航空航天材料测试项目及标准参考(三)

航空航天材料测试项目及标准参考(三)
航空航天材料测试项目及标准参考(三)

厦门必锐产品技术服务有限公司(服务范围)

附件2 认可的检测能力范围

Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第9 页共15 页Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第10 页共15 页Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第11 页共15 页Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第12 页共15 页Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第13 页共15 页Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第14 页共15 页Should there be any inconsistencies between Chinese and English versions of the scope of

No. CNAS L0113 第15 页共15 页

Should there be any inconsistencies between Chinese and English versions of the scope of accreditation,

中国航空航天事业的发展历程

中国航空航天事业的发展历程 1960年2月19日,中国自行设计制造的试验型液体燃料探空火箭首次发射成功。 中国的航天事业起步于20世纪五六十年代。一九六五年,中国第一颗人造卫星计划开始实施,尽管在特殊的时期经历了比平时更多的艰辛和困难,但经过五年多的努力拼搏,终于研制完成,星箭齐备,整装待发。一九七零年四月二十四日,长征一号运载火箭首次发射,成功地把中国第一颗人造地球卫星东方红一号送入预定轨道,揭开了中国航天活动的序幕1975年11月26日,中国首颗返回式卫星发射成功,3天后顺利返回,中国成为世界上第三个掌握卫星返回技术的国家。一九七八年底,十一届三中全会以后,航天科技工业实行了以经济建设为中心的战略转移。航天科技工业战线全力以赴,在远程运载火箭技术、固体火箭技术等一系列关键技术上取得重大突破。中国已完全依靠自己的力量研制出包含多种型号、能把各种不同用途的卫星送入近地轨道(LEO)、地球同步转移轨道(GTO)和太阳同步轨道(SSO)的长征系列火箭。在中国改革开放进程中,长征火箭于一九八五年十月开始走向国际市场,并在一九九零年四月成功地实施了第一次国际商业发射服务,把美国休斯公司制造的亚洲一号通信卫星送上太空。 1999年11月20日,中国第一艘无人试验飞船“神舟”一号试验飞船在酒泉起飞,21小时后在内蒙古中部回收场成功着陆。 中国的航天事业起步于20世纪五六十年代。一九六五年,中国第一颗人造卫星计划开始实施,尽管在特殊的时期经历了比平时更多的艰辛和困难,但经过五年多的努力拼搏,终于研制完成,星箭齐备,整装待发。一九七零年四月二十四日,长征一号运载火箭首次发射,成功地把中国第一颗人造地球卫星东方红一号送入预定轨道,揭开了中国航天活动的序幕1975年11月26日,中国首颗返回式卫星发射成功,3天后顺利返回,中国成为世界上第三个掌握卫星返回技术的国家。一九七八年底,十一届三中全会以后,航天科技工业实行了以经济建设为中心的战略转移。航天科技工业战线全力以赴,在远程运载火箭技术、固体火箭技术等一系列关键技术上取得重大突破。中国已完全依靠自己的力量研制出包含多种型号、能把各种不同用途的卫星送入近地轨道(LEO)、地球

(完整word版)保温材料取样标准.doc

材料名称 膨胀聚苯板 挤塑聚苯板 岩棉板 抹面胶浆 胶粘剂 耐碱网格布 锚栓 保温砂浆 抗裂砂浆 界面砂浆面砖粘结砂浆柔性耐水腻子热镀锌钢丝网 检测时间 材料进场使 用前,委托 方提供产品 说明书、检 验报告 安徽城建检测科技有限公司 节能取样标准 执行标准常规检测项目 GB/T10801.1-2002 表观密度、压缩强度、导热系数 GB/T10801.2-2002 压缩强度、导热系数 GB/T11835-2007 密度、压缩强度、导热系数 GB/T25975-2010 JG149-2003 拉伸粘结强度强度(原强度、耐水)、 柔韧性(水泥基) JG149-2003 拉伸粘结强度强度(原强度、耐水) JG149/2003 、 JG158-2004 单位面积质量、耐碱拉伸断裂强力、耐碱 DB34/T1279-2010 拉伸断裂强力保留率 JG149/2003 、 JG158-2004 锚栓抗拉承载力标准值 DB34/T1279-2010 GB20473-2006 干表观密度、导热系数、抗压强度 DB34/T1279-2010 DB34/T1279-2010 拉伸粘结强度(原强度、耐水)、压折比 DB34/T1279-2010 压剪粘结强度(原强度、耐水) DB34/T1279-2010 拉伸粘结强度、压剪粘结强度(原强度、 耐水)、压折比 JG/T157-2009 干燥时间(表干)、打磨性、耐水性、耐 DB34/T1279-2010 碱性、粘结强度(标准状态)、柔韧性 QB/T3897-1999 丝径、焊点抗拉力、镀锌层质量 代表批量 同一厂家同一品种的产 品,当单位工程建筑面积 在20000 平方米以下时各 抽查不少于 3 次;当单位工 程建筑面积在20000 平方 米以上时各抽查不少于 6 次 取样数量 2块 / 组 6块 / 组 4块 / 组 10kg/ 组 6kg/ 组 2m2/ 组 20只 / 组 40L / 组 10kg/ 组 6kg/ 组 10kg/ 组 10kg/ 组 2m2/ 组 检测周期 (天) 5天 8天 4天 29天 22天 29天 2天 31天 40天 22天 22天 16天 3天

