单链表算法

单链表算法
单链表算法

1.已知非空带表头结点的线性链表由list指出,链结点的结构为(data,next),

请写一算法,将链表中数据域值最小的那个链结点移到链表的最前面。要求:不得额外申请新的链结点。

delinsert(LinkList list)

{

p=list->next; //工作指针

pre=list; //最小元素结点前驱

q=p; //最小元素结点

while(p->next!=NULL)

{ if(p->next->datadata)

{ q=p->next;

pre=p;

}

p=p->next;

} //查找最小元素结点

if(q!=list->next) //最小元素结点不是第一个结点

{

pre->next=q->next; //从原位置删除

q->next=list->next;

list->next=q; //在头结点后插入,使最小元素结点成为第一个结点}

}

2.在带头结点的单链表中,设计算法dellist_maxmin,删除所有数据域大于

min,而小于max的所有元素。

dellist_maxmin(linklist*head,int min,int max)

{

pre=head; //工作指针前驱

p=head->next; //工作指针

while(p!=NULL)

if (p->data<=min || p->data>=max) //不满足删除条件

{

pre=p;

p=p->next;

}

else //满足删除条件

{

pre->next=p->next;

free(p);

p=pre->next; //删除

}

}

3.编写一个将带头结点单链表逆置的算法。

void reverse_list(linklist head)

{

p=head->next; //待插入结点指针

head->next=NULL;

while(p!=NULL)

{

s=p;

p= p->next;

s->next= head->next;

head->next=s; //插入

}

}

4.在一个带头结点的单链表中,head为头指针,p指向链表中的某一个结点,

编写算法swapin_list(),实现p所指向的结点和p的后继结点相互交换。Linklist swapin_list(linklist head, linklist p)

{

q=p->next;

if (q!=NULL)

{

r=head;

while(r->next ! =p)

r=r->next;

r->next=q;

p->next=q->next;

q->next=p;

return(head);

}

else

return(NULL);

}

5.设有一头指针为L的带有表头结点的非循环双向链表,其每个结点中除有

pred(前驱指针),data(数据)和next(后继指针)域外,还有一个访问频度域freq。在链表被起用前,其值均初始化为零。每当在链表中进行一次Locate(L,x)运算时,令元素值为x的结点中freq域的值增1,并使此链表中结点保持按访问频度非增(递减)的顺序排列,同时最近访问的结点排在频度相同的结点的最后,以便使频繁访问的结点总是靠近表头。试编写符合上述要求的Locate(L,x)运算的算法,该运算为函数过程,返回找到结点的地址,类型为指针型。

DLinkList locate(DLinkList L,ElemType x)

∥ L是带头结点的按访问频度递减的双向链表,本算法先查找数据x,查找成功时结点的访问频度域增1,最后将该结点按频度递减插入链表中适当位置。

{ DLinkList p=L->next,q; ∥p为工作指针,q为p的前驱,用于查找插入位置。

while (p && p->data !=x)

p=p->next; ∥查找值为x的结点。

if (!p)

{ printf(“不存在值为x的结点\n”);

exit(0);

}

else

{

p->freq++; ∥令元素值为x的结点的freq域加1 。

p->next->pred=p->pred; ∥将p结点从链表上摘下。

p->pred->next=p->next;

q=p->pred; ∥以下查找p结点的插入位置

while (q !=L && q->freqfreq)

q=q->pred;

p->next=q->next; q->next->pred=p;∥将p结点插入

p->pred=q; q->next=p;

}

return(p); ∥返回值为x的结点的指针

} ∥算法结束

6.给定(已生成)一个带表头结点的单链表,设head为头指针,结点的结构为

(data,next),data为整型元素,next为指针,试写出算法:按递增次序输出单链表中各结点的数据元素,并释放结点所占的存储空间。

void MiniDelete(LinkedList head)

∥head是带头结点的单链表的头指针,本算法按递增顺序输出单链表中各结点的数据元素,并释放结点所占的存储空间。

{while(head->next!=null)∥循环到仅剩头结点。

{

pre=head;∥pre为元素最小值结点的前驱结点的指针。

p=pre->next;∥p为工作指针

while(p->next!=null)

{

if(p->next->datanext->data)

pre=p;∥记住当前最小值结点的前驱

p=p->next;

