MATLAB优化-浙江大学数学系

matlab优化设计

MATLAB优化设计 学院:机电学院 专业:机械设计制造及其自动化 班级:072&&&-** 学号:20131****** 姓名:大禹 指导老师:祯 2015年10月25日

题目 1 1、求解如下最优化问题 步骤一:对已有的数学模型matlab 编程 1. 编写.m 文件并保存: h=[2 ,-2;-2, 4]; %实对称矩阵 f=[-2;-6]; %列向量 a=[1, 1;-1, 2]; %对应维数矩阵 b=[2;2]; %列向量 lb=zeros(2, 1); [x,value]=quadprog(h, f, a ,b ,[] ,[], lb) 2. 运行.m 文件结果如图1.0所示: subject to 2 21≤+x x 22-21≤+x x 0 21≥x x ,2 2 2121212262)(m in x x x x x x x f +-+--=

图1.0题目一文件运行结果 步骤二:matlab运行结果分析阶段 由图1.0知,当x1=0.8,x2=1.2时,min f (x)= -7.2。 题目 2 2、某农场拟修建一批半球壳顶的圆筒形谷仓,计划每座谷仓容积为300立方米,圆筒半径不得超过3米,高度不得超过10米。半球壳顶的建筑造价为每平方米150元,圆筒仓壁的造价为每平方米120元,地坪造价为每平方米50元,求造价最小的谷仓尺寸为多少?

步骤一:题目分析阶段 设:圆筒的半径为R,圆筒的高度为H 。 谷仓的容积为300立方米,可得: 3003 232=+R H R ππ 圆筒高度不得超过10米,可得: 100≤≤H 圆筒半径不得超过3米,可得: 30≤≤R 当造价最小时: 2225021202150),(m in R H R R H R f πππ+?+?= 步骤二:数学模型建立阶段 2 225021202150),(m in R H R R H R f πππ+?+?=

应用matlab求解约束优化问题

应用matlab求解约束优化问题 姓名:王铎 学号: 2007021271 班级:机械078 上交日期: 2010/7/2 完成日期: 2010/6/29

一.问题分析 f(x)=x1*x2*x3-x1^6+x2^3+x2*x3-x4^2 s.t x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 目标函数为多元约束函数,约束条件既有线性约束又有非线性约束所以应用fmincon函数来寻求优化,寻找函数最小值。由于非线性不等式约束不能用矩阵表示,要用程序表示,所以创建m文件其中写入非线性不等式约束及非线性等式约束,留作引用。 二.数学模型 F(x)为目标函数求最小值 x1 x2 x3 x4 为未知量 目标函数受约束于 x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 三.fmincon应用方法 这个函数的基本形式为 x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 其中fun为你要求最小值的函数,可以单写一个文件设置函数,也可是m文件。 1.如果fun中有N个变量,如x y z, 或者是X1, X2,X3, 什么的,自己排个顺序,在fun中统一都是用x(1),x(2)....x(n) 表示的。 2. x0, 表示初始的猜测值,大小要与变量数目相同 3. A b 为线性不等约束,A*x <= b, A应为n*n阶矩阵。 4 Aeq beq为线性相等约束,Aeq*x = beq。 Aeq beq同上可求 5 lb ub为变量的上下边界,正负无穷用 -Inf和Inf表示, lb ub应为N阶数组 6 nonlcon 为非线性约束,可分为两部分,非线性不等约束 c,非线性相等约束,ceq 可按下面的例子设置 function [c,ceq] = nonlcon1(x) c = [] ceq = [] 7,最后是options,可以用OPTIMSET函数设置,具体可见OPTIMSET函数的帮助文件。 四.计算程序

Matlab频谱分析程序

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中 ()/2 /2 lim N j n n N N X x e N ωω=-=∑ πωπ -<≤。 其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,

