(同济大学)第5讲_全部--逆解法与半逆解法

不计体力时,

y?

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

同济大学测量学 测量学试题

测量学试卷三 一、填空题 1.通过平均海洋面的水准面称为。 2.由已知点A测量并计算未知点B的高程的方法有两种,一是, 其计算公式是;二是;其计算公式是。 3.竖直角的定义是,观测竖直角时, 望远镜的视准轴绕仪器竖轴旋转所扫出的面应该是一个面。 4.在精密距离丈量中,一般对丈量结果应加、和三 项改正。 5.一直线的坐标方位角为78°,另一直线的象限角为北偏西15°,则两直线之间最小 的水平夹角为。 6.已知正方形边长为a,若用钢尺丈量一条边,其中误差为±3mm,则正方形周长的中 误差为,若丈量正方形的每条边,其中误差均为±3mm,则正方形周长的中误差为。 7.地形测量的任务是。 8.测定碎部点的方法有、、、、。 9.中线测设的常用方法有和。 10.根据建筑物的分布和地形状况,建筑基线可布置成、、 、等多种形式。 二、选择题 1.测量上确定点的位置是通过测定三个定位元素来实现的,下面哪个不在其中()。 A)距离 B)方位角 C)角度 D)高程 2.水准测量中,后视点A的高程为40.000m,后视读数为1.125m,前视读数为2.571m, 则前视点B的高程应为()。 A)43.696m B)38.554m C)41.446m D)36.304m 3.在进行竖直角观测时,若瞄准的是与目标在同一水平面的其它点,则所测竖直角的 结果与实际上的角值相比()。 A)增大 B)减小 C)不变 D)不确定 4.若钢尺的尺长方程式为:L=30m+0.008m+1.2×10-5×30×(t-20℃)m,则用其在26.8℃ 的条件下丈量一个整尺段的距离时,其温度改正值为()。 A)–2.45mm B)+2.45mm

方程组的解法详解

*基础知识 "2x - y = 5 1、方程组< y"'的解是() x + y =1 卩x-6y =1, \x = -3 y +5; !3x+5y =5, I 3x —4y =23; {3m = 5n, gm —3 n =1; 消元---- 二元一次方程组的解法 x=0 y=1 C. a :2 D. [y =1 "x = 2 — 2、下列二元一次方程组以 x = 0, y=7 为解的是( ) A. fx"7, X +2y =14. B. j x + y = -7, X - y = 7. C p x + 2y=14, .:x-3y = —21. 3、将方程5x-2y+12=0写成用含 D. [5x + y = 7, i 3x -2y =14. 的代数式表示y 的形式 「2x-7y =8, (1) 4、 用代入消元法解方程组I y ',可以由 得 [y -2x = 4.⑵ —— ,把(3)代入 ___________ 中,得一元一次方程 _____________________ ,解得 求得的值代入(3)中,求得 ___________ ,从而得到原方程组的解为 __________ 5、 用代入法解下列方程组: (3) ,再把 (1) |x=2y, I x + y =3; y = 1-x, i3x + 2y =5; |x-4y =-1, I 2x + y =16;

(3), *能力提升 二、加减消元法 *基础知识 l x - y =3(1) 2、方程组Q y 八丿 若用加减消元法解,可将方程(1)变形为 3 4 i x +y=2; 12 3 ; (8) 『X y +1 1 gw 1, [3x + 2y =0. 」-7、”m, 3m -2n 6、已知 7x y 和一 3x 2n_2 y 是同类项,求m,n 的值. 7、如果(2x *探索研究 8、已知方程组 [ax + by =2 jCx-7y =8 中 y - 2| = 0,求 10x — 5y + 1 的值. I x = 3 I x = —2 '的解为I "'而小明粗心地把C 看错了,解得I "'请 2. l y = 2. 你求出正确的 a,b,c 的值. 1、方程组戸+4厂5,中, 3x-7y =6 x 的系数的特点是 「2x + 5y = 1 ,方程组? y '中y 的系 i3x -5y = 4 数特点是 ,这两个方程组用 法解较简便。