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

航天材料与工艺可靠性技术

2016年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:航天材料与工艺可靠性技术 :机电学院 学生所在院 (系) 学生所在学科:机械电子工程 学生姓名:陈婷 学号:15S D08382 学生类别:代培(学术) 考核结果阅卷人

航天材料与工艺可靠性技术 ——航天复合材料制造技术与工艺进展 摘要 复合材料结构制造工艺是复合材料应用的关键,也是结构设计得以实现的关键。复合材料制造工艺的特殊性和复杂性,使其成为了结构可靠性、制件质量和成本控制的核心技术。 近些年来,随着先进复合材料在航空航天领域的广泛应用,复合材料制造技术与工艺理论得到了很大发展。本文即围绕飞行器结构用复合材料,归纳作者掌握的资料,结合作者近期研究成果,介绍先进复合材料制造技术与工艺理论的国内外研究进展,阐述复合材料工艺质量控制的主要方法,展望复合材料制造新技术的未来发展方向,以期促进我国航空航天领域复合材料用量与应用水平快速提高。 关键词 飞行器结构;复合材料;制造技术;工艺质量 0 引言 航天产品轻质化、小型化、功能化、高可靠性要求的发展趋势,对复合材料产品研制过程中的新技术、新工艺进行研究显得非常重要。近年来,随着计算机和精益管理技术的飞速发展,越来越多的企业将数字化设计与集成产品开发模式运用到复合材料的设计中,如波音公司在787 项目中将复合材料设计工艺数字化集成技术应用到设计、制造整个过程,效果非常显著;空客集团的A350、庞巴迪公司C系列飞机均大量应用复合材料数字化产品设计工艺集成研制技术,大幅度提高了研制效率。这些案例表明,借鉴国外已有先进经验,研究航天复合材料产品数字化集成技术并进行探索应用,对构建复合材料全数字化生产线、实现航天器复合材料结构高效高质研制具有重要意义。 众所周知,对于飞行器复合材料结构,制造技术非常关键,不仅决定产品质量而且左右制造成本。与金属材料截然不同,复合材料的材料成型与结构成型是同时完成的,因此复合材料的结构性能对制造工艺敏感,材料的最终性能也是通过制造过程被赋予到结构,制造过程的控制影响着复合材料结构的质量,复合材料制造工艺自身的复杂性和对外界环境的敏感性,使得一旦工艺某环节不合理,复合材料制件将产生缺陷和尺寸偏差,严重影响其性能、使用寿命和装配性,甚至导致制件报废。另一方面,飞行器复合材料结构的制造成本一般要占到总成本的70%以上,可见制造技术在很大程度上决定着复合材料的成本。可以说,制造工艺是复合材料应用的关键,也是结构设计得以实现的关键。为此,世界各国对航空航天领域用复合材料结构制造技术都极其重视,给予了很多大型项目计划支持,使复合材料结构制造技术与工艺理论取得突破性进展。本文即根据作者掌握的资料,结合作者团队相关研究

我国航空航天的现状与发展前景

我国航空航天的现状与发展前景 20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。 2003年10月15日,中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华起到了巨大的推动作用。 载人航天是航天技术向更高阶段的发展。不过,由于载人航

