_薄层色谱总结

_薄层色谱总结
_薄层色谱总结

薄层色谱方法总结

1.方法原理

(1)流动相利用毛细管力带着样品穿过固定相。

(2) 样品与固定相的相互作用是指组份在移行过程中由于偶极- (诱导)- 偶极相互作用,氢键和范德华力的作用而产生不同程度的延缓、吸附、分散、离子交换和络合等分离机理。

2.溶剂

使用的溶剂必须是“分析纯”或“色谱纯”,溶剂组成采用体积量比(如正丁醇- 冰乙酸- 水= 4:1:1,V/V/V),或者绝对量(如18ml 甲苯+ 2 ml 甲醇)。其总量应足以使TLC/HPTLC 板的浸入深度约为5mm。展开剂要求新鲜配制,不要多次反复使用,如需分层,则按要求放置分层后取需要的一相(上层或下层),备用。

一、溶剂选择规则:

1、考虑分离成分的极性、溶解度、吸附度。

2、先加入极性较小的溶剂,若不容再加入少量极性大的溶剂

3、一般根据相似相溶原则,需要注意,极性相差大的不混溶。

4、混合溶剂通常使用一个高极性和低级性溶剂组成的混合溶剂。

5、展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首

先尝试使用该类展开剂,然后不断尝试比例,直到找到一个分离效果好的展开剂。

6、一般把两种溶剂混合时,采用高极性/低极性的体积比为1/3的混合溶剂,如果有分开

的迹象,再调整比例(或者加入第三种溶剂),达到最佳效果;如果没有分开的迹象

(斑点较“拖”),最好是换溶剂。

二、展开剂的选择条件:

①对的所需成分有良好的溶解性;②可使成分间分开;

②待测组分的Rf在0.2~0.8之间,定量测定在0.3~0.5之间;

③不与待测组分或吸附剂发生化学反应;⑤沸点适中,黏度较小;

⑥展开后组分斑点圆且集中;⑦混合溶剂最好用新鲜配制。

三、溶剂极性参数表

环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、乙酸:6.0、水:10.2

1、一般来说,弱极性溶剂体系的基本两相由正己烷和水组成,再根据需要加入甲醇、乙

醇,乙酸乙酯来调节溶剂系统的极性,以达到好的分离效果,适合于生物碱、黄酮、萜类等的分离;

2、中等极性的溶剂体系由氯仿和水基本两相组成,由甲醇、乙醇,乙酸乙酯等来调节,

适合于蒽醌、香豆素,以及一些极性较大的木脂素和萜类的分离;

3、强极性溶剂,由正丁醇和水组成,也靠甲醇、乙醇,乙酸乙酯等来调节,适合于极性

很大的生物碱类化合物的分离。

四、展开剂的选择

物质分子化学结构中,通常由较极性部分和非极性部分两部分。例如下面以苯丙烷为极性小部分,随着极性基团部分的增加,总体的极性就增加,展开剂极性也增加了。

以下分开讨论不同化合物极性情况及其对应的展开剂。

1、类极性较小的挥发性物质

冰片:石油醚(30~60℃)—醋酸乙酯(17:3)、厚朴酚:苯-醋酸乙酯(9:1.5)、α-香附酮:苯-醋酯乙酯-冰醋酸(92:5:5)、丹皮酚:环己烷-醋酸乙酯(3:1),

结论:以石油醚、正构烷和苯为体积百分数比较大的溶剂,通常起溶解和分离化合物的作用,而用醋酸乙酯为调节Rf(比移值)的溶剂。为了减少拖尾之类其他相似相溶原则以外的影响,适当加入添加剂,如有机酸或者有机碱。

2、类极性较小的不挥发性物质

β -谷甾醇:环己烷-醋酸乙酯-甲醇(6:2.5:1)或者环己烷-丙酮(5:2)、

熊果酸:甲苯-醋酸乙酯-冰醋酸(12:4:0.5)、齐墩果酸:氯仿-甲醇(40:1)、猪去氧胆酸:氯仿-乙醚-冰醋酸(2:2:1)、

大黄素:苯—醋酸乙酯—甲醇(15:2:0.2)或者苯—乙醇(8:1)、

丹参酮ⅡA:苯-醋酸乙酯-甲酸(40:25:4)、穿心莲内酯:氯仿-无水乙醇(9:1) 靛玉红、靛蓝氯仿-乙醇(9:1)或者苯-氯仿-丙酮(5:4:1)

