全等三角形相似三角形证明(中难度题型)

全等三角形相似三角形证明(中难度题型)
全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD

1. 已知:D 是AB 中点,∠ACB=90°,求证:1

2

CD AB

2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2

3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC

A

D

B

C

B

A C

D

F

2 1 E

4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE

6.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

7. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:

BC=AB+DC。

A

D

B C

C

D

B

A

8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C

9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C

10. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

11. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE

12. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC

13.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .

D

C

B

A

F

E

A

B C D

P D A

C

B

F

A

E

D C B

14.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA

15.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

16.(6分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B

17.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请

给予证明;若不成立请说明理由.

18.(7分)已知:如图,DC∥AB,且DC=AE,E为AB的中点,

(1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

19.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:BD=2CE.

20、(10分)如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。

21、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

22、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。

23、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF

24、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。

25.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.

26.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.

27.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

28.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.

29.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .

30.已知:如图,AB =AC ,BD

AC ,CE AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:

BE =CD .

36、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。 求证:DE =DF .

D A F

E 654

32

1E D

C

A

A

C B D

E

F A

37.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?

38.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。求证:MB=MC

39.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:

40.在△ABC 中,?=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,

MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,

求证: ①ADC ?≌CEB ?;②BE AD DE +=;

(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;

C

B

若不成立,说明理由.

41.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。求证:(1)EC=BF ;(2)EC ⊥BF

42.如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。求证:(1)AM=AN ;(2)AM ⊥AN 。

43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF 44.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由

F A M N E 1

23

4

A E

B M

C F

45、(10分) 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .

46、(10分)已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF . 求证:AB CD ∥.

47、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD

48、 (10分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.

C

D

A D E C

B F

49、 (10分)如图,已知AB =DC ,AC =DB ,BE =CE ,求证:AE =DE.

50.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .

相似三角形的判定练习

相似三角形的判定练习.doc 【知能点分类训练】 知能点1 角角识别法 1.如图1,(1)若

OA

OB

=_____,则△OAC ∽△OBD ,∠A=________. (2)若∠B=________,则△OAC ∽△OBD ,________与________是对应边. (3)请你再写一个条件,_________,使△OAC ∽△OBD .

2.如图2,若∠BEF=∠CDF ,则△_______∽△________,△______∽△_______.

(1) (2) (3)

A B

E

C

D

A

B

C D E

F 图9

3.如图3,已知A(3,0),B(0,6),且∠ACO=?∠BAO,?则点C?的坐标为________,?AC=_______.

4.已知,如图4,△ABC中,DE∥BC,DF∥AC,则图中共有________对相似三角形.5.下列各组图形一定相似的是().

A.有一个角相等的等腰三角形 B.有一个角相等的直角三角形

C.有一个角是100°的等腰三角形 D.有一个角是对顶角的两个三角形

6.如图5,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于().

A.45° B.60° C.75° D.90°

(4) (5) (6)

7.如图6,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________.

8.如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似

的三角形,简要说明理由.

9.如图,D,E是AB边上的三等分点,F,G是AC边上的三等分点,?

写出图中的相似三角形,并求出对应的相似比.

10.如图,在直角坐标系中,已知点A(2,0),B(0,4),在坐标轴上找到点C(1,0)?和点D,使△AOB与△DOC相似,求出D点的坐标,并说明理由.

【综合应用提高】

11.已知:如图是一束光线射入室的平面图,?上檐边缘射入的光线照在距窗户2.5m处,已知窗户AB高为2m,B点距地面高为1.2m,求下檐光线的落地点N?与窗户的距离NC.

12.如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.

13.在ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD

于F.(1)试说明△AMD∽△EMB;(2)求FN

NE

的值.

14.在△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似,?试说明满足条件的直线有几条,画出相应的图形加以说明.

15.高明为了测量一大楼的高度,在地面上放一平面镜,镜子与楼的距离AE=27m,他与镜子的距离是2.1m时,刚好能从镜子中看到楼顶B,已知他的眼睛到地面的高度CD为1.6m,结果他很快计算出大楼的高度AB,你知道是什么吗?试加以说明.