天技术与无人航天技术有很大差别,主要反映在安全性、复杂性和成本高三个方面,所以从1961年第一名航天员上天到现在,它还没有表现出特别明显的用途。但从可以预见的未来来看,人类现在面临的资源枯竭、人口急增等急待解决的几大问题,只有通过开放地球、扩大人类生存空间来解决。即使在当代,发展载人航天也可以起到以下作用: 首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶段的发展,载人航天的突破--用本国的载人航天器将航天员送入太空并安全返回,更是一个国家综合国力强大的标志。发展载人航天需要依靠先进的技术水平、发达的工业基础和雄厚的经济实力。迄今为止,只有俄罗斯和美国实现了载人航天。其他拥有一定航天技术基础或较强经济实力的国家,虽欲染指载人航天,但因力不从心,所以只能求助于与他们合作,出钱出资,用俄、美的载人航天器将本国航天员送上太空,以图逐步加入世界"载人航天俱乐部"。邓小平同志曾经说过:没有两弹一星就没有中国的大国地位。所以,我国航天员进入太空,也能像上世纪六七十年代我国拥有"两弹一星"那样,引起全世界注视,提高我国的国际地位,振奋民族精神,增强全民的凝聚力。 其次,它能体现现代科技多个领域的成就,同时又给现代科技各个领域提出新的发展需求,从而可以大大促进整个科技的发

航空航天材料

航天用特殊材料加工技术论文 学校:上海第二工业大学学院:机电工程学院专业:机械工程及自动化 指导老师:李学磊 班级:11机自A1 学号:20114810336 姓名:潘磊

涡轮叶片 ——镍基高温合金 一、零件的结构特点 涡轮叶片一般指涡轮工作叶片和导向叶片。 工作叶片的外型结构由叶身、缘板、过渡段、榫齿等组成,内型结构包括横向肋、纵向肋、找流柱和积叠轴。导向叶片由外缘板、叶身和内缘板构成。涡轮是处于燃烧室后面的一个高温部件,燃烧室中产生的高温高压燃气首先经过燃气导向叶片,此时会被整流并通过在收敛管道中将部分压力能转化为动能而加速,最后被赋予一定的角度以更有效地冲击涡轮工作叶片。涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位。 在涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀,以及以最高的效率产生强大的动力来推动飞机前进的工作。 涡轮叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,

而且是故障多发的零件,一直以来各发动机厂的生产的关键。目前航空发动机涡轮叶片都采用空心结构。就是在涡轮叶片上设计了很多细小的管道,可以使高压冷空气通过这些管道流经高温叶片,起到强制冷却作用,以提高涡轮的耐热性能。为了提高航空发动机中燃气涡轮的效率,增加航空发动机推重比,就必须提高发动机燃烧室出口燃气温度也即涡轮前的进口温度。也就必须提高涡轮叶片(导叶+动叶)的高温性能。为此,人们在涡轮叶片设计、高温材料的研制、冷却方法研究及表面涂层等方面作了大量的工作。 二、材料的发展过程、分类、性能、组织 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