}

printf(pre->next->data);∥输出元素最小值结点的数据。

u=pre->next;

pre->next=u->next;

free(u);∥删除元素值最小的结点,释放结点空间}∥

free(head);∥释放头结点

}

单链表的创建、插入和删除

单链表的创建、插入和删除 (数据结构) ——SVS #include #include #include typedef int ElemType; typedef int Status; typedef struct LNode { ElemType data; struct LNode *next; }LNode,*LinkList; void InitList_Link(LinkList L) //创建空链表 { L=(LinkList)malloc(sizeof(LNode)); L->next=NULL; } Status InsertList_Link(LinkList L,int i,ElemType e) //插入链表 { LinkList s,p=L; int j=0; while(p&&jnext;j++;} if(!p||j>i-1)return -1; s=(LinkList)malloc(sizeof(LNode)); s->data=e; s->next=p->next; p->next=s; return 1; }

Status DeleteList_Link(LinkList L,int i,ElemType e) //删除链表{ LinkList q,p=L;int j=0; while(p->next&&jnext;j++;} if(!(p->next)||j>i-1)return -1; q=p->next; e=q->data; p->next=q->next; free(q); return 1; } void OutPutList_Link(LinkList L) //输出链表 { printf("表中值为:"); LinkList p=L->next; while(p) { printf("%d ",p->data); p=p->next; } printf("\n"); } void CreateList_Link(LinkList L,int len) //创建链表 { int i; LinkList s,p=L; for(i=0;idata); s->next=NULL; p->next=s; p=s; } } int main() { int len; LinkList L; ElemType e; L=(LinkList)malloc(sizeof(LNode));

算法的效率讲解

专题二算法的效率 评价一个算法的效率主要是考察算法执行时间的情况。可以在相同的规模下,根据执行时间的长短来评价一个算法的优劣。一个算法的好坏对计算机的效能影响有多大呢?我们来做这样一个比较,假设有两台计算机分别是计算机A和计算机B,计算机A的运算处理速度比计算机B大约快50倍。以求解“百钱买百鸡”(“鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一。百钱买百鸡。问鸡翁、母、雏各几何?”)为例子,设鸡翁为x只,鸡母为y只,鸡雏为z只。算法A:把公鸡、母鸡、小鸡的枚举范围都是1~100;算法B:经粗略计算公鸡的枚举范围为1~20,母鸡的枚举范围为1~33,而小鸡的枚举范围应是100-x-y。在计算机A上运行算法A程序,在计算机B上运行算法B程序,两台计算机谁先把结果运算出来呢? 算法A的程序代码如下: For x = 1 To 100 For y = 1 To 100 For z = 1 To 100 If (x+y+z=100) And (5* x + 3 * y + z/3 = 100) Then List1.AddItem Str(x) + " " + Str(y) + " " + Str(z) End If Next z Next y Next x 算法B程序代码如下: For x = 1 To 20 For y = 1 To 33 Z=100-x-y If 5* x +3* y + z/3 = 100 Then List1.AddItem Str(x) + " " + Str(y) + " " + Str(z) End If Next y Next x 运算结果是计算机B先把结果运算出来。为什么会这样呢?我们来分析一下,算法A 需要执行100×100×100=1000000次内循环,而算法B只需要执行20×33=660次内循环,虽然计算机A比计算机B快50多倍,但还是计算机B先求得计算结果。 一个好的算法可以算得更快。什么样的算法是好算法呢?通常从时间复杂度和空间复杂度两方面来评价,在这里我们主要讨论时间复杂度。通常我们把算法的基本操作执行的次数作为算法的时间量度T(n)=O(f(n)),表示随着规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称时间复杂度,估算时按该算法对各种输入情况的平均值来考虑。在最坏情况下的复杂度和平均情况下的复杂度是评估算法两种衡量标准。 在排序算法中,我们学习了冒泡排序和交换排序,这两种算法的效率如何呢?下面我们来进行讨论。算法的基本操作主要是比较语句和交换两个变量值的赋值语句。冒泡排序(bubble sort)是在一列数据中把较小的数据逐次向上推移的一种技术,它和气泡从水中往上冒的情况有些类似,它把待排序的n个元素的数组看成是垂直堆放的一列数据,从最下面的一个元素起,自下而上地比较相邻两个元素中的数据,将较小的数据换到上面的一个元素中。当第一遍加工完成时,最小的数据已经上升为第一个元素的数据。然后对余下的n-1