【开放探索创新】

16.在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=30°,∠B′=20°.?试分别在△ABC和△A′B′C′中画一条直线,使分得的两个三角形相似.在下图中分别画出符合条件的直线,并标注有关数据.

【中考真题实战】

17.()如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,与△ABC相似的三角形是().

A.△DBE B.△ADE C.△ABD D.△BDC

18.()如第17题图,已知等腰三角形ABC中,顶角∠A=36°,BD平分∠ABC,?则AD AC

值为().

A.1

2

B.

5151

.1.

C D

-+

19.()如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE 相似的三角形并证明.

20.()如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD?于点E.(1)求证:△CDE∽△FAE.(2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.

(完整版)全等三角形基础练习证明题

全等三角形的判定 班级: 姓名: 1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证BE =CF 。 2.已知AC =BD ,AE =CF ,BE =DF ,求证AE ∥CF 3.已知AB =CD ,BE =DF ,AE =CF ,求证AB ∥CD 4.已知在四边形ABCD 中,AB =CD ,AD =CB ,求证AB ∥CD 5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证⊿ABD ≌⊿ACE . 6.已知CD ∥AB ,DF ∥EB ,DF =EB ,求证AF =CE 7.已知BE =CF ,AB =CD , ∠B =∠C ,求证AF =DE 8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A B C E H A C M E F B D A B C D F E C B D E F D C F E A B A D E B C 1 2 A D C E F B A D B A D F E C M A B C D 1 2 D C F E A B

全等三角形证明题精选

1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BE A B D C E 1 2 2已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。 3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。① AB=AC ② BD=CD ③ BE=CF 5、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 F E A C D B A E D C B D C B E G

6、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。 (1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。 你添加的条件是:________ ___ (2)根据你添加的条件,再写出图中的一对全等三角形:______________(不再添加其他线段,不再标注或使用其他字母,不必写出证明过程) 7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E B 8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A ' D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A ’B’C’。 A B C D E F O A B C D E F A B C D A' B' C' D' 1 2 3 4

2019年中考几何相似三角形怎么证明

2019年中考几何相似三角形怎么证明 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 初中几何相似三角形怎么证明?很多同学一接触证明题就不会,教育网针对这个问题,给大家具体解答一下。 数学:相似三角形怎么证明 相似三角形定理 :平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 相似三角形判定定理1:两角对应相等,两三角形相似 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2:两边对应成比例且夹角相等,两三角形相似 判定定理3:三边对应成比例,两三角形相似

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2:相似三角形周长的比等于相似比 性质定理3:相似三角形面积的比等于相似比的平方 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DE F”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角

形相似。 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1.两个全等的三角形

全等三角形证明题(含答案版)

1、如图,四边形ABCD是边长为2的正方形,点G是 BC延长线上一点,连结AG,点E、F分别在AG 上,连接BE、DF,∠1=∠2 ,∠3=∠4. (1)证明:△ABE≌△DAF; (2)若∠AGB=30°,求EF的长. 【解析】 (1)∵四边形ABCD是正方形, ∴AB=AD, 在△ABE和△DAF中,? ? ? ? ? ∠ = ∠ = ∠ = ∠ 3 4 1 2 DA AB , ∴△ABE≌△DAF. (2)∵四边形ABCD是正方形, ∴∠1+∠4=90o ∵∠3=∠4, ∴∠1+∠3=90o ∴∠AFD=90o 在正方形ABCD中,AD∥BC, ∴∠1=∠AGB=30o 在Rt△ADF中,∠AFD=90o AD=2 , ∴AF=3 , DF =1, 由(1)得△ABE≌△ADF, ∴AE=DF=1, ∴EF=AF-AE= 1 3- . 2、如图, , AB AC AD BC D AD AE AB DAE DE F =⊥=∠ 于点,,平分交于点 ,请你写出图中三对全等三角形,并选取其中一对加以 证明. 【解析】 (1) ADB ADC △≌△、 ABD ABE △≌△、AFD AFE △≌△、 BFD BFE △≌△、 ABE ACD △≌△(写出其中的三对即 可). (2)以 △ADB≌ADC为例证明. 证明: ,90 AD BC ADB ADC ⊥∴∠=∠= °. 在Rt ADB △和Rt ADC △中, ,, AB AC AD AD == ∴Rt ADB △≌Rt ADC △. 3、在△ABC中,AB=CB,∠ABC=90o,F为AB延长线上 一点,点E在BC上,且AE=CF. (1)求证:Rt△AB E≌Rt△CBF; (2)若∠CAE=30o,求∠ACF度数.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