浅谈中国航空事业的发展历程和未来展望

浅谈中国航空事业的发展历程和未来展望 学号:021210229 姓名:梁欢欢

回顾中国航空事业的曲折发展历程,我们感慨万千,有不少叹息,又不禁赞叹,真的是一条蜿蜒曲折的长河,一曲跌宕起伏的歌谣。 中国的航空工业起步较晚,这是历史遗留下来的问题。在西方资本主义快速发展的黄金时期,在第一次、第二次工业革命轰轰烈烈进行的时候,在世界发生着日新月异的变化时,我们的清政府仍然固步自封,妄自尊大,这直接导致中国当时的经济、科技水平远远落后。尤其是工业革命带来的生产力水平的改革是翻天覆地的。工业与科技的落后,文化教育的愚昧无知注定先进的航空技术无法在旧的条件下得到发展。虽然有一些努力,但是毕竟是改变不了这种现状。1910年,留日归来的李宝、刘佐成受清政府委托,在北京南苑建立了飞机制造厂棚,并于次年四月造出了一架飞机,但在试飞时因发动机故障而坠毁。辛亥革命之后,革命军政府组成了航空队,一些有志于航空的爱国志士纷纷投身于此报效祖国。在众多先行者的不懈努力下,再加上军阀混战中飞机成了实力的象征,旧中国终于成立了一些飞机修理厂、飞机制造厂,开始仿制国外飞机,但仅局限于机体制造和装配,许多重要部分如发动机、金属螺旋桨等则完全依赖于进口国外成品,而且当时中国使用的绝大部分飞机都还是从国外购买的。在1949年开国大典上,由于飞机数量太少,就连带弹巡逻的4架战斗机也参加了阅兵式。所以在旧中国,没有发展航空工业的能力。 新中国就是在这样的基础之上,开始了空军和航空工业的创建历程。朝鲜战争爆发后,由于战争的迫切需要,大大加快了中国航空工业创建的步伐。当时,周总理明确指出:中国航空工业的建设道路是先修理后制造,再发展到自行设计。在这一方针的指导之下,筹备工作紧锣密鼓地进行着,很快,便争取到了苏联的援助,两国政府于1951年10月正式签订了《苏维埃社会主义共和国联盟给予中华人民共和国在组织修理飞机、发动机及组织飞机厂方面以技术援助的协定》,这对于正在筹建的中国航空工业来说是一个极大的鼓舞。同年的4月18日,中央决定在重工业部设立航空工业局,统一负责飞机的一切维修工作,新中国的航空工业终于在全国人民的关注中诞生了。我们学校南航,还有北航等一批航空院校正是在这种目的下成立的。 我国在前苏联的援助下,在不太长的时间内就建立了航空产品的研制、生产等一系列的研究所和工厂,并且生产出了飞机。可是,在随后的几十年航空工业的发展尤其是改革开放后的发展不尽人意。改革开放前,我国主要是仿制前苏联的飞机,并摸索走自行设计之路,但是由于国外技术的封锁以及自身工业和技术水平的限制,航空技术的复杂性,我国在航空领域未能取得突破性进展。在1960年7月,前苏联政府单方面撕毁了合同,撤回了专家。再加上“大跃进”所造成的恶果和三年自然灾害的降临,新兴的航空工业面临着前所未有的困难,其中最为困难的是航空材料和器材的缺乏。在这种情况下,我国的航空工业走上了一条艰苦奋斗、自力更生的道路。 然而60年代末至70年代,正当世界各国竞相投入大量的人力、物力和财力发展航空工业,研制新的高性能军用和民用飞机时,刚刚走上自力更生道路的中国航空工业再一次遭受到严重破坏,由于文化大革命的干扰,严重地妨碍了航空工业的发展,文革中各种新型号的飞机长期延误,浪费了大量的人力、物力,而时间上的损失更是无法弥补,中国与发达国家航空工业间的差距越来越大了。 后来,改革开放以后,航空工业恢复了正常的研制生产秩序,中国的航空工业才从困境中走了出来,但由于文化大革命期间我国的航空教育濒临解体的地步,人才培养中断,造成航空人才青黄不接,后继乏人,极大地影响了后来的发展。 然而,就是在这样曲折的道路中,我们的航空事业仍然取得了令人瞩目的成就:航空工业实现了由修理到制造的跨越,1959年,第一架超音速喷气飞机歼6试制成功,我国跨入当时世界上少数几个能够批量生产喷气式战斗机的国家行列;上世纪六七十年代,航空工业进入独立建设和发展时期,在克服重重困难和严重干扰中继续发展,1965年,我国自行设