其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωππ ωωπ- -= =?? 序列n x 在整个Nyquist 间隔上的平均功率可以 表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f ππ ωωπ- -= =?? 上式中的 ()()2xx xx S P ωωπ = 以及()()xx xx s S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1 2 1 2 ,,0ωωωω π ≤<≤上的平均功率 可以通过对PSD 在频带上积分求出 []()()2 1 121 2 ,xx xx P P d P d ωωωωωω ωωωω-- = +?? 从上式中可以看出()xx P ω是一个信号在一个无 穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

基于MATLAB的优化设计

基于MATLAB的曲柄摇杆机构优化设计 1.问题的提出 根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三种问题:(1)满足预定的运动规律要求;(2)满足预定的连杆位置要求;(3)满足预定的轨迹要求。在在第一个问题 里按照期望函数设计的思想,要求曲柄摇杆机构的曲柄与摇杆转角之间按照φ=f(?)(称为期望函数)的关系实现运动,由于机构的待定参数较少,故一 般不能准确实现该期望函数,设实际的函数为φ=F(?)(称为再现函数),而再 现函数一般是与期望函数不一致的,因此在设计时应使机构再现函数φ=F(?) 尽可能逼近所要求的期望函数φ=f(?)。这时需按机械优化设计方法来设计曲 柄连杆,建立优化数学模型,研究并提出其优化求解算法,并应用于优化模型的求解,求解得到更优的设计参数。 2.曲柄摇杆机构的设计 在图1所示的曲柄摇杆机构中,l1、l2、l3、l4分别是曲柄AB、连杆BC、摇杆CD和机架AD的长度。这里规定?0为摇杆在右极限位置φ0时的曲柄起始 位置角,它们由l1、l2、l3和l4确定。 图1曲柄摇杆机构简图 设计时,可在给定最大和最小传动角的前提下,当曲柄从?0转到?0+90?时,要求摇杆的输出角最优地实现一个给定的运动规律f(?)。这里假设要求: (?-?0)2(1)φE=f(?)=φ0+2 3π

s=30;qb=1;jj=5;fx=0; fa0=acos(((qb+x(1))^2-x(2)^2+jj^2)/(2*(qb+x(1))*jj)); %曲柄初始角 pu0=acos(((qb+x(1))^2-x(2)^2-jj^2)/(2*x(2)*jj));%摇杆初始角for i=1:s fai=fa0+0.5*pi*i/s; pui=pu0+2*(fai-fa0)^2?(3*pi); ri=sqrt(qb^2+jj^2-2*qb*jj*cos(fai)); alfi=acos((ri^2+x(2)^2-x(1)^2)/(2*ri*x(2))); bati=acos((ri^2+jj^2-qb^2)(/2*ri*jj)); if fai>0&fai<=pi psi=pi-alfi-bati; elseif fai>pi&fai<=2*pi psi=pi-alfi+bati; end fx=fx+(pui-psi)^2; end f=fx; (2)编写非线性约束函数M文件confun.m function[c,ceq]=confun(x); qb=1;jj=5;m=45*pi/180;n=135*pi/180; c(1)=x(1)^2+x(2)^2-(jj-qb)^2-2*x(1)*x(2)*cos(m); %最小传动角约束c(2)=-x(1)^2-x(2)^2+(jj+qb)^2+2*x(1)*x(2)*cos(n); %最大传动角约束ceq=[]; (3)在MATLAB命令窗口调用优化程序 x0=[6;4]; lb=[1;1]; ub=[]; %线性不等式约束 a=[-1-1;1-1;-11];b=[-6;4;4];[x,fn]=fmincon(@optimfun, x0,a,b,[],[],lb,ub,@confun); (4)运行结果