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

方程组的解法举例

三元一次方程组的解法举例 1).三元一次方程组的概念: 三一次方程组中含有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程。 注:(1)“未知项”与“未知数”不同。(2)每个方程不一定都含有三个未知数。 它的一般形式是 未知项的系数不全为零,其中每一个方程都可以是三元、二元、一元一次方程,但方程组中一定要有三个未知数。 2).解三元一次方程组的基本思想方法是: 【例1】解方程组 分析:方程①只含x,z,因此,可以由②,③消去y,再得到一个只含x,z的方程,与方程①组成一个二元一次方程组. 解:②×3+③,得11x+10z=35.(4) ①与④组成方程组 解这个方程组,得 把x=5,z=-2代入②,得2×5+3y-2=9, ∴.

∴ 【例2】解方程组 分析:三个方程中,z的系数比较简单,可以考虑用加减法,设法先消z。 解:①+③,得5x+6y=17 ④ ②+③×2,得,5x+9y=23 ⑤ ④与⑤组成方程组 解这个方程组,得把x=1,y=2代入③得: 2×1+2×2-z=3,∴z=3 ∴ 另解:②+③-①,得 3y=6,∴y=2 把y=2分别代入①和③,得 解这个方程组,得: ∴ 注:①此题确定先消去z后,就要根据三个方程消两次z(其中一个方程要用两次),切忌消一次z,再消一次其他未知数,这样得不到一个二元一次方程组,达不到消元的目的。

②此题的“另解”是先同时消去两个未知数,直接求出一个未知数的值,然后把所求得的未知数的值代入方程组中的两个方程组中,得到一个二元一次方程组,再求出另两个未知数的值。这种解法是一种特殊解法,只有认真观察,才能做出。 简单的二元二次方程组的解法举例 (1)二元二次方程及二元二次方程组 观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2. 定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程. 二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项. 定义②:二元二次方程组即有两个未知数且未知数的最高次数为二次的方程组 由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组. 例如:都是二元二次方程组. (2)二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。 由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

特殊方程组的解法

特殊方程组得解法 特殊方程组 不定方程组 含参方程组 模块一:假期知 识您还记得么 1. 二元一次方程 组:由几个一次方程组成,含有两个未知数得方程组叫做二元一次方 程组、 2. 二元一次方程组得解:一般地,二元一次方程组得两个方程得__________叫做二元一次方程组得解,它 必须同时满足方程组中得每一个方程,一般表示为x a y b =??=? 得形式、 3. 二元一次方程组得解得检验:要检验一对未知数得就是否为一个二元一次方程组得解,必须将这对未 知数得值_____________方程组中得每一个方程进行检验、 4. 解二元一次方程组得方法:_____________,______________、 1. 用代入消元法解方程组: 222312n m m n ?-=???+=? 3252 2(32)117x y x x y x +=+??+=+? 2. 用加减消元法解方程组: 2535x y x y +=?? +=? 433 344 x y x y 基础知识思维导图 复习导航 典题回顾