我国航空航天取得的巨大成就和对未来我国航空发展的看法

总结我国航空航天取得的巨大成就和对未来我国航空航天发展的看法(一)我国航空航天取得的巨大成就 我国航天事业起步于二十世纪五六十年代。 1956年10月8日,我国第一个火箭导弹研制机构——国防部第五研究院成立,钱学森任院长。1958年4月,开始兴建我国第一个运载火箭发射场。 1964年7月19日,我国第一枚内载小白鼠的生物火箭在安徽广德发射成功,我国的空间科学探测迈出了第一步。 1968年4月1日,我国航天医学工程研究所成立,开始选训宇航员和进行载人航天医学工程研究。 1970年4月24日,随着第一颗人造地球卫星“东方红”1号在酒泉发射成功,我国成为世界上第五个发射卫星的国家。 1978年11月26日,首颗返回式卫星发射成功,3天后顺利返回,我国成为世界上第三个掌握卫星返回技术的国家。30多年来,我国共研制发射了15种类型、51颗人造地球卫星,成功率达90%以上,初步形成了4个卫星系列——返回式遥感卫星系列、“东方红”通信广播卫星系列、“风云”气象卫星系列和“实践”科学探测与技术试验卫星系列,“资源”地球资源卫星系列和“北斗”导航定位卫星系列也即将形成。 1979年,“远望”1号航天测量船建成并投入使用,我国成为世界上第四个拥有远洋航天测量船的国家。目前我国已形成先进的陆海基航天测控网,由北京航天指挥控制中心、西安卫星测控中心、陆地测控站、4艘“远望”号远洋航天测量船以及连接它们的通信网组成,技术达到了世界先进水平。 1985年,我国正式宣布将“长征”系列运载火箭投入国际商业发射市场。1990年4月7日,“长征三号”运载火箭成功发射美国研制的“亚洲一号”卫星,截至目前已将27颗国外制造的卫星成功送入太空,我国在国际商业卫星发射服务市场中占有了一席之地。 1990年7月1日,“长征”2号捆绑式火箭首次在西昌发射成功,其低轨道运载能力达9.2吨,为发射载人航天器打下了基础。 1992年,我国载人飞船正式列入国家计划进行研制,这项工程后来被定名为“神舟”号飞船载人航天工程。“神舟”号飞船载人航天工程由“神舟”号载人飞船系统、“长征”运载火箭系统、酒泉卫星发射中心飞船发射场系统、飞船测控与通信系统、航天员系统、科学研究和技术试验系统等组成,是我国在20世纪末期至21世纪初期规模最庞大、技术最复杂的航天工程。 2002年12月,"神舟"四号无人飞船在酒泉卫星发射中心发射升空。这是中国载人航天工程的第四次飞行试验,第一次是在1999年11月,第二次在2001年1月,第三次在2002年3月。随着“神舟”四号发射成功,“神舟”飞船已成功进行了4次无人飞行,载人飞行已为时不远。 2003年10月15日,中国首飞航天员杨利伟问鼎苍穹,浩瀚太空从此有了中国人的身影。 两年后,中国将两名航天员成功送上太空。从“一人一天”到“多人多天”,中国载人航天又迈出了一大步。 2007年10月24日,嫦娥一号月球探测卫星在西昌发射中心由“长征三号甲”运载火箭发射升空,中国成为世界上第五个发射月球探测器的国家。 2008年9月25日,长征二号F型运载火箭点火,神舟七号飞船在酒泉卫星发射中心升空。2008年9月27日下午,随着神舟七号飞船轨道舱舱门的

航空复合材料项目立项申请报告 (1)

航空复合材料项目立项申请报告 规划设计/投资方案/产业运营

航空复合材料项目立项申请报告 碳纤复合材料最大的优点是轻质、高强,航空航天高端应用是其主要发展方向,用碳纤复合材料制造飞机的结构件,同铝合金相比,减重效果可达20-40%,体现出巨大的节能效益。 该航空复合材料项目计划总投资10580.16万元,其中:固定资产投资7957.92万元,占项目总投资的75.22%;流动资金2622.24万元,占项目总投资的24.78%。 达产年营业收入22100.00万元,总成本费用17586.14万元,税金及附加196.99万元,利润总额4513.86万元,利税总额5333.45万元,税后净利润3385.39万元,达产年纳税总额1948.05万元;达产年投资利润率42.66%,投资利税率50.41%,投资回报率32.00%,全部投资回收期4.63年,提供就业职位418个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。 ......