C语言链表的建立、插入和删除

数组作为存放同类数据的集合,给我们在程序设计时带来很多的方便,增加了灵活性。但数组也同样存在一些弊病。如数组的大小在定义时要事先规定,不能在程序中进行调整,这样一来,在程序设计中针对不同问题有时需要3 0个大小的数组,有时需要5 0个数组的大小,难于统一。我们只能够根据可能的最大需求来定义数组,常常会造成一定存储空间的浪费。我们希望构造动态的数组,随时可以调整数组的大小,以满足不同问题的需要。链表就是我们需要的动态数组。它是在程序的执行过程中根据需要有数据存储就向系统要求申请存储空间,决不构成对存储区的浪费。 链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表、循环链表、双向链表,下面将逐一介绍。 7.4.1 单链表 图7 - 3是单链表的结构。 单链表有一个头节点h e a d,指向链表在内存的首地址。链表中的每一个节点的数据类型为结构体类型,节点有两个成员:整型成员(实际需要保存的数据)和指向下一个结构体类型节点的指针即下一个节点的地址(事实上,此单链表是用于存放整型数据的动态数组)。链表按此结构对各节点的访问需从链表的头找起,后续节点的地址由当前节点给出。无论在表中访问那一个节点,都需要从链表的头开始,顺序向后查找。链表的尾节点由于无后续节点,其指针域为空,写作为N U L L。 图7 - 3还给出这样一层含义,链表中的各节点在内存的存储地址不是连续的,其各节点的地址是在需要时向系统申请分配的,系统根据内存的当前情况,既可以连续分配地址,也可以跳跃式分配地址。 看一下链表节点的数据结构定义: struct node { int num; struct node *p; } ; 在链表节点的定义中,除一个整型的成员外,成员p是指向与节点类型完全相同的指针。在链表节点的数据结构中,非常特殊的一点就是结构体内的指针域的数据类型使用了未定义成功的数据类型。这是在C中唯一规定可以先使用后定义的数据结构。 ?单链表的创建过程有以下几步: 1 ) 定义链表的数据结构。 2 ) 创建一个空表。 3 ) 利用m a l l o c ( )函数向系统申请分配一个节点。 4 ) 将新节点的指针成员赋值为空。若是空表,将新节点连接到表头;若是非空表,将新 节点接到表尾。 5 ) 判断一下是否有后续节点要接入链表,若有转到3 ),否则结束。 ?单链表的输出过程有以下几步 1) 找到表头。

C语言链表专题复习

链表专题复习 数组作为存放同类数据的集合,给我们在程序设计时带来很多的方便,增加了灵活性。但数组也同样存在一些弊病。如数组的大小在定义时要事先规定,不能在程序中进行调整,这样一来,在程序设计中针对不同问题有时需要3 0个元素大小的数组,有时需要5 0个数组元素的大小,难于统一。我们只能够根据可能的最大需求来定义数组,常常会造成一定存储空间的浪费。 我们希望构造动态的数组,随时可以调整数组的大小,以满足不同问题的需要。链表就是我们需要的动态数组。它是在程序的执行过程中根据需要有数据存储就向系统要求申请存储空间,决不构成对存储区的浪费。 链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表、循环链表、双向链表,下面只介绍单向链表。 7.4.1 单链表 图7 - 3是单链表的结构。 单链表有一个头节点h e a d,指向链表在内存的首地址。链表中的每一个节点的数据类型为结构体类型,节点有两个成员:整型成员(实际需要保存的数据)和指向下一个结构体类型节点的指针即下一个节点的地址(事实上,此单链表是用于存放整型数据的动态数组)。链表按此结构对各节点的访问需从链表的头找起,后续节点的地址由当前节点给出。无论在表中访问那一个节点,都需要从链表的头开始,顺序向后查找。链表的尾节点由于无后续节点,其指针域为空,写作为N U L L。 图7 - 3还给出这样一层含义,链表中的各节点在内存的存储地址不是连续的,其各节点的地址是在需要时向系统申请分配的,系统根据内存的当前情况,既可以连续分配地址,也可以跳跃式分配地址。 看一下链表节点的数据结构定义: struct node { int num; struct node *p; } ; 在链表节点的定义中,除一个整型的成员外,成员p是指向与节点类型完全相同的指针。 在链表节点的数据结构中,非常特殊的一点就是结构体内的指针域的数据类型使用了未定义成功的数据类型。这是在C中唯一规定可以先使用后定义的数据结构。 ?单链表的创建过程有以下几步: 1 ) 定义链表的数据结构。 2 ) 创建一个空表。 3 ) 利用m a l l o c ( )函数向系统申请分配一个节点。