3、已知方程组 2.2 3.5113.5 5.633x y x y -=??+=?得解为x m y n =??=?,则方程组()()()()2.22 3.5111 3.52 5.6133x y x y ?+--=??++-=??得解就是_________ 4、解方程组274ax y cx dy +=??-=?时,一学生把a 瞧错后得到51x y =??=?,而正确得解就是3 1 x y =??=-?a c d 、、得值为 ( ). A.不能确定 B.3a =,1c =,1d = C.c ,d 不能确定,3a = D.3a =,2c =,2d =- 模块二:特殊方程(组) 199319941995200720082009x y x y + =??+=? (1) 141516 171819 x y x y (2)200520062007 200820092010 x y x y +=?? +=? 您发现了什么规律,猜测关于x,y 得方程组()(m 1)y m 2 nx (n 1)y n 2 mx m n ++=+?≠? ++=+?得解就是什么,并用 方程组得解加以证明。 【例1】 解方程组: 199519975989199719955987 x y x y 【练习1】 ⑴361463102 463361102 x y x y 【例2】 已知123451234512 3451234 51 2 3 4 5 26 212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ,求4532x x 得值、 (1)236236326x y z x y z x y z ++=?? ++=??++=? (2) 323232y z x a z x y b x y z c 典题精练 知识导航 解一些特殊得方程组(如未知数系数较大、方程个数较多等)需要观察方程组下系数特点,着眼于整体上解决问题,常用到: 整体叠加、整体叠乘、整体代入、先消常数、设元引参、对称处理、换元转化、巧取倒数等方法技巧。

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

方程组解法综合

方程组解法综合 教学目标 1.学会用带入消元和加减消元法解方程组 2.熟练掌握解方程组的方法并用到以后做题 知识精讲 知识点说明: 一、方程的历史 同学们,你们知道古代的方程到底是什么样子的吗?公元263 年,数学家刘徽所著《九章算术》一书里有一个例子:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?”刘徽列出的“方程”如图所示。 方程的英语是equation,就是“等式”的意思。清朝初年,中国的数学家把equation 译成“相等式”,到清朝咸丰九年才译成“方程”。从这时候起,“方程”这个词就表示“含有未知数的等式”,而刘徽所说的“方程”就叫做“方程组”了。 二、学习方程的目的 使用方程有助于解决数学难题,作为代数学最基本内容,方程的学习和使用不但能为未来初中阶段数学学习打好基础,同时能够将抽象数学直观表达出来,能够帮助学生更好的理解抽象的数学知识。 三、解二元一次方程组的一般方法 解二元一次方程的关键的步骤:是消元,即将二元一次方程或多元一次方程化为一元一次方程。 消元方法:代入消元法和加减消元法 代入消元法: ⒈取一个方程,将它写成用一个未知数表示另一个未知数,记作方程①; ⒉将①代入另一个方程,得一元一次方程; ⒊解这个一元一次方程,求出一个未知数的值; ⒋将这个未知数的值代入①,求出另一个未知数的值,从而得到方程组的解. 加减消元法: ⒈变形、调整两条方程,使某个未知数的系数绝对值相等(类似于通分); ⒉将两条方程相加或相减消元; ⒊解一元一次方程; ⒋代入法求另一未知数. 加减消元实际上就是将带系数的方程整体代入.

解线性方程组直接解法

第2章 解线性方程组的直接解法 §0 引言 11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=??? ?+++=?L L L L 1112121 22212112,(,,,),()n n T T n n n n nn a a a a a a A x x x x b b b a a a ??????===??? ??? ? ?L L L L L L L Ax b = 若A 非奇异,即det()0A ≠,方程组Ax b =有唯一解。由 Cramer 法则,其解 det(),1,2,,det() i i A x i n A = =L 其中i A 为用b 代替A 中第i 列所得的矩阵。当n 大时, 1n +个行列式计算量相当大,实际计算不现实。 121212(,)12det()(1)n n n i i i i i i n i i i A a a a τ=-∑L L L §1 Gauss 消去法 (I )Gauss 消去法的例子 (1)1231123 212336 ()123315()18315() x x x E x x x E x x x E ++=??-+=??-+-=-? 2131()12(),()(18)()E E E E -?--? (2) 12312342356 ()15957()211793()x x x E x x E x x E ++=?? --=-??+=?

