力的极限值就是车轮与路面间的附着力,且当制动器制动力达到该附着力时,车轮即被抱死而使轿车失去制动时的方向稳定性;因此,要求给轿车前、后轮提供的制动器制动力能随轴荷的变化而作相应的改变。只有这样,轿车才有较高的制动效能及良好的制动时的方向稳定性。显然,采用固定的轴间(前、后轮)制动力分配是不能满足上述要求的。若在制动管路中安装感载比例阀,则当轿车制动时感载比例阀会根据轴荷的变化调节前、后轮促动管路压力(制动轮缸内制动液压力)的分配比例,使前、后轮促动管路压力分配特性曲线比较接近于理想的前、后轮促动管路压力分配特性曲线,从而使轿车前、后轮的制动力和轮胎与地面之间的附着力相适应,保证轿车具有良好的制动

效能。2000年投放市场的神龙富康988豪华型EX系列轿车就使用了感载比例阀,本 文介绍其结构、工作原理、检查方法和调整方法。 1.感载比例阀的结构与工作原理 感载比例阀主要由柱塞、阀门、阀座、阀体、杠杆和感载弹簧等组成(图 1)。其中,阀门与柱塞固定在一起。阀门将感载比例阀内腔分隔为上、下两个腔。下腔与进油口 相通-,并通过油管和制动主缸出油口相接;上腔与出油口相通,并通过油管和后轮促动管路相接。阀体通过螺钉装在车身支架上,推杆下端钩部与轿车后轴减振器下固定 端连接,感载弹簧装在杠杆与调整螺母之间,使感载比例阀与推杆之间的连接为弹性 连接。 当轿车不制动时,柱塞在感载弹簧通过杠杆施加的推力(F)的作用下使阀门离开阀座而开启。当轿车制动时,来自制动主缸的制动液由进油口输入,通过阀门后从出油 口输出到后轮促动管路。此时输入制动液压力(pl)和输出制动液压力(p2)相等,并且,由于阀门上端面的承压面积大于阀门下端面的承压面积,所以在阀门上、下端面上的 作用力不等,致使阀门有向下移动的趋势。当输入制动液压力较小而在阀门上、下两 端面上的作用力之差小于F时,阀门不动;当输入制动液压力增大到一定程度而在阀 门上、下两端面上的作用力之差大于F时,阀门就下移。当阀门与阀座接触时,感载 比例阀的上、下两腔被隔断,感载比例阀即处于平衡状态,此时的制动液压力称为调 节作用起始点控制压力(ps)。此后,如果输入制动液压力继续增大,则感载比例阀起 作用,P2的增量将小于P1的增量。当轿车承载质量增加时,后轴荷也增加,因而车 身向后轴移近,感载弹簧被进一步压缩(相当于感载弹簧的预压力增大),致使F增大,ps就相应地提高。由此可见,ps在汽车制动时会随汽车后轴荷的增减而成比例地增减,感载比例阀能对车轮制动力实行调节。 感载比例阀的压力调节性能可通过其调节特性曲线(图 2),即轿车在不同的载荷 了前、后轮促动管路压力分配特性曲线,来表示。当轿车就载时,感载弹簧的预压力

相关文档
最新文档