搜索算法效率比较

数据结构课程设计报告 搜索算法效率比较的设计 专业 计算机科学与技术 学生姓名 Xxxxx 班级 Xxxx 学 号 Xxxx 指导教师 Xxx 完成日期 2016年6月16日

目录 1.设计题目 (3) 2.设计目的及要求 (3) 2.1.目的 (3) 2.2.要求 (3) 3.设计内容 (3) 4.设计分析 (4) 4.1.空间复杂度 (5) 4.2非递归线性搜索设计 (5) 4.3递归线性搜索 (5) 4.4二叉搜索设计 (6) 5.设计实践 (7) 5.1非递归线性搜索模块设计 (7) 5.2递归线性搜索模块设计 (7) 5.3二叉搜索模块设计 (7) 5.4.主程序模块设计 (8) 6测试方法 (10) 7.程序运行效果 (11) 8.设计心得 (12)

搜索算法效率比较的设计 1.设计题目 给定一个已排序的由N个整数组成的数列{0,1,2,3,……,N-1},在该队列中查找指定整数,并观察不同算法的运行时间。考虑两类算法:一个是线性搜索,从某个方向依次扫描数列中各个元素;另一个是二叉搜索法。要完成的任务是:分别用递归和非递归实现线性搜索;分析最坏情况下,两个线性搜索算法和二叉搜索算法的复杂度;测量并比较这三个方法在N=100,500,1000,2000,4000,6000,8000,10000时的性能。 2.设计目的及要求 2.1.目的 (1)需要同学达到熟练掌握C语言的基本知识和技能; (2)基本掌握面向对象程序设计的基本思路和方法; (3)能够利用所学的基本知识和技能,解决简单的程序设计问题;2.2.要求 学生必须仔细阅读数据结构,认真主动完成课设的要求,有问题及时主动通过各种方式与教师联系沟通;要发挥自主学习的能力,充分利用时间,安排好课设的时间计划,并在课设过程中不断检测自己计划完成情况;独立思考,课程设计中各任务的设计和调试哦要求独立完成,遇到问题可以讨论,可以通过同学间相互讨论而解决。 3.设计内容 任何程序基本上都是要用特定的算法来实现的。算法性能的好坏,直接决定了所实现程序性能的优劣。此次对有关算法设计的基本知识作了简单的介绍。针对静态查找问题,以搜索算法的不同实现,并对非递归线性搜索算法、递归线性搜索算法和二叉搜索算法这三种方法进行了比较和分析。 算法是为求解一个问题需要遵循的、被清楚地指定的简单指令的集合。解决一个问题,可能存在一种以上的算法,当这些算法都能正确解决问题时,算法需要的资源量将成为衡量算法优良度的重要度量,列如算法所需的时间、空间等。算法是对问题求解过程的一种描述,是为解决一个问题或一类问题给出的一个正确的,有限长的操作序列。 由于查找一个数的过程,无论运用哪种算法对于电脑来说速度都是非常快的,都爱1ms之内,无法用计时函数测试出来。所以为了能够直观准确地表示出各个算法间的差异,此程序用了循环查找的方法,具体的思想是:先随机生成3000

单链表的基本操作

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:单链表建立及操作 班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: (1)动态地建立单链表; (2)掌握线性表的基本操作:求长度、插入、删除、查找在链式存储结构上的实现; (3)熟悉单链表的应用,明确单链表和顺序表的不同。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 三、实验内容及要求: 建立单链表,实现如下功能: 1、建立单链表并输出(头插法建立单链表); 2、求表长; 3、按位置查找 4、按值查找结点; 5、后插结点; 6、前插结点 7、删除结点; 四、概要设计: 1、通过循环,由键盘输入一串数据。创建并初始化一个单链表。 2、编写实现相关功能函数,完成子函数模块。 3、调用子函数,实现菜单调用功能,完成顺序表的相关操作。

五、代码: #include #include typedef char datatype; typedef struct node { datatype data; struct node *next; }linklist; linklist *head,*p; //头插法建立单链表 linklist *Creatlistf() { char ch; linklist *head,*s; head=NULL; ch=getchar(); printf("请输入顺序表元素(数据以$结束):\n"); while(ch!='$') { s=(linklist *)malloc(sizeof(linklist)); s->data=ch; s->next=head; head=s; ch=getchar(); } return head; } //求单链表的长度 void get_length(struct node *head) { struct node *p=head->next; int length=0;