方程组13()()E E -与方程组145(),(),()E E E 同解 541 ()21( )()15 E E --得 (3)1231234366()15957()3() x x x E x x E x E ++=?? --=-??=? 由(3)得3 213,2,1x x x === 123(,,)(1,2,3)T T x x x = (3)的系数矩阵为11 10159001????--?????? ,上三角 矩阵。 (II )Gauss 消去法,矩阵三角分解 Ax b = 1112 11,12122 22,112 ,1 n n n n n n nn n n a a a a a a a a A b a a a a +++????????=?????????? L M L M L L M M L M 令(1) ,1,2,,;1,2,,,1ij ij a a i n j n n ===+L L (1)(1)A b A b ??=?? ???? 第1次消去 (1) 110a ≠, 令 (1)1 1(1)11 , 2,3,,i i a l i n a ==L 作运算:11()()i i i l E E E -+→ i E 表示第i 个方程(第i 行) 2,3,,i n =L (2)(1)(1) 111110 2,3,,i i i a a l a i n =-==L

方程组解法及应用

一.解答题(共40小题) 1.已知关于x,y的二元一次方程组. (1)解该方程组; (2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值. 2.已知关于x,y的方程组的解满足x+y=2k. (1)求k的值; (2)试判断该方程组的解是否也是方程组的解. 3.已知和都是方程ax+y=b的解,求a与b的值. 4.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.5.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗? 6.甲、乙两人共同解方程组,由于甲看错了方程中的a,得到方程组的解为,乙看错了方程中的b,得到方程组的解,试计算a2010+的值. 7.已知甲、乙二人解关于x、y的方程组,甲正确地解出,而乙把c抄错了,结果解得,求a、b、c的值. 8.已知方程组与的解相同,试求a+b的值. 9.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为,乙看错了方程组中的b,得到的解为. (1)求正确的a,b的值;

(2)求原方程组的解. 10.已知二元一次方程组的解是,求4a﹣3b的值. 11.若关于x、y的二元一次方程组的解满足x﹣y=4,求m的值.12.已知方程组,甲看错了方程①中的a,得到方程组的解是;乙看错了方程②中的b,得到方程组的解.若按正确的a,b计算,求原方程组的解. 13.已知方程组的解能使等式4x﹣6y=2成立,求m的值.14.已知关于x,y的二元一次方程组的解满足x与y之和为2,求a的值. 15.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值. 16.解方程组. 17.解二元一次方程组:. 18.解方程组. 19.解方程组. 20.解方程组:. 21.解方程组:. 22.解方程组. 23.解方程组:. 24.解方程组. 25.解方程组:.

线性方程组的直接解法

第4章 线性方程组的直接解法 本章主要内容 线性方程组的直接解法——消元法(高斯消元法、主元消元法). 矩阵的三角分解法( Doolittle 分解、Crout 分解、 LDU 分解) 紧凑格式 改进平方根法. 本章重点、难点 一、消元法(高斯消元法、列主元消元法) 本章求解的是n 阶线性方程组Ax=b 的(即方程的个数和未知量的个数相等的线性方程组) ?????????=+???++????????????? ??=+???++=+???++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 3222212111212111 1. 高斯消元法 ①高斯消元法的基本思想:通过对线性方程组Ax=b 的进行同解消元变换(也可以用矩阵的初等行变换法进行线性方程组的消元变换),将线性方程组化为上三角形方程组,然后用回代法求出此线性方程组的解。 ②高斯消元法计算公式: ????? ? ? ????????--=-=--==? ????? ????? ???? +=-=-=====-+=------------∑)1,..., 2,1()1,..., 2,1(,...,1,,,,...,2,1) ,...,2,1,(,) 1(1)1()1()1() 1() 1()1() 1()1()() 1()1()1()1()(,)0()0(n n i a x a b x n n i a b x n k j i b a a b b a a a a a n k n j i b b a a i ii n i j j i ij i i i n nn n n n k k k kk k ik k i k i k kj k kk k ik k ij k ij i i ij ij 对回代公式: 消元公式:

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

简易方程的解法(归纳)