信号检测与估值matlab仿真报告

信号检测与估值 仿真报告 题目信号检测与估值的MATLAB仿真学院通信工程学院 专业通信与信息系统 学生姓名 学号 导师姓名

作业1 试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。 (1)根据理论分析公式画性能曲线; (2)信噪比范围(0dB-10dB),间隔是1dB; (3)信噪比计算SNR=10lg(Es/N0) 一、脚本文件 1、主程序 %******************************************************** %二元移频信号检测性能曲线(理论分析) %FSK_theo.m %******************************************************** clear all; clc; SNRindB=0:1:20; Pe_CFSK=zeros(1,length(SNRindB)); Pe_NCFSK=zeros(1,length(SNRindB)); Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB)); for i=1:length(SNRindB) EsN0=exp(SNRindB(i)*log(10)/10); Es_aveN0=exp(SNRindB(i)*log(10)/10); Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统 Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落) Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-'); xlabel('Es/No或平均Es/No(dB)'); ylabel('最小平均错误概率Pe'); legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)'); title('二元移频信号检测性能曲线'); axis([0 20 10^-7 1]); grid on; 2、调用子函数 %******************************************************** %Q函数 %Qfunct.m %********************************************************

music 方位估计 实验报告三 MATLAB 代码

实验报告三 实验目的: 实现常规波束形成及基于MUSIC 方法的方位估计。 实验内容: 1)若干阵元的接收阵,信号频率为10KHz ,波束主轴12度,仿真给出常规波束形成的波束图。 2)16个阵元的均匀线列阵,信号频率为10KHz ,信号方位为12度,用MUSIC 方法完成目标定向,信噪比-5dB ,0dB ,5dB 。 i) 波束形成时的阵型设计为两种,一种是均匀线列阵,阵元16个;一种是均匀圆阵,阵元数为16个,比较这两种阵型的波束图。 ii )比较不同信噪比下MUSIC 方法估计的性能(统计100次)。 实验原理: i)常规波束形成: 如图所示,基阵的输出),(θt v 。 ∑∑=*=* ==M m i i M m i i w t x t x w t v 1 1 ) ()()()(),(θθθ 采用向量符号则有, )()()()(),(H H θθθw x x w t t t v == 式中,x(t)和w(q )分别为观测数据向量和加权系数向量, ) ,(θt v 图 1 波束形成器基本原理图

T M 21])()()([)(t x t x t x t Λ=x T M 21])()()([)(θθθθw w w Λ =w 基阵输出端的空间功率谱表示为: ) ()( )()]()([)( )]()()()([ )],(),([ ] ),([)(H H H H H *2 θθθθθθθθθθRw w w x x w w x x w =====t t E t t E t v t v E t v E P 式中,R 为观测数据的协方差矩阵。 ii )基于MUSIC 方法的方位估计: )()()()(1 t n t s a t x i d i +=∑=θ T M 21])()()([)(t x t x t x t Λ =x )()()()(t n t s A t x +=θ 假设: (1 ) 信号源的数目d 是已知的, 且d < M ; (2 ) 各信号的方向矢量是相互独立的, 即)(θA 是一个列满秩矩阵; (3 ) 噪声)(t n 是空间平稳随机过程, 为具有各态历经性的均值为零、方差为σ2n 的高斯过程; (4 ) 噪声各取样间是统计独立的。 在上述假设条件下, 基阵输出的协方差矩阵可表示为: I A AR t x t x E R H s H 2])()([α+== 其中, R s 为信号的协方差矩阵;I 为单位矩阵。对R 进行特征分解, 并以特 征值降值排列可得 H m m M d m m H m m d m m e e e e R ∑∑+==+ =1 1λ λ 信号子空间与噪声子空间正交。 若噪声子空间记为E N , 即 ∑+== M d m H m m N e e E 1

matlab 无约束优化问题

实验八 无约束优化问题 一.实验目的 掌握应用matlab 求解无约束最优化问题的方法 二.实验原理及方法 1:标准形式: 元函数 为其中n R R f X f n R x n →∈:) (min 2.无约束优化问题的基本算法一.最速下降法(共轭梯度法)算法步骤:⑴ 给定初始点 n E X ∈0,允许误差0>ε,令k=0; ⑵ 计算() k X f ?; ⑶ 检验是否满足收敛性的判别准则: () ε≤?k X f , 若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令() k k X f S -?=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()() k k k k k S X f S X f λλλ+=+≥0 min ; ⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵. 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法..牛顿法算法步骤: (1) 选定初始点n E X ∈0,给定允许误差0>ε,令k=0; (2) 求()k X f ?,()() 1 2-?k X f ,检验:若() ε