比较算法的效率

比较两对算法的效率 考虑问题1:已知不重复且已经按从小到大排好的m个整数的数组A[1..m](为简单起见。还设m=2 k,k是一个确定的非负整数)。对于给定的整数c,要求寻找一个下标i,使得A[i]=c;若找不到,则返回一个0。 问题1的一个简单的算法是:从头到尾扫描数组A。照此,或者扫到A的第i个分量,经检测满足A[i]=c;或者扫到A的最后一个分量,经检测仍不满足A[i]=c。我们用一个函数Search来表达这个算法: Function Search (c:integer):integer; Var J:integer; Begin J:=1; {初始化} {在还没有到达A的最后一个分量且等于c的分量还没有找到时, 查找下一个分量并且进行检测} While (A[i]c,则c只可能在 A[1],A[2],..,A[m/2-1]之中,因而下一步只要在A[1], A[2], .. ,A[m/2-1]中继续查找;如果 A[m/2]=L时,继续查找}

单链表基本操作实验

实验2 链表的操作 实验容: 1)基础题:编写链表基本操作函数,链表带有头结点 (1)CreatList_h()//用头插法建立链表 (2)CreateList_t()//用尾插法建立链表 (3)InsertList()向链表的指定位置插入元素 (4)DeleteList()删除链表中指定元素值 (5)FindList()查找链表中的元素 (6)OutputList()输出链表中元素 2)提高题: (1)将一个头节点指针为heada的单链表A分解成两个单链表A和B,其头结点指针分别为heada和headb,使得A表中含有原单链表A中序号为奇数的元素,B表中含有原链表A中序号为偶数的元素,且保持原来的相对顺序。 (2)将一个单链表就地逆置。 即原表(a1,a2,。。。。。。 an),逆置后新表(an,an-1,。。。。。。。a1) /* 程序功能 :单链表基本功能操作 编程者 :天啸 日期 :2016-04-14 版本号 :3.0 */ #include #include typedef struct List { int data; struct List *next; }List; void CreatList_h(List *L) //头插法 { int i = 0; int n = 0; int goal; List *p; printf("请输入数据的个数:\n"); scanf("%d",&n); L -> next = NULL; for(i=0;i

{ printf("请输入第%d个数:\n",i+1); scanf("%d",&goal); p = (struct List*)malloc(sizeof(struct List)); p -> data = goal; p -> next = L->next; //将L指向的地址赋值给p; L -> next = p; } } void CreateList_t(List *L) //尾插法 { int i; int n; int goal; List *p; List *q=L; printf("请输入数据的个数:\n"); scanf("%d",&n); for (i=0;i data = goal; q -> next = p; q = p; } q -> next = NULL; } void InsList(List *L,int i,int e) //插入 { List *s; List *p = L; int j = 0; while (p&&jnext; ++j; } s = (struct List*)malloc(sizeof(struct List)); s -> data = e; //插入L中

几种字符串哈希HASH算法的性能比较

几种字符串哈希HASH算法的性能比较 2011年01月26日星期三 19:40 这不就是要找hash table的hash function吗? 1 概述 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash 链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串 Hash函数在执行效率、离散性、空间利用率等方面的性能问题。 2 经典字符串Hash函数介绍 作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 2.1 PHP中出现的字符串Hash函数 static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) { unsigned long h = 0, g; char *arEnd=arKey+nKeyLength; while (arKey < arEnd) { h = (h << 4) + *arKey++; if ((g = (h & 0xF0000000))) { h = h ^ (g >> 24); h = h ^ g; } } return h; } 2.2 OpenSSL中出现的字符串Hash函数 unsigned long lh_strhash(char *str) { int i,l; unsigned long ret=0; unsigned short *s; if (str == NULL) return(0); l=(strlen(str)+1)/2; s=(unsigned short *)str; for (i=0; i ret^=(s[i]<<(i&0x0f)); return(ret);

数据结构--单链表的插入和删除

单链表的插入和删除实验日志 指导教师刘锐实验时间2010 年10 月11 日 学院数理专业数学与应用数学 班级学号姓名实验室S331-A 实验题目:单链表的插入和删除 实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解程序(相关程序见附录) 。 2、调试程序,并设计输入字符串数据(如:aa, bb , cc , dd, ee,#),测试程序的如下功能: 不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 实验结果: 1、不允许重复字符串的插入功能结果如下:

3、删除和插入结点的功能如下:

心得体会: 通过这次实验我学会了单链表的建立和删除,基本了解了线性表的逻辑结构和链式存储结构,掌握了单链表的基本算法,使我受益匪浅。在调试程序的过程中,遇见了一系列的问题,后来在同学的帮助下,修改了几个语句后,终于把它给调试出来了。有时候一个标点符号的问题就可能导致程序无法运行。所以在分析调试程序的时候一定要仔细。 附加程序代码: 1、调试之后的程序如下(其中蓝色字体部分为修改过的): #include"stdio.h" #include"string.h" #include"stdlib.h" #include"ctype.h" typedef struct node //定义结点 { char data[10]; //结点的数据域为字符串 struct node *next; //结点的指针域 }ListNode; typedef ListNode * LinkList; // 自定义LinkList单链表类型 LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表ListNode *LocateNode(); //函数,按值查找结点

数据结构___头插法和尾插法建立链表(各分有无头结点)

实验一链表的建立及基本操作方法实现 一、【实验目的】 、理解和掌握单链表的类型定义方法和结点生成方法。 、掌握利用头插法和尾插法建立单链表和显示单链表元素的算法。 、掌握单链表的查找(按序号)算法。 、掌握单链表的插入、删除算法。 二、【实验内容】 、利用头插法和尾插法建立一个无头结点单链表,并从屏幕显示单链表元素列表。 、利用头插法和尾插法建立一个有头结点单链表,并从屏幕显示单链表元素列表。 、将测试数据结果用截图的方式粘贴在程序代码后面。 重点和难点: 尾插法和头插法建立单链表的区别。 建立带头结点和无头结点单链表的区别。 带头结点和无头结点单链表元素显示方法的区别 三、【算法思想】 ) 利用头插法和尾插法建立一个无头结点单链表 链表无头结点,则在创建链表时,初始化链表指针。 当用头插法插入元素时,首先要判断头指针是否为空,若为空,则直接将新结点赋给,新结点指向空,即>,若表中已经有元素了,则将新结点的指向首结点,然后将新结点赋给即(>)。当用尾插法插入元素时,首先设置一个尾指针以便随时指向最后一个结点,初始化和头指针一样即。插入元素时,首先判断链表是否为空,若为空,则直接将新结点赋给即,若不为空,将最后一个元素的指向新结点即>,然后跳出这个语句,将新结点指向空,并且将指向新结点即>。 ) 利用头插法和尾插法建立一个有头结点单链表 链表有头结点,则在创建链表时,初始化链表指针> 。与无头结点区别在于,判断链表为空是根据>是否为空。 用头插法插入元素时,要判断链表是否为空,若为空则将新结点指向空,作为表尾,若不为空,则直接插入,将新结点指向头结点的指向,再将头结点指向新结点即>>>。 用尾插法插入元素时,首先也要设置一个尾指针以便随时指向最后一个结点,初始化,与无头结点区别就只是插入第一个元素时有区别。插入元素时,不需要判断链表是否为空,直接进行插入,代码>>。 )带头结点和无头结点单链表元素显示方法的区别: 区别在于,显示时带头结点是从头结点开始即>,而无头结点链表是直接从开始即。 四、【源程序代码】 ) 利用头插法和尾插法建立一个无头结点单链表 <>

单链表的插入和删除实验报告

. 实验一、单链表的插入和删除 一、目的 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 二、要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 三、程序源代码 #include"stdio.h" #include"string.h" #include"stdlib.h" #include"ctype.h" typedef struct node //定义结点 { char data[10]; //结点的数据域为字符串 struct node *next; //结点的指针域 }ListNode; typedef ListNode * LinkList; // 自定义LinkList单链表类型 LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表

ListNode *LocateNode(); //函数,按值查找结点 void DeleteList(); //函数,删除指定值的结点void printlist(); //函数,打印链表中的所有值 void DeleteAll(); //函数,删除所有结点,释放内存 //==========主函数============== void main() { char ch[10],num[10]; LinkList head; head=CreatListR1(); //用尾插入法建立单链表,返回头指针printlist(head); //遍历链表输出其值 printf(" Delete node (y/n):");//输入“y”或“n”去选择是否删除结点scanf("%s",num); if(strcmp(num,"y")==0 || strcmp(num,"Y")==0){ printf("Please input Delete_data:"); scanf("%s",ch); //输入要删除的字符串 DeleteList(head,ch); printlist(head); } DeleteAll(head); //删除所有结点,释放内存 } //==========用尾插入法建立带头结点的单链表