1、解形如X±a=b的方程 X+a=b X-a=b 解:X+a-a=b-a 解:X-a+a=b+a X=b-a X=b+a 2、解形如a-X=b的方程※ a-X=b 解:a-x+x=b+x a=b+x a-b=b-b+x x=a-b 3、解形如ax=b的方程 aX=b 解; ax÷a=b÷a X=b÷a 4、解形如a÷x=b的方程※ a÷X=b 解:a÷X×X=b×X a=b×X a÷b=b÷b×X X=a÷b 5、解形如x÷a=b的方程※ X÷a=b 解:X÷a×a=b×a X=b×a 6、解形如ax±b=c(a≠0)的方程 aX-b=c(a≠0)把“ax”看作一个整体 解:ax-b+b=c+b ax=c+b ax÷a=(c+b) ÷a x=(c+b) ÷a aX+b=c(a≠0) 解:ax+b-b=c-b 把“ax”看作一个整体方程的两边同时减去b ax=c-b ax÷a=(c-b)÷a x=(c-b)÷a 7、解形如ax±ab=c(a≠0)的方程 可以转化为:a(x±b)=c 再解 8、解形如a(x+b)=c (a≠0)的方程 把“x+b”看作一个整体,方程的两边同时除以a 书写格式 例如 80-X=60 解:80-X+X=60+X 检验:x=20代入原方程 80=60+X 方程左边=80-X 80-60=60-60+X =80-20 X=20 =60 =方程的右边 所以x=20是方程的解

定律、公式 1、加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 2、乘法交换律:a ×b=b ×a 乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:(a+b)×c=a ×c+b ×c 或 (a-b)×c=a ×c-b ×c 3、减法性质:a-b-c=a-(b+c) a-b-c=a-c-b 4、除法性质: a ÷ b ÷c=a ÷(b ×c) a ÷b ÷c=a ÷ c ÷b 5、去括号: a+(b-c)=a+b-c a-(b-c)=a-b+c a ÷ b ×c= a ÷(b ÷c) 6、长方形: a 长方形周长 =(长+ 宽)×2 字母公式:C=(a+b)×2 长方形面积=长×宽 字母公式:S=ab 7、正方形: 正方形周长=边长×4 字母公式:C=4a 正方形面积=S=a ×a 8、平行四边形 字母公式:S=ah 9、三角形 a 三角形的面积=底×高÷2 字母公式:S=ah ÷2 三角形的 底=面积×2÷高; 三角形的 高=面积×2÷底) 10、梯形 上底a 下底b

高等数学(同济大学教材第五版)复习提纲

高等数学(同济大学教材第五版)复习提纲 第一章函数与极限:正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限 第二章导数与微分:正确理解、熟练掌握本章内容,各类函数的求导与微分的基本计算 第三章微分中值定理与导数的应用:熟练掌握本章的实际应用,研究函数的性态,证明相关不等式 第四章不定积分:正确理解概念,会多种积分方法,尤其要用凑微分以及一些需用一定技巧的函数类型 第五章定积分:正确理解概念,会多种积分方法,有变限函数参与的各种运算 第六章定积分的应用:掌握定积分的实际应用 第七章空间解析几何和向量代数:熟练掌握本章的实际应用 高等数学(1)期末复习要求 第一章函数、极限与连续函数概念

理解函数概念,了解分段函数,熟练掌握函数的定义域和函数值的求法。 2.函数的性质 知道函数的单调性、奇偶性、有界性和周期性,掌握判断函数奇偶性的方法。 3.初等函数 了解复合函数、初等函数的概念;掌握六类基本初等函数的主要性质和图形。 4.建立函数关系 会列简单应用问题的函数关系式。 5.极限:数列极限、函数极限 知道数列极限、函数极限的概念。 6.极限四则运算 掌握用极限的四则运算法则求极限. 7.无穷小量与无穷大量 了解无穷小量的概念、无穷小量与无穷大量之间的关系,无穷小量的性质。 8.两个重要极限 了解两个重要极限,会用两个重要极限求函数极限。 9.函数的连续性 了解函数连续性的定义、函数间断点