机械优化设计MATLAB程序文件

机械优化设计作业1.用二次插值法求函数()()()22 ?极小值,精度e=0.01。 t t =t 1- + 在MATLAB的M文件编辑器中编写的M文件,如下: f=inline('(t+1)*(t-2)^2','t') a=0;b=3;epsilon=0.01; t1=a;f1=f(t1); t3=b;f3=f(t3); t2=0.5*(t1+t3);f2=f(t2); c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=0; while(abs(t4-t2)>=epsilon) if t2f4 f1=f2;t1=t2; t2=t4;f2=f4; else f3=f4;t3=t4; end else if f2>f4 f3=f2;t3=t2; t2=t4;f2=f4; else f1=f4;t2=t4; end end c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=k+1; end %输出最优解 if f2>f4 t=t4;f=f(t4); else t=t2;f=f(t2); end fprintf(1,'迭代计算k=%3.0f\n',k) fprintf(1,'极小点坐标t=%3.0f\n',t) fprintf(1,'函数值f=%3.4f\n',f)

运行结果如下: 迭代计算k= 7 极小点坐标t= 2 函数值f=0.0001 2.用黄金分割法求函数()32321+-=t t t ?的极小值,精度e=0.01。 在MATLAB 的M 文件编辑器中编写的M 文件,如下: f=inline('t^(2/3)-(t^2+1)^(1/3)','t'); a=0;b=3;epsilon=0.01; t1=b-0.618*(b-a);f1=f(t1); t2=a+0.618*(b-a);f2=f(t2); k=1; while abs(b-a)>=epsilon if f1

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中( )/2 /2 lim N j n n N n N X x e ωω=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ?

matlab(四连杆优化设计)

机械优化设计在matlab中的应用 东南大学机械工程学院** 一优化设计目的: 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 " 二优化设计步骤: 1.机械优化设计的全过程一般可以分为如下几个步骤: 1)建立优化设计的数学模型; 2)选择适当的优化方法; 3)编写计算机程序; : 4)准备必要的初始数据并伤及计算; 5)对计算机求得的结果进行必要的分析。 其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。 2.建立数学模型的基本原则与步骤 ①设计变量的确定; — 设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。设计变量的全体实际上是一组变量,可用一个列向量表示: x=。 ②目标函数的建立; 选择目标函数是整个优化设计过程中最重要的决策之一。当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。 目标函数的一般表达式为: 。 f(x)=,要根据实际的设计要求来设计目标函数。 ③约束条件的确定。 一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。 由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为

(完整版)MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

%模拟2ASK % Pe=zeros(1,26); jishu=1; for snr=-10:0.5:15 max = 10000; s=round(rand(1,max));%长度为max的随机二进制序列 f=100;%载波频率 nsamp = 1000;每个载波的取样点数 tc=0:2*pi/999:2*pi;tc的个数应与nsamp相同 cm=zeros(1,nsamp*max); cp=zeros(1,nsamp*max); mod=zeros(1,nsamp*max); for n=1:max; if s(n)==0; m=zeros(1,nsamp); b=zeros(1,nsamp); else if s(n)==1; m=ones(1,nsamp); b=ones(1,nsamp); end end c = sin(f*tc); cm((n-1)*nsamp+1:n*nsamp)=m; cp((n-1)*nsamp+1:n*nsamp)=b; mod((n-1)*nsamp+1:n*nsamp)=c; end tiaoz=cm.*mod;%2ASK调制 t = linspace(0,length(s),length(s)*nsamp); tz=awgn(tiaoz,snr);%信号tiaoz中加入白噪声,信噪比为SNR=10dB jiet = 2*mod.*tz; %相干解调 [N,Wn]=buttord(0.2,0.3,1,15); [b,a]=butter(N,Wn); dpsk=filter(b,a,jiet);%低通滤波 % 抽样判决,判决门限为0.5 depsk = zeros(1,nsamp*max); for m = nsamp/2:nsamp:nsamp*max; if dpsk(m) < 0.5; for i = 1:nsamp depsk((m-500)+i) = 0; end