结论:这类物质展开剂极性比极性较小的挥发性物质洗脱力强一些,因为这类物质极性小的母核大,而极性大的基团通常可以形成氢键,比如羧酸、羟基。以上物质,母核分子量减小、母核结构中不饱和健的增加(尤其是出现苯环),极性基团的增加,都使极性增加,展开剂极性也增大。。这个范围内的物质很多,一般展开剂大百分数的溶剂可以从环己烷—〉甲苯—〉二甲苯—〉苯—〉氯仿的顺序,按照极性要求选择。这里注意,异丙醇、正丁醇极性指数也比较小,在这范围的化合物很少用,因为粘性大、展开慢,造成斑点扩散;另外,羟基的氢键作用力也有不利。调节Rf值的溶剂,从醋酸乙酯—〉甲醇—〉丙酮—〉乙醇。挥发性物质也有很多带羰基、羟基的,但从它的挥发性就可以明白,分子间作用力不强,另外,母核与石油醚、正构烷和苯的结构差异小,估计更容易脱离硅胶吸附,更快进入溶剂中,而不需要通过提高展开剂的极性。

由于存在糖的多羟基结构,苷元的结构影响变小。展开剂中使用极性大的有机溶剂(氯仿、醋酸乙酯、甲醇、正丁醇)和水。乙酸和甲酸的使用,一方面增大展开剂极性,另外也可以抑制硅胶羟基的作用,减少拖尾。由于混溶性和硅胶耐酸能力的限制,水和酸的使用是有限度的。

3、类极性大的小分子有机酸:

没食子酸:氯仿-醋酸乙酯-甲酸(5:4:1)、阿魏酸、咖啡酸、菊苣酸、绿原酸、异绿原酸。例如下面以苯丙烷为极性小部分,随着极性基团部分的增加,总体的极性就增加,展开剂极性也增加了。依次为肉桂酸、阿魏酸、咖啡酸、菊苣酸、绿原酸。相应展开剂分别为:正己烷—乙醚—冰醋酸(5:5:0.1)、苯-冰醋酸-甲醇(30:1:3)、氯仿-甲醇-甲酸(9:1: 0.5)、石油醚-乙酸乙酯-甲酸(3:6: 1)、醋酸丁酯-甲酸-水(7:2.5:2.5)。

结论:

这类物质多数是苯乙烯母核的,这个结构的极性本身比较大,另外有酚羟基和羧酸基团,个别有多羟基配基。皂苷的展开剂差不多,极性大。注意甲酸通常指的是浓度85%左右的,含有水。

4、类含氮有机物:

盐酸小檗碱:苯-醋酸乙酯-甲醇-异丙醇-浓氨试液(12:6:3:3:0.6)(氨蒸气饱和)或正丁醇-冰醋酸-水(7:1:2)、

麻黄碱:氯仿-甲醇-浓氨试液(20:5:0.5)或正丁醇-冰醋酸-水(8:2:1)

甘草酸铵:醋酸乙酯-甲酸-冰醋酸-水(15:1:1:2)。

结论分析:由于NH2硅醇基的作用很强,在强极性展开剂加有机酸、有机碱扫尾。对于极性化合物,使用正丁醇对斑点扩散影响较小,因为化合物和硅胶的作用强。

当被分离物质为弱极性物质,一般选用弱极性溶剂为洗脱剂;被分离物质为强极性成分,则须选用极性溶剂为洗脱剂。如果对某一极性物质用吸附性较弱的吸附剂(如以硅藻土或滑石粉代替硅胶),则洗脱剂的极性亦须相应降低。

3.TLC的通用显色方法

理想的显色希望灵敏度高,斑点颜色稳定、斑点与背景间的对比度好,斑点的大小及颜色的深度与物质的量成正比,在样品组成并不完全已知的情况下,通用显色方法显得尤为重要,通用显色方法主要有:

1、紫外照射法:方便、不破坏样品;

2、碘蒸气法:通用性强,与紫外法结合灵敏度高于该两法单独使用;