七年级数学下全等三角形证明题精选

七年级数学下---全等三角形证明题精选 1、已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且∠B+∠D=180°,求证:AE=AD+BE 2、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 4. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A ’B ’C ’。 5、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。求证:OE=OF 。 6.已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。 7.已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。求证:△AEF ≌△DBC 。 8.如图,B ,E 分别是CD 、AC 的中点,AB ⊥CD ,DE ⊥AC 求证:AC=CD (连接AD ) 9.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线. 10、如图,已知AD 是∠BAC 的平分线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证: (1)AD 是△ABC 的中线;(2)AB=AC . 11.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 12、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E . 求证∠CDA =∠EDB .(作CF ⊥AB ) C B A E D 图1 N M A B C D E M N 图2 A C B E D N M 图3 1 2 C D A B C D E F A 1 2 E C D B

全等三角形证明经典100题

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD A D B C B A C D F 2 1 E C D B A

8. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E C D B A

12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C D C B A F E

全等三角形证明题精选

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F. (1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC. 5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE. 10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E. 15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F. (1)求证:AB=AC; (2)若AD=2,∠DAC=30°,求AC的长. 16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数. 17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD. 18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF. 求证:△ABC≌△DEF. 19.已知:点 A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM ≌△CDN,并给出证明. (1)你添加的条件是:; (2)证明:. 20.如图,AB=AC,AD=AE.求证:∠B=∠C. 21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F. 求证:BE=CF. 22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC. 23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2. 请你从这四个条件中选出三个作为题设,另一个作为结论, 组成一个真命题,并给予证明. 题设:;结论:.(均填写序号) 证明: 24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.

相似三角形的比例关系及相似三角形证明的变式

相似三角形的比例关系及相似三角形证明的变式 【知识疏理】 一, 相似三角形边长比,和周长比以及面积比的关系! 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。 二, 相似三角形证明的变式 1,相似三角形当中常以乘积的形式出现,如: 例1、 已知:如图1,BE 、DC 交于点A ,∠E=∠C 。求证:DA ·AC=BA ·AE 图2 题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。 2,对特殊图形的认识 例2、已知:如图3,Rt △ABC 中,∠ABC=90o,BD ⊥AC 于点D 。 图3 (1) 图中有几个直角三角形?它们相似吗?为什么? (2) 用语言叙述第(1)题的结论。 (3) 写出相似三角形对应边成比例的表达式。 总结: (1) 有一对锐角相等的两个直角三角形相似; (2) 本题找对应角的方法是公共角及同角的余角相等; A B C A'B'C'图(4)图1 B A C

双垂直图形中的BD 2=AD ·CD ,AB 2=AD ·AC ,BC 2=CD ·CA ,BC ·AB=AC ·BD 等结论很重要,它们在计算、证明中应用很普遍,但需先证明两个三角形相似得到结论,再加以应用。在此基础上,将双垂直图形转化 为“公边共角”,讨论、探究, A B C 得到结论:由公边共角的两个相似三角形中,公边是两个三角形中落在一条直线上的两边的比例中项,即若△ABD ∽△ACB ,则AB 2=AD ·AC 。 【课堂检测】 一选择题 1、一个三角形的三边长为5,5,6,与它相似的三角形最长边为10,则后一个三角形的面积为( ) A 、3100 B 、20 C 、54 D 、25 108 2、如图,梯形ABCD 中,AB ∥CD ,如果S △ODC :S △BDC =1:3,那么S △ODC :S △ABC 的值是( ) A 、 51 B 、61 C 、71 D 、9 1 D C A D O P A B B C (第2题图) (第4题图) 3、已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比是1:4,则两底的比是( ) A 、1:2 B 、1:4 C 、1:8 D 、1:16 4、已知,梯形ABCD 中,AD ∥BC ,∠ABC=900,对角线AC ⊥BD ,垂足为P ,已知AD :BC=3:4,则BD :AC 的值是 ( ) A、3:2 B、2:3 C、3:3 D、3:4 5、如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC =

初级中学相似三角形几何证明技巧窍门

初中几何证明技巧(分类) 证明两线段相等 1. 两全等三角形中对应边相等。 2. 同一三角形中等角对等边。 3. 等腰三角形顶角的平分线或底边的高平分底边。 4. 平行四边形的对边或对角线被交点分成的两段相等。 5. 直角三角形斜边的中点到三顶点距离相等。 6. 线段垂直平分线上任意一点到线段两段距离相等。 7. 角平分线上任一点到角的两边距离相等。 8. 过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9. 同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。*10. 圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。11. 两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12. 两圆的内(外)公切线的长相等。 13. 等于同一线段的两条线段相等。 证明两个角相等 1. 两全等三角形的对应角相等。 2. 同一三角形中等边对等角。 3. 等腰三角形中,底边上的中线(或高)平分顶角。 4. 两条平行线的同位角、内错角或平行四边形的对角相等。 5. 同角(或等角)的余角(或补角)相等。 *6. 同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 *7. 圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8. 相似三角形的对应角相等。 *9. 圆的内接四边形的外角等于内对角。 10. 等于同一角的两个角相等。 证明两条直线互相垂直 1. 等腰三角形的顶角平分线或底边的中线垂直于底边。 2. 三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3. 在一个三角形中,若有两个角互余,则第三个角是直角。 4. 邻补角的平分线互相垂直。 5. 一条直线垂直于平行线中的一条,则必垂直于另一条。 6. 两条直线相交成直角则两直线垂直。 7. 利用到一线段两端的距离相等的点在线段的垂直平分线上。 8. 利用勾股定理的逆定理。 9. 利用菱形的对角线互相垂直。 *10. 在圆中平分弦(或弧)的直径垂直于弦。 *11. 利用半圆上的圆周角是直角。

全等三角形证明中考题精选

全等三角形证明题 一.解答题(共10小题) 1.(2013?泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD 的延长线于点F,求证:BE=CF. 2.(2013?河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现 如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空: ①线段DE与AC的位置关系是_________; ②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________. (2)猜想论证 当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想. (3)拓展探究 已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA 上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长. 3.(2013?大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C 旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.

(1)求证:CF=DG; (2)求出∠FHG的度数. 4.(2012?阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°. ①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论; ②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由. (2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由. 甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°; 乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°; 丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°. 5.(2009?仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE 绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题: (1)若AB=AC,请探究下列数量关系: ①在图②中,BD与CE的数量关系是_________; ②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

6相似三角形证明技巧.docx

相似三角形证明技巧 姓名: _____________ 一、 相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形, 相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们Z 间的联系与区别; 相似形的讨论又是以全等形的有关定理为基础. 二、 相似三角形 (1)三角形相似的条件: ① _____________________ ;② ________________________ ;③ ______________________________ ? 三、 两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形, 从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1) 先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2) 再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3) 若无对应角相等,则只考虑三组对应边是否成比例; J 找另一角——?两角对应相等,两三角形相似 [找夹边对应成比例——两边对应成比 例且夹角相等, 「找夹角相等一?两边对应成比例且夹角相等,两三角形相似 X 找第三边也对 应成比例 一?三边对应成比例,两三角形相似 I 找一个直角一?斜边、直角边对 应成比例,两个直角三角形相似 r 找另一角 ?两角对应相等,两三角形相似 L 找两边对应成比例 判定定理1或判定定理4 r 找顶角对应相等一?判定定理1 ⑴有等腰关系 彳找底角对应相等一 判定定理1 I 找底和腰对应成比例 ------ ?判定定理3 五、 确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推 理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回 到“己知”;第三,从“己知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰 的思维过程。 六、 证明题常用方法归纳: (一) 、总体思路:“等积”变“比例”,“比例”找“相似” (二) 、证比例式和等积式的方法: 对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若 比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移"(必要时需添辅助线),使其分别构 成两个相似三角形来证明. a )已知一对等角 c )己知一个直角 c )相似形的传递性 若厶\sd A2^A3,则△lsA3 两三角形相似 b )己知两边对应成比例 斜边上的高