的概念; 会求函数的连续区间和间断点,并判别函数间断点的类型; 知道初等函数的连续性,知道闭区间上的连续函数的几个性质 (最大值、最小值定理和介值定理)。 第二章导数与微分 1.导数概念:导数定义、导数几何意义、函数连续与可导的关系、高阶导数。 理解导数概念; 了解导数的几何意义,会求曲线的切线和法线方程;知道可导与连续的关系,会求高阶导数概念。 2.导数运算 熟记导数基本公式,熟练掌握导数的四则运算法则、复合函数的求导的链式法则。 掌握隐函数的求一阶导及二阶导。 会求参数表示的函数的一阶导及二阶导 会用对数求导法:解决幂指函数的求

浅析特殊二元一次方程组的巧妙解法

浅析特殊二元一次方程组的巧妙解法 云南省曲靖市宣威市羊场镇初级中学 张荣芝 【摘要】 解二元一次方程组最常用的方法是代人法和加减法,但对于一些特殊的二元一次方程组,若能根据方程组的特征,灵活运用一些技巧,不仅可以简化解题过程,而且有助于培养同学们的创新意识。 【关键词】二元一次方程组 巧解 创新意识 加减法 二元一次方程组的解题思路就是消元,通过消元把二元转化为一元。消元分代入消元法和加减消元法,这是解二元一次方程组的基本方法。解题时常遇到一些特殊形式的方程(组),它们结构巧妙而富有规律性。此时应仔细观察题目的特点,抓住方程的结构特征或某种规律,联想一些解题方法与技巧,往往能避免常规解法带来的繁杂运算,找到较为简便的解法。这两种方法都是从“消元”这个基本思想出发,先把“二元”转化为“一元”把解二元一次方程组的问题归结为解一元一次方程,在“消元”法中,包含了“未知”转化到“已知”的重要数学化归思想。 整体代入法 例1 解方程组y x x y +=+-=?????1423231 解:原方程组可变形为435231 x y x y -=--=??? 继续变形为 2 x -3y+2 x=-5

2 x -3y=1 (2)代入(1)得:125+=-x x =-3 解得:y =-73 方程组的解为x y =-=-?????373 再如: 2a +b =3 (1) 3a +b =4 (2) 解: (2)式变形为(2a +b )+a =4 (3) ,ax by m bx ay n +=??+=? 把(1)代入(3)得 3+a =4 ∴ a =1 把a =1代入(1)得b =1 ∴原方程组的解是 a =1 b =1 二、直接加减法 a x+by =m 当方程组中未知数的系数具有轮换特点时,即类似于 bx + ay=n 的形式,可以直接将两个方程相加、减,反复两次,然后联立得到新方程,从而巧妙地迅速求解,我们称之谓反复加减法. 例2 解方程组 4x -3y =3 (1) 3x -4y =4 (2) 解: (1)+(2)得 7x -7y =7

同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题 分,共 ?分) .下列各组函数中,是相同的函数的是( ) (?)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ( )g x = ( )()f x x = 和 ( )2 g x = ( )()|| x f x x = 和 ()g x = .函数( )() 20ln 10 x f x x a x ≠=+?? =? 在0x =处连续,则a = ( ) (?) ( ) 1 4 ( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (?)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( ) y x = .设函数()||f x x =,则函数在点0x =处( ) (?)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微 .点0x =是函数4 y x =的( ) (?)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点