(完整word版)优化设计Matlab编程作业

优化设计

无约束优化 min f(x)= 21x +22x -21x 2x -41x 初选x0=[1,1] 程序: Step 1: Write an M-file objfun1.m. function f1=objfun1(x) f1=x(1)^2+2*x(2)^2-2*x(1)*x(2)-4*x(1); Step 2: Invoke one of the unconstrained optimization routines x0=[1,1]; >> options = optimset('LargeScale','off'); >> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options) 运行结果: x = 4.0000 2.0000 fval = -8.0000 exitflag = 1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007 algorithm: 'medium-scale: Quasi-Newton line search' message: [1x85 char] 非线性有约束优化 1. Min f(x)=321x +2 2x +21x -32x +5

Subject to: 1g (x)=1x +2x +18≤0 2g (x)=51x -32x -25≤0 3g (x)=131x -412 2x 0≤ 4g (x)=14≤1x 130≤ 5g (x)=2≤2x 57≤ 初选x0=[10,10] Step 1: Write an M-file objfun2.m function f2=objfun2(x) f2=3*x(1)^2+x(2)^2+2*x(1)-3*x(2)+5; Step 2: Write an M-file confun1.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18; 5*x(1)-3*x(2)-25; 13*x(1)-41*x(2)^2; 14-x(1); x(1)-130; 2-x(2); x(2)-57]; % Nonlinear inequality constraints ceq=[]; Step 3: Invoke constrained optimization routine x0=[10,10]; % Make a starting guess at the solution >> options = optimset('LargeScale','off'); >> [x, fval] = ... fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options) 运行结果: x = 3.6755 -7.0744 fval = 124.1495

MATLAB第12章工程优化设计实例

MATLAB第12章工程优化设计实例 第12章工程优化设讣实例优化设讣的数学模型 优化设讣的数学模型是描述实际优化问题的设计内容、变量关系、有关设计条件和意图的数学表达式,它反映了物理现象各主要因素的内在联系,是进行优化设计的基础。优化设计数学模型的三大要素: ?设计变量 ?约束条件 ? LI标函数 1.设计变量 一个设计方案可以用一组基本参数的数值来表示,这些基本参数可以是构件尺寸等儿何量,也可以是质量等物理量,还可以是应力、变形等表示丄作性能的导出量。设计变量:在设讣过程中进行选择并最终必须确定的各项独立的基本参数,乂叫做优化参数。 设计变量的全体实际上是一组变量,可用一个列向量表示 2.约束条件 设计空间是所有设计方案的集合,但这些设计方案有些是工程上所不能接受 的。如一个设计满足所有对它提出的要求,就称为可行设计。 一个可行设讣必须满足某些设讣限制条件,这些限制条件称作约束条件,简称约 束。3.目标函数 为了对设计进行定量评价,必须构造包含设讣变量的评价函数,它是优化的口标, 称为LI标函数,以F(X)表示。

FxFxxx ()(),, , , 12n 在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最后求得 F(X)值最好或最满意的X值。在构造LI标函数时,应注意:訂标函数必须包含全部设计变量,所有的设计变量必须包含在约束函数中。 模型输入时需要注意的问题 使用优化工具箱时,山于优化函数要求口标函数和约束条件满足一定的格式,所以需要用户在进行模型输入时注意以下儿个问题: 1.目标函数最小化 优化函数 fminbnd、fminsearchx fminunc、fmincon、fgoalattdin、fminmax 和1 sqnonlin都要求LI标函数最小化,如果优化问题要求LI标函数最大化,可以通过使该LI标函数的负值最小化即-f(x)最小化来实现。近似地,对于quadprog函数提供-H 和-f,对于1 inprog函数提供-f。 2.约束非正 优化工具箱要求非线性不等式约束的形式为Ci(x)?0,通过对不等式取负可以达到使大于零的约束形式变为小于零的不等式约束形式的U的,如Ci (x)?0形式的约束等价于- Ci(x)?0;Ci(x)?b形式的约束等价于- Ci(x)+b?0。 3.避免使用全局变量 Fmincon是mat lab最主要内置的求解约束最优化的函数,该函数的优化问题的标准形式为:1.数学模型标准形式: min f , X, s. t. AX?b ,线性不等式约束, AeqX二beq ,线性等式约束, C(X)?0 ,非线性不等式约束条件,