全等三角形证明100题

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。 2:已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB :3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 :4:已知:∠1=∠2,CD=DE ,EF 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 B C A D B C B A C D F 2 1 E

7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

11:如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA : 12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 13:已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

全等三角形证明中考题精选(有答案)

新人教版八年级上学期全等三角形证明题 一.解答题(共10小题) 1.(2013?泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD 的延长线于点F,求证:BE=CF. 2.(2013?河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现 如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空: ①线段DE与AC的位置关系是_________; ②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________. (2)猜想论证 当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想. (3)拓展探究 已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA 上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.

3.(2013?大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C 旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H. (1)求证:CF=DG; (2)求出∠FHG的度数. 4.(2012?阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°. ①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论; ②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由. (2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由. 甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°; 乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°; 丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

全等三角形证明题精选

全等二角形证明题精选 .解答题(共30小题) 1. 四边形ABCD 中,AD=BC , BE=DF , AE 丄BD , CF 丄BD ,垂足分别为 E 、F . (1) 求证:△ ADE CBF ; 4. 如图,点 0是线段AB 和线段CD 的中点. (1) 求证:△ AOD ◎△ BOC ; (2) 求证:AD // BC . (2)若 BF=13 , EC=5,求 BC 的长. AC=DE ,/ A= / D .

5. 如图:点C 是AE 的中点,/ A= / ECD , AB=CD,求证:/ B= / D . 6. 如图,已知△ ABC 和厶DAE , D 是AC 上一点,AD=AB , DE // AB , DE=AC . 求证: AE=BC . 9.如图,点D是AB上一点,DF交AC于点E, DE=FE , FC / AB 求证:AE=CE . BE 交AD 于点F, EF=BF .求证:AF=DF . &如图,点B、E、C、F 在同一条直线上,AB=DE , AC=DF , BE=CF ,求证:AB // DE . 四点共线,且AC=BD , / A= / B , / ADE= / BCF ,求证:DE=CF . C D

11. 如 图,点 A , B , C, D 在同一条直线上,CE // DF, EC=BD , AC=FD .求证:AE=FB . 12. 已知△ ABN和厶ACM 位置如图所示,AB=AC , AD=AE,/ 1 = / 2 . (1)求证:BD=CE ; (2)求证:/ M= / N. 13. 如图,BE丄AC , CD丄AB,垂足分别为E, D, BE=CD .求证:AB=AC . 14. 如图,在△ ABC 和厶CED 中,AB // CD, AB=CE , AC=CD .求证:/ B= / E. 15. 如图,在△ ABC中,AD平分/ BAC,且BD=CD , DE丄AB于点E, DF丄AC于点F. (1)求证:AB=AC ; (2 )若AD=2 近,/ DAC=30 ° 求AC 的长. A

相似三角形六大证明技巧

相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A ”型与“反X ”型. 示意图 结论 E D C B A 反A 型: 如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE · AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) O D C B A 反X 型: 如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC . 示意图 结论 A B C D 类射影: 如图,已知△ABC ,∠ABD =∠C ,则△ABD ∽△ACB (AA ),∴2AB =AD · AC. C A B H 射影定理 如图,已知∠ACB =90°,CH ⊥AB 于H ,则222,,AC AH AB BC BH BA HC HA HB =?=?=? 示意图 结论 相似三角形6大证明技巧 相似三角形证明方法

A B C D E 旋转相似: 如图,已知△ABC ∽△ADE ,则 AB AD AC AE =,∠BAC =∠DAE ,∴∠BAD =∠CAE , ∴△BAD ∽△CAE (SAS ) C B A E D 一线三等角: 如图,已知∠A =∠C =∠DBE ,则△DAB ∽△BCE (AA ) 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO ,∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =? 通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 比例式的证明方法

相关文档
最新文档