.曲线1 || y x = 的渐近线情况是( ) (?)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线 ( )既无水平渐近线又无垂直渐近线 . 211 f dx x x ??' ???? 的结果是( ) (?)1f C x ?? -+ ??? ( )1f C x ?? --+ ??? ( )1f C x ?? + ??? ( )1f C x ?? -+ ??? . x x dx e e -+?的结果是( ) (?)arctan x e C + ( )arctan x e C -+ ( )x x e e C --+ ( ) ln()x x e e C -++ .下列定积分为零的是( ) (?)424arctan 1x dx x π π-+? ( )44 arcsin x x dx ππ-? ( )112x x e e dx --+? ( )()1 2 1 sin x x x dx -+? ?.设()f x 为连续函数,则 ()1 2f x dx '?等于( ) (?)()()20f f - ( )()()11102f f -????( )()()1 202f f -????( )()()10f f - 二.填空题(每题 分,共 ?分) .设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = .已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '= .21 x y x =-的垂直渐近线有条 . ()21ln dx x x = +?

线性方程组的直接解法

实验五 线性方程组的直接解法 一、实验内容 1、用列主元素法求解方程组 15 123459.170.31059.43146.785.291 6.3112111.295221211x x x x -?????????????--??????=?????????????? ???? 并计算误差b-Ax ,分析结果的好坏; 2、 用改进Cholesky 方法求对称正定阵线性方程组 1234248.72171013.741090.7x x x -????????????-=????????????-?????? 并计算误差b-Ax ,分析结果的好坏; 3、 用追赶法解方程组 123421006132010121000351x x x x -????????????--??????=??????--??????-???? ?? 二、要求 1、 对上述三个方程组分别利用Gauss 列主元消去法;Cholesky 方法;追赶法求解(选择其一); 2、 应用结构程序设计编出通用程序; 3、 比较计算结果,分析数值解误差的原因; 三、目的和意义 1、通过该课题的实验,体会模块化结构程序设计方法的优点; 2、运用所学的计算方法,解决各类线性方程组的直接算法; 3、提高分析和解决问题的能力,做到学以致用; 4、 通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。 四、实验学时:2学时 五、实验步骤: 1.进入matlab 开发环境; 2.根据实验内容和要求编写程序; 3.调试程序; 4.运行程序; 5.撰写报告,讨论分析实验结果.

六、程序 1、Gauss列主元素消去法 function x=Gauss_pivot(A,b) %用Gauss列主元素法求解线性方程组Ax=b %x是未知向量 n=length(b); x=zeros(n,1); c=zeros(1,n); d1=0; %消元计算 for i=1:n-1 max=abs(A(i,i)); m=i; for j=i+1:n if max

2-5高等数学同济大学第六版本

2-7 1. 已知y =x 3-x , 计算在x =2处当?x 分别等于1, 0.1, 0.01时的?y 及dy . 解 ?y |x =2, ?x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ?x =1=(3x 2-1)?x |x =2, ?x =1=11; ?y |x =2, ?x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161, dy |x =2, ?x =0.1=(3x 2-1)?x |x =2, ?x =0.1=1.1; ?y |x =2, ?x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ?x =0.01=(3x 2-1)?x |x =2, ?x =0.01=0.11. 2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、?y 及?y -d y 并说明其正负. 解 (a )?y >0, dy >0, ?y -dy >0. (b )?y >0, dy >0, ?y -dy <0. (c )?y <0, dy <0, ?y -dy <0. (d )?y <0, dy <0, ?y -dy >0. 3. 求下列函数的微分: (1)x x y 21+=; (2) y =x sin 2x ; (3)12+=x x y ; (4) y =ln 2(1-x ); (5) y =x 2e 2x ;

(6) y=e-x cos(3-x); (6) dy=y'dx=[e-x cos(3-x)]dx=[-e-x cos(3-x)+e-x sin(3-x)]dx =e-x[sin(3-x)-cos(3-x)]dx . (8) dy=d tan2(1+2x2)=2tan(1+2x2)d tan(1+2x2) =2tan(1+2x2)?sec2(1+2x2)d(1+2x2) =2tan(1+2x2)?sec2(1+2x2)?4xdx =8x?tan(1+2x2)?sec2(1+2x2)dx. 4.将适当的函数填入下列括号内,使等式成立:

相关文档
最新文档