利用Matlab求解机械设计优化问题的分析

利用MATLAB求解机械设计优化问题的分析 周婷婷 (能源与动力学院,油气0701) 摘要:MATLAB是目前国际上最流行的科学与工程计算的软件工具, 它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。本文浅谈MATLAB在机械设计优化问题的几点应用。 关键词:MATLAB 约束条件机械设计优化 引言:在线性规划和非线性规划等领域经常遇到求函数极值等最优化问题,当函数或约束条件复杂到一定程度时就无法求解,而只能求助于极值分析算法,如果借助计算器进行手工计算的话,计算量会很大,如果要求遇到求解极值问题的每个人都去用BASIC,C和FORTRAN之类的高级语言编写一套程序的话,那是非一朝一日可以解决的,但如用MATLAB语言实现极值问题的数值解算,就可以避免计算量过大和编程难的两大难题,可以轻松高效地得到极值问题的数值解,而且可以达到足够的精度。 1无约束条件的极值问题的解算方法 设有Rosenbrock函数如下: f(X1,X2)=100(X2-X1*X1)2+(1-X1)2 求向量X取何值时,F(x)的值最小及最小值是多少? 先用MATLAB语言的编辑器编写求解该问题的程序如下: %把函数写成MATLAB语言表达式 fun=’100*(X(2)-X(1)*X(1)2+(1-X(1))2 %猜自变量的初值 X0=[-1 2]; %所有选项取默认值 options=[ ]; %调用最优化函数进行计算。 %函数最小值存放在数组元素options(8)中

%与极值点对应的自变量值存放在向量X里 %计算步数存放在数组元素options(10)中 [X,options]=fmins(fun,X0,options); %显示与极值点对应的自变向量X的值。 %显示函数最小值 options(8) %显示函数计算步数 options(10) 把上面这段程序保存为m文件,然后用“Tools”菜单中的“Run”命令行这段程序,就可以轻松的得到如下结果: X=9.999908938395383e-001 9.99982742178110e-001 ans=1.706171071794760e-001 ans=195 显然,计算结果与理论结果的误差小到e-10级,这里调用了MATLAB的最优化函数fmins(),它采用Nelder-Mead的单纯形算法,就是因为这个函数的采用,使最小值问题的解算变得非常简单。 2.带约束条件的极值问题的解法 设目标函数和约束条件如下: f(x) =-3X1+X2+X3 -X1+2X2-X3>= -11 4X1-X2-2X3<=-3 2X1-X3= -1 X1>=0,X2>=0,X3>=0; 求X向量取何值时函数取极小值? 对条件极值问题通常的做法都是将约束条件标准化(即把等式约束条件写成等号为0的形式,把不等式写成<=0的形式)。然后把条件极值问题转换为非条件极值问题,MATLAB也采用同样的做法。