3、荧光试剂:制造荧光背景,使原来紫外下无荧光物质被鉴别,有荧光物质更明显;

4、硫酸溶剂:对绝大多数有机物有效,但有破坏性。

4.薄层层析和纸色谱操作注意事项

1、点样点样器点样于薄层板上,一般为圆点,点样基线距底边1.0~1.5cm,样点直径

一般不大于2mm,点间距离可视斑点扩散情况以不影响检出为宜。若因样品溶液太稀,可重复点样,但应待前次点样的溶剂挥发后方可重新点样,以防样点过大,造成拖尾、扩散等现象,而影响分离效果。点样时必须注意勿损伤薄层表面

2、展开将点好样品的薄层板放入展开缸的展开剂中,浸入展开剂的深度为距原点5mm

为宜,密封,待展开至规定距离(一般为8~15cm),取出薄层板,晾干,待检测。

注:展开缸如需预先用展开剂预平衡,可在缸中加入适量的展开剂,密闭,一般保持15-30分钟。

3、显色与检视供试品含有可见光下有颜色的成分可直接在日光下检视,也可用喷雾法

或浸渍法以适宜的显色剂显色,或加热显色,在日光下检视。有荧光的物质或遇某些试剂可激发荧光的物质可在356nm紫外光灯下观察荧光色谱。对于可见光下无色,但在紫外光下有吸收的成分可用带有荧光剂的硅胶板(如GF254板),在254nm紫外光灯下观察荧光板面上的荧光猝灭物质形成的色谱。

把我的祖传秘方告诉你吧

PE(60-90)EtAc/PE=1:2 EtAc/PE/AcOH=15:5:1 EtAc/AcOH/n-Butanol/H2O=2:1:1:1 8年来我用这四种体系,没有出现过什么问题.我一直在用的是乙酸乙酯:环已烷,不断调节比例,直到有满意的Rf值,有拖尾时可能要加酸或碱,我一般乙酸和三乙胺。

我用了好几年了,都还好。不妨一试!

铺板

铺板用的匀浆不宜过稠或过稀:过稠,板容易出现拖动或停顿造成的层纹;过稀,水蒸发后,板表面较粗糙。匀浆配比一般是硅胶G:水=1:2~3,硅胶G:羧甲基纤维素钠水溶液=1:2。研磨匀浆的时间,根据经验来定,与空气湿度有关,一般通过拿起研棒时匀浆下滴的情况来判断,越稠越难下滴。匀浆的稀稠除影响板的平滑外,也影响板涂层的厚度,进一步影响上样量。涂层薄,点样易过载;涂层厚,显色不那么明显。通常,板的质量对薄层鉴别的影响不是很大,影响最大的是展开剂的配制和展开系统的饱和。

点样

尽量用小的点样管。如果有足够的耐性,最好只用1微升的点样管。这样,点的斑点较小,展开的色谱图分离度好,颜色分明。样品溶液的含水量越小越好,样品溶液含水量大,点样斑点扩散大。样品溶液的溶剂一般是无水乙醇、甲醇、氯仿、乙酸乙酯。点好样的薄层板用电吹风的热风吹干或放入干燥器里晾干。

展开剂配制

选择合适的量器把各组成溶剂移入分液漏斗,强烈振摇使混合液充分混匀,放置,如果分层,取用体积大的一层作为展开剂。绝对不应该把各组成溶液倒入展开缸,振摇展开缸来配制展开剂。混合不均匀和没有分液的展开剂,会造成层析的完全失败。各组成溶剂的比例准确度对不同的分析任务有不同的要求,尽量达到实验室仪器的最高精确度,比如:取1ml的溶剂,应使用1ml的单标移液管,移液管应符合计量认证要求,尽管多数时候这不是必须的。展开系统的饱和一般使用的是双槽的展开缸,一槽用来放展开剂,另一槽可加入氨水或硫酸。把待展开的板放入两槽间的平台,斜架着,盖上展开缸的盖子。让展开剂的蒸气充满展开缸,并使薄层板吸附蒸气达到饱和,防止边沿效应,饱和时间在半个小时左右。展开时难免要打开盖子把薄层板放入展开剂中,不过对薄层板与蒸气的吸附平衡影响不大,当然动作应该尽量轻、快。