航空复合材料项目立项申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

中国近代航空发展史

中国航空发展史 (西安航空学院陕西西安710000) 摘要:中国是世界文明古国。中国古代发明和创造的风筝、火箭、孔明灯、竹蜻蜓等飞行器械,被认为是现代飞行器的雏型,对航空的产生起了重要作用。从18世纪后半叶,气球、飞艇先后在西方研制成功。1840年鸦片战争后,西方的航空知识传入中国。首先是航空新闻和科学幻想小说,其次是外国飞行家来中国作飞行表演。中国政府也派留学生出国学习航空,购买气球和飞机。但直到1949年,中国的航空事业还十分落后,发展极为缓慢。中华人民共和国成立后,才真正获得了迅速发展。本文通过对中国航空发展史的浅述,意图使大家对中国的航空有一个粗浅的了解,并在此基础上对未来的发展前景进行展望,同时引发人们对于中国与西方航空发展之间的联系与区别的思考,在对历史的回顾中找到未来的方向。 关键词:近代史;航空;发展 1855年,上海墨海书店刻印了《博物新编》,其中介绍了氢气球和巨伞图。《天上行舟》画的是航空设想。在中国最早介绍飞机的文章是1901年石印的《皇朝经济文编》中的《飞机考》。1903年以后开始出现翻译和编著的航空科学幻想小说。 博物新编

气球光绪十三年(1887),天津武备学堂数学教习华蘅芳制成直径5尺(约1.7米)的气球,灌入自制的氢气成功飞起。这是中国人自制的第一个氢气球。 飞艇澳洲华侨谢缵泰于1899年完成“中国”号飞艇的设计。“中国”号飞艇用铝制艇身,靠电动机带动螺旋桨推进。谢缵泰没有得到清朝政府的支持,他不得已把“中国”号构造说明书寄给英国飞艇研究家,获得很高评价。 飞机冯如于1909年9月造出一架飞机,9月21日试飞成功。在国外制造飞机著名的中国人谭根于1910年成功地设计和制造了水上飞机,夺得国际飞机制造比赛大会冠军,后在菲律宾创造了当时世界水上飞机飞行高度的纪录。 中国航空先驱——冯如 中国航空事业的建立是从筹建空军开始的。1913年9月正式成立的南苑航空学校,是中国第一所正规的航空学校。南苑航空学校先后训练出4期飞行学员,共159人。之后成立的还有广东军事航空和东北军事航空,为我国的早期培养了大批优秀的飞行员。1913年,北洋政府在筹办南苑航空学校的同时,也购买了修理工厂的设备和器材,建立了中国最早的飞机修理厂。从1919年起,各省相继办起了修理厂。国民党政府成立后先后建立了杭州笕桥航校修理厂、南京首都航空工厂、上海高昌庙海军制造飞机处、上海虹桥航空工厂、武昌南湖修理厂。 1934~1935年,国民党政府又与美国、意大利合办了几个工厂,其中有杭州中央飞机制造厂、广州韶关飞机修理厂、南昌中央飞机制造厂,主要也是装配、仿造和修理飞机。近代中国航空工业起步于1918年的海军飞机工程处,以后有广州飞机修理厂,以及30年代建设的杭州中央飞机制造厂、南昌飞机制造厂、广州韶关飞机修理厂和杭州保险伞厂,抗日战争时期建立的成都飞机制造厂和大定发动机制造厂等。 海军飞机工程处:中国第一个正规的飞机制造工厂,以制造水上飞机著名。 广州飞机修理厂:是中国早期制造飞机的第二个工厂。 杭州中央飞机制造厂:1934年2月中美合办杭州中央飞机制造厂。 南昌中央飞机制造厂:1935年1月,中国与意大利4家航空公司合办南昌中央飞机制造厂,制造意式飞机。

保温标准及规范

设备,管道保温规程 目录 1 总则....................................................................... 1.1 适用范围............................................................. 1.2 结构组成............................................................. 2 完好标准................................................................... 2.1 保温结构............................................................. 2.2 保温效能............................................................. 2.3 档案资料............................................................. 3 维护与检查................................................................. 3.1 日常维护检查......................................................... 3.2 定期检查............................................................. 4 检修周期与内容............................................................. 4.1 检修周期............................................................. 4.2 检修内容............................................................. 5 检修方法与质量要求........................................................ 5.1 一般规定............................................................ 5.2 绝热层............................................................... 5.3 防锈层与防潮层....................................................... 5.4 保护层............................................................... 5.5 质量要求............................................................. 6 检修工程验收............................................................... 6.1 中间验收............................................................. 6.2 总体验收............................................................. 7 维护检修安全注意事项....................................................... 7.1 维护与检查安全注意事项............................................... 7.2 检修安全注意事项..................................................... 1 总则 1.1 适用范围 本规程适用于企业设备与管道保温的维护与检修。