转向梯形优化设计matlab程序

优化计算MATLAB程序 首先,将目标函数写成M文件,其程序语句如下; function f = fun (x) global K L thetamax alpha for i=1:61 f = 0 betae = atan(tan(alpha(i)/(1-(K/L)*tan(alpha(i)))); A(i)=2*x(1).^2*sin(x(2)+alpha(i)); B(i)=2*K*x(1)-2*x(1).^2*cos(x(2)+alpha(i)); C(i)=2*x(1).^2-4*x(1).^2*(cos(x(2)).^2+4*K*x(1)*cos(x(2))-2*K*x(1)* cos(x(2)+alpha(i)); theta3(i)= 2*acot((A(i)+sqrt(A(i).^2+B(i).^2-C(i).^2))/(B(i)+C(i))); beta(i)=x(2)+theta3(i)-pi; if alpha(i)<=pi/18 f(i)=1.5*abs(beta(i)-betae3(i)); elseif alpha>=pi/18,alpha(i)<=pi/9;f(i)=abs(betaa(i)-betae3(i)); elsef(i)=0.5*abs(beta(i)-betae3(i)); global K L thetamax alpha K=input L=input thetamax=input x0(1)=input

x0(2)=input thetamax = thetamax*pi/180; x0(2)=x0(2)*pi/180;lb(1)=0.17K; lb(2)=0.17*K; ub(1)=acot(K/(1.2*L))ub(2)=pi/2; alpha=linspace (0, theamax ,61); lb=[lb(1),lb(2)]; ub=[ub(1),ub(2)];x(0)=[x0(1),x0(2)]; options = optimset ( ‘TolFun’,‘le-10’,‘TolCon’,‘le-6’) [x,resnorm] = lsqnonlin(‘fun’,x0,lb,ub,options) g lobal K L thetamax alpha K = input L= input thetamax= input x ( 1) = input x ( 2) = input thetamax = thetamax * pi/ 180; x ( 2) = x ( 2) * pi/ 180; alpha= linspace( 0, thetamax , 61) ; fo r i= 1∶61 betae= atan( tan( alpha( i) ) / (( 1- K/ L) * tan( alpha( i) ) ) ) ; A ( i) = 2* ( x ( 1) ) .∧2* sin ( x ( 2) + alpha( i) ) ; B( i) = 2* K* x( 1) - 2* ( x ( 1) ) . ∧2* cos( x( 2) + alpha( i) ) ) ;

简述基于MATLAB的优化设计

基于MATLAB 的曲柄摇杆机构优化设计 1. 问题的提出 根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三种问题:(1)满足预定的运动规律要求;(2)满足预定的连杆位置要求;(3)满足预定的轨迹要求。在在第一个问题里按照期望函数设计的思想,要求曲柄摇杆机构的曲柄与摇杆转角之间按照()f φ?=(称为期望函数)的关系实现运动,由于机构的待定参数较少,故一般不能准确实现该期望函数,设实际的函数为()F φ?=(称为再现函数),而再现函数一般是与期望函数不一致的,因此在设计时应使机构再现函数()F φ?=尽可能逼近所要求的期望函数()f φ?=。这时需按机械优化设计方法来设计曲柄连杆,建立优化数学模型,研究并提出其优化求解算法,并应用于优化模型的求解,求解得到更优的设计参数。 2. 曲柄摇杆机构的设计 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 图1 曲柄摇杆机构简图 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 2.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始运行时,曲柄所处的位置角0?应列为设计变量,即: []12340T x l l l l ?= (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初始 位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()222221243230124225arccos 210l l l l l l l l l l l l ?????++-+-+==????++???????? (3) ()()22222124323034325arccos 210l l l l l l l l l l ????? +--+--==???????????? (4) 因此,只有2l 、3l 为独立变量,则设计变量为[][]2312T T x l l x x ==。 2.2目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即: ()()2 1min m Ei i i f x φφ==-→∑ (5) 式中,Ei φ-期望输出角;m -输出角的等分数;i φ-实际输出角,由图 1 可知: ()()02i i i i i i i παβ?πφπαβπ?π--≤≤??=?-+≤≤?? (6) 式中,222222322132arccos arccos 22i i i i i r l l r x x rl r x α???? +-+-== ? ????? (7) 222241424arccos arccos 210i i i i i r l l r rl r β???? +-+== ? ????? (8) i r == (9) 2.3约束条件

相关文档
最新文档