单链表完整算法

// 包含头文件 #include #include #include // 为结点数据类型和结构体类型起别名 typedefint datatype; typedefstructLinkNode { datatype data; // 数据域 structLinkNode *next; // 指针域存放下一个结点的地址}LNode,*LinkList; LinkList L; // 单链表的头指针 // 1.用头插法创建单链表 LinkListCreateListHead(int n) { // 创建头结点 LNode *L = (LNode *)malloc(sizeof(LNode)); L->next = NULL; // 设置指针域为空

LinkList p; // p指向新结点 for(inti=n;i>0;i--) // 先插入最后一个结点,插入次序与逻辑次序相反 { // 生成新结点 p = (LNode *)malloc(sizeof(LNode)); // 从键盘输入新结点的值 printf("请输入要插入第%d结点的值:\n",i); scanf("%d", &p->data); p->next = L->next; // 让L原来的后继结点成为p的后继结点 L->next = p; // p成为L新的后继结点 } return L; // 返回单链表的头指针 } // 2.用尾插法创建单链表 LinkListCreateListTail(int n) {

// 生成头结点 L = (LNode *)malloc(sizeof(LNode)); L->next = NULL;// 设置指针域为空 // p指向新结点,q指向尾结点 LinkList p, q = L; // 依次在末尾插入n个结点 for(inti=1;i<=n;i++) { // 生成新结点p p = (LNode *)malloc(sizeof(LNode)); // 从键盘输入新结点的值 printf("请输入第%d个结点的值:\n", i); scanf("%d",&p->data); p ->next = NULL; // 新结点(也是尾结点)的指针域为空 // 把新结点链接到单链表的末尾 q->next = p;

排序算法的效率比较,C语言

————————————————————————————————————————————————————————————————————共有三套系统。。对排序算法的效率比较。。———————————————————————————————————————————————————————————————————— 第一个 008#include 009#include 011typedef int bool; 012#define true1 013#define false0 015void swap(int*a,int*b) 016{ 017int t=*a; 018*a=*b; 019 *b =t; 020} 021/** 022*Bubble sort algorithm. 023*"a"---->array of Comparable items. 024*"left"---->the left-most index of the subarray. 025*"right"---->the right-most index of the subarray. 026*/ 027 028void bubbleSort(int*a,int left,int right) 029{ 030bool cond=true; 031int i,j; 032for(i=left;ii;--j) 036if(a[j]

单链表插入新元素

数据结构作业: 计科1301 张睿算法目的:实现在一个线性单链表中插入一个新的元素 设计思路:构建一个线性单链表,获得头指针。输入想要插入新元素的位置,和想要插入的元素。通过头指针找到相应位置,插入元素,输出插入了新元素的链表。 设计方案: 1、单链表的类型定义: typedef int ElemType; typedef int Status; typedef struct LNode{ ElemType data; struct LNode *next; }LNode,*LinkList; 2、构建单链表: void creatlist(LinkList &L) { int x,k; LinkList p; printf("输入想要插入的链表的长度:\n"); scanf("%d",&x); L=(LinkList)malloc(sizeof(LNode));

L->next=NULL; printf("输入%d个元素:",x); for(k=x;k>0;--k) { p=(LinkList)malloc(sizeof(LNode)); scanf("%d",&p->data); p->next=L->next; L->next=p; } } 3、插入新元素: Status ListINsert_L(LinkList &L,int i,ElemType &e) {LinkList p,s; p=L; int j=0; while(p&&jnext;++j;} if(!p||j>i-1) 若没有第i个元素则输出错误 return ERROR; s=(LinkList)malloc(sizeof(LNode)); s->data=e;s->next=p->next;

创建链表并实现插入、删除、输出,查找等功能

创建链表并实现插入、删除、输出,查找等功能 一、实验目的及内容 1、目的:通过上级操作,进一步了解线性表的存储结构以及基本运算。 2、内容: (1)、题目要求 编写程序,创建一个链表,实现链表的插、删除、查找和输出等功能。(2)、分析算法 单链表的建立,使用动态建立链表,有头插法建表和尾插法建表。 头插法建表: input_font() { head=NULL; datatype ch; puts("请输入您的数据,想结束输入,请键入“#”"); fflush(stdin); ch=getchar(); while(ch!='#') { p=(linklist *)malloc(sizeof(linklist)); p->c=ch; p->next=head; head=p; length++; puts("恭喜,你的数据输入正确!请继续操作!"); fflush(stdin); ch=getchar(); }