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

我国航空航天事业发展滞后的原因及其未来展望

我国航空航天事业发展滞后的原因及其未来展望 新中国成立以来,我国的航空航天事业在政府的支持下不断发展,目前我国的航天航空事业在国际上已经占有一定的重要地位。嫦娥二号探月卫星的成功发射,目前我国位于世界前列的洲际导弹水平,很高的卫星发射成功率等等,这些都说明了我国在航空航天发展方面取得了不可忽视的成就。 但是成功并不能掩盖存在的问题,有专家评价过,中国的航天水平与世界先进水平的差距是10-15年,我国在民用飞机的发展上仍然是一片空白,在军用航空技术方面,我过的军用运输机还停留在改进运8的水平,轰炸机还停留在改进轰6的水平,战斗机还只是第三代水平(美国的第四代战斗机已经服役),我国与世界先进水平的差距有20年-30年。那么,我国航空航天事业发展的落后与差距到底是哪些因素造成的呢?我认为主要有一下几点: 1.历史遗留因素:第二次工业革命时期,以内燃机为动力的飞机飞上了蓝天,发达 国家的目光已经聚集到了电力的应用、内燃机和新交通工具的创制和新通讯手段 的发明上。而中国在19世纪70年代到20世纪初这一时期内正处于国破家亡的 时代,政局的动乱和列强的侵略使得当时的中国无暇顾及航空航天事业的发展。 当时的发达国家已经在这一领域开始起步了,而中国仍然是一片空白。 2.国家的重视程度不够:新中国成立后,我国的航空工业依然是零基础,到文革时 期已经可以防治超音速战斗机,自行研制喷气式教练机,但是改革开放以后,我 国的航空却有很长一段时间的停滞状态,尤其是八九十年代,我国的航空航天几 乎没有任何发展,虽然此时中国的经济受益于改革开放取得了飞跃性的进步,但 是中国的科学事业却止步不前。这与政府的重视程度不够是有直接关系的。 3.经费不足:在航空航天的研究方面需要大量的经费,航空航天的研究是一个不断 摸索的过程,飞机的研制需要做许多实验,像风洞试验就需要特有的环境条件, 而我国许多风洞实验都要拿去俄罗斯做,这就需要巨额的费用。飞机的的制造需 要很多原材料,而在探索阶段,难免不会有原材料的浪费。这都需要巨大的经费 支撑。没有足够的经费,在航空航天方面的研究是无法取得进展的。 4.人才缺失:航空航天事业的发展需要高端的专业人才,而我国目前的人才状况不 容乐观。专业人才的缺失,使得研制团队人员紧张,无法高质量的完成大量的设 计任务。还有就是人才额待遇问题,工资过低使得留不住人才。

保温材料技术规范书

前言 1、本技术规范执行《火力发电厂保温材料设计规程》DL/T5072-1997,适用于宁夏金昱元广拓能源有限公司热电工程1×150t/h次高温次高压煤粉锅炉及1×18MW背压式汽轮发电机组热机部分保温。具体包括:汽水、烟、风、煤、粉、油管道,附属设备的保温使用规范。 2、本技术规范提出了最低限度的技术要求,并规定所有的技术要求符合使用的标准,施工方应严格按照本规范的要求进行施工。 二、保温的主要原则: 1、外表面温度高于50℃,需要经常操作维修的设备和管道一般应保温。 2、排汽及放气管道只保到隔离阀前,隔离阀后 的管道仅在穿越土建结构及可能危及人身安全的管段 作隔热及防烫伤保温。 3、保温后保护层外表面温度在环境温度小于 27℃时,不超过50℃;当环境温度高于27℃时保温结 构外表面温度可比环境温度高25℃;对于防烫伤保温, 保温结构外表面温度不得超过60℃(环境温度是指距 保温结构外表面1m处测得的空气温度),工程结算以此要求为标准,超过温度要求,一律不予结算工程量。 4、保温设备和管道的表面应除锈垢、油污,保 持干燥。 m 2、本次保温安装单位使用材料须达到以上材料要求。 四、保温原则: 1、保温说明: (1)对介质温度高于50℃的管道、附件和热力设备等,按照不同要求予以保温。 (2)对于对空排汽管道,只作防人员烫伤保温,即在楼层或平台上方小于 2.1米和靠操作平台水平距离小于0.75米等操作维护人员能接触到的范围予以保温。其余部分涂刷耐高温防腐涂料。 2、保温层材料的选择: (1)介质温度350℃~600℃范围内的蒸汽管道(?≥38mm)采用硅酸铝纤维管壳保温。