温湿度的控制

温湿度对薄层影响都很大。不冻结的前提下,通常温度越低分离越好,较难的分离需在低温下分离,例如人参皂苷。湿度的影响,估计主要是影响薄层板的吸附能力,导致选择性(容量因子)的变化,湿度应根据实际情况确定。温度控制使用空调器或冰柜,湿度控制是通过在另一展开槽放置相应浓度的硫酸。

显色

喷显色剂显色最重要是有好的雾化器。

常用溶剂参数表

化合物名称中文名称极性粘度沸点吸收波长i-pentane (异戊烷) 0 - 30 -

n-pentane (正戊烷) 0 0.23 36 210 Petroleum ether (石油醚) 0.01 0.3 30~60 210 Hexane (己烷) 0.06 0.33 69 210 Cyclohexane (环己烷) 0.1 1.0 81 210 Isooctane (异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid (三氟乙酸) 0.1 - 72 - Trimethylpentane (三甲基戊烷) 0.1 0.47 99 215 Cyclopentane (环戊烷) 0.2 0.47 49 210

n-heptane (庚烷) 0.2 0.41 98 200 Butyl chloride (丁基氯; 丁酰氯) 1.0 0.46 78 220 Trichloroethylene (三氯乙烯; 乙炔化三氯) 1.0 0.57 87 273 Carbon tetrachloride (四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231

i-propyl ether (丙基醚; 丙醚) 2.4 0.37 68 220 Toluene (甲苯) 2.4 0.59 111 285

p-xylene (对二甲苯) 2.5 0.65 138 290 Chlorobenzene (氯苯) 2.7 0.8 132 -

o-dichlorobenzene (邻二氯苯) 2.7 1.33 180 295 Ethyl ether (二乙醚; 醚) 2.9 0.23 35 220 Benzene (苯) 3.0 0.65 80 280 Isobutyl alcohol (异丁醇) 3.0 4.7 108 220 Methylene chloride (二氯甲烷) 3.4 0.44 240 245 Ethylene dichloride (二氯化乙烯) 3.5 0.78 84 228

n-butanol (正丁醇) 3.7 2.95 117 210

n-butyl acetate (醋酸丁酯;乙酸丁酯) 4.0 - 126 254

n-propanol (丙醇) 4.0 2.27 98 210

化合物名称中文名称极性粘度沸点吸收波长Methyl isobutyl ketone (甲基异丁酮) 4.2 - 119 330 Tetrahydrofuran (四氢呋喃) 4.2 0.55 66 220 Ethanol (乙醇) 4.3 1.20 79 210 Ethyl acetate (乙酸乙酯) 4.3 0.45 77 260

i-propanol (异丙醇) 4.3 2.37 82 210 Chloroform (氯仿) 4.4 0.57 61 245 Methyl ethyl ketone (甲基乙基酮) 4.5 0.43 80 330 Dioxane (二恶烷; 二氧六环; 二氧杂环己烷) 4.8 1.54 102 220 Pyridine (吡啶) 5.3 0.97 115 305 Acetone (丙酮) 5.4 0.32 57 330 Nitromethane (硝基甲烷) 6.0 0.67 101 330 Acetic acid (乙酸) 6.2 1.28 118 230 Acetonitrile (乙腈) 6.2 0.37 82 210 Aniline (苯胺) 6.3 4.40 184 - Dimethyl formamide (二甲基甲酰胺) 6.4 0.92 153 270 Methanol (甲醇) 6.6 0.60 65 210 Ethylene glycol (乙二醇 ) 6.9 19.9 197 210 Dimethyl sulfoxide (二甲亚砜 DMSO) 7.2 2.24 189 268 Water (水)10.2 1.0 100 268

常用混合溶剂极性顺序:

环己烷:乙酸乙酯(8:2) < 氯仿:丙酮(95:5) < 苯:丙酮(9:1) <苯:乙酸乙酯(8:2) < 氯仿:乙醚(9:1) < 苯:甲醇(95:5) < 苯:乙醚(6:4) < 环己烷:乙酸乙酯(1:1) < 氯仿:乙醚(8:2) < 氯仿:甲醇(99:1) < 苯:甲醇(9:1) < 氯仿