尾插法建表: input_end() { head=(linklist *)malloc(sizeof(linklist)); r=head; datatype ch; puts("请输入您的数据,想结束输入,请键入“#”"); fflush(stdin); ch=getchar(); while(ch!='#') { p=(linklist *)malloc(sizeof(linklist)); p->c=ch; r->next=p; r=p; length++; puts("恭喜,你的数据输入正确!请继续操作!"); fflush(stdin); ch=getchar(); } r->next=NULL; } (3)、流程图: 函数层次:

头插法与尾插法

#include #include typedef char DataType; //假设节点的数据类型为字符 typedef struct node{ //节点类型定义 DataType data; //节点的数据域 struct node *next; //节点的指针域 }ListNode; typedef ListNode* LinkList; ListNode *p; //指向某一节点的指针LinkList head; //单链表的头指针 //头插法 LinkList createListF(void); LinkList createListF(void){ //返回单链表的头指针 char ch; LinkList head; //头指针 ListNode *s; //工作指针 head = NULL; //链表开始为空

while (ch != '\n') { s = (ListNode*)malloc(sizeof(ListNode)); //生成新节点 s->data = ch; //将读入的数据放入新节点的数据域中 s->next = head; head = s; ch = getchar(); //读入下一个字符} return head; } //尾插法 LinkList createListR(void); LinkList createListR(void){ //返回头指针 char ch; LinkList head; //头指针 ListNode *s,*r; //工作指针 head = NULL; //链表开始为空 r = NULL; //尾指针初始值为空

单链表的插入和删除实验报告

单链表的插入和删除实验报告 一、目的: 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 二、要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 三、实验内容: 1、分析、理解程序。

程序的主要功能是实现对数据域为字符串的单链表的建立、查找、删除、插入和浏览。 其中链表的建立为头插入法。 链表建立示意图: (a)、删除hat: (b)、插入charu: 2、修改程序: 1)增加插入结点的功能。 如在jat后插入charu,程序运行结果为:

2)将建立链表的方法改为头插入法。 程序源代码: ===================main.cpp===================== #include #include #include #include #include "linkList.h" void main() { char ch[10],num[10],ch1[10];

LinkList L; L=CreateList(); //用尾插入法建立单链表,返回头指针 PrintList(L); //遍历链表输出其值 printf(" Delete node (y/n):"); //输入"y"或"n"去选择是否删除结点 scanf("%s",num); if(strcmp(num,"y")==0 || strcmp(num,"Y")==0) { printf("Please input Delete_data:"); scanf("%s",ch); //输入要删除的字符串 DeleteList(L,ch); PrintList(L); } printf("the position after:"); scanf("%s",ch1); InsertList(L,ch1); PrintList(L); FreeAll(L); //删除所有结点,释放内存 } ===================linkList.cpp===================== #include "linkList.h" #include #include #include #include //==========用尾插入法建立带头结点的单链表============ LinkList CreateList()

数据结构头插法和尾插法建立单链表

#include #include typedef struct node { int data; struct node *next; }*Listlink; /*前插法创建单链表*/ void qian_create(Listlink *head,int n) { int i; Listlink p; *head=(Listlink )malloc(sizeof(struct node)); (*head)->next=NULL;/*建立头结点*/ printf("input %d numbers:\n",n); for(i=0;idata)); p->next=(*head)->next; (*head)->next=p; } } /*后插法创建单链表*/ void hou_create(Listlink *head,int n) { int i; Listlink p,q; *head=(Listlink )malloc(sizeof(struct node)); (*head)->next=NULL;/*建立头结点*/ q=*head; for(i=0;idata)); p->next=q->next; q->next=p; q=p; } }

void print_list(Listlink head) { Listlink p; p=head->next; while(p!=NULL) { printf(" %d",p->data); p=p->next; } } main() { Listlink la,lb,lc; puts("houcha:"); hou_create(&lb,10); puts("qiancha:"); qian_create(&la,10); print_list(la); print_list(lb); getchar(); }

相关文档
最新文档