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

航空航天材料

航空航天材料 简要。本文介绍7经过增强的工程热望性材料以琏热固性材料在航空航无方面 的应用。远号应用有;雷达天线罩、飞行器结构、陀螺外万向架、电路板,导弹弹 体构架等。 主题词:热塑性塑料,航天材料,航空材料,复合材料 引言 航空航天工业总是期待着性能优良、重量轻,价格便宜的材料。 “塑料己存在相当长的时间了,但是常用塑料本身,尽管重量轻,价格便宜,但在航 空航天领域里应用并不多。 复合材料使用了特性增强荆来弥补其基体塑料性能之不足。复合材料用途较多,目前, 为了某些领域的应用,己制成热固性树脂为基体的复合材料。 热固性材料,当固化时,其分子交联,一旦成型,其形状不能改变,这些材料中典型的 是在一些船壳制造中使用的玻璃增强塑料(GRP)。另一方面,热塑性材料,一经加热,即可成 型并冷却,还可再次加热并再次成型,典型的有,聚乙烯薄镀反射罩和聚氯乙烯(PVC)双釉。 不幸的是,热塑性材料己不是一种优良的材料了。它受到因对该材料性能了解不多造成 设计不良的严重损害。 许多年来,改变热塑性材料不利状态依赖于对工程热塑料更完善的认识。这些塑料有聚 酰胺(尼龙),二乙醇共聚物,聚酯。这期间,注意力集中在上述塑料与如象聚乙烯,聚氯乙 烯,聚苯乙烯这种商品塑料之简的差别。这些工程塑料已在市场上取得成功,在某些情 况下其寿命更长些。 这项成功的基础是主供应厂商们的宣传教育,他们认为,对任何组件来说,热塑性材料 都需有正确的设计、合格的材料以及适合的工艺方法。 在低等级塑料设计中,不能取代热塑性材料 但是,当工程热塑性材料市场范围扩大时,塑料市场在方向变化上变得成熟,特别是在 普通材料在全部应用中不能满足设计者的总要求时。 在这些要求中,最主要的是能承受的结构温度较低,因此,降低了潜在的应用价值。当 继续研究时,虽然在价值上依据未加工材料价格和生产价格,但市场仍准备接受提高了性能 的材料。主供应厂商努力对付这种挑战,并且在70年代,第一代新型热塑性材料进入市场, 特别是在过去的几年里,取得了明显的增长。 所有这些新生产的高性能工程热塑性材料是以其特性为其特征的,除它们所具有一些有 用的性能外,.耐高温性能是最突出的性能之一。 为了确定能否满足挑战的要求,建议给出各种类型材料,及其特性的简单比较,在这之前,给出热塑性材料及其复合材料所具有的潜在的以及在某些情况下,所具有的更多的先进性能的简单应用情况。 材料 热国性材料 大部分已投入使用的热固性材料为大家所熟知的G.R.P.(玻璃纤维增强塑料)材料。 这些材料一般具有弹性性质,并已用象增强纤维这样的材料提高其性能,以便提供应用泛围更为广泛的材料,应用泛围有公共汽车的候车亭、飞机和卫星的结构。 热固性材料特性可以用其化学性质来表征。由于用这种材料制成的组件在生产时要固 化,分子间要进行交链反应,所以这些材料具有像玻璃一样的光滑,易碎、并且工艺性能差等特性。这种类型的典型材料从商业聚酯化物到作为主流材料的环氧类,它们都很少具有高温性能。然而,也有一些其它的热固性树脂,它们之中的每一种均具有独特的性质,而是主流材料所不具有的。例如,乙烯树脂/酯在化学腐蚀的环境中非常适用,丙烯酸盐/氨基甲酸 乙酯是一种新型的树脂系列,它具有快速固化的潜在优势、固化周期是以分计,而不是小时或者天,对于生产速度高的树脂喷注工艺来说是理想的 热固性材料的生产技术主要受到手工铺置(这种技术在热固性材料生产工艺中起主要作

相关文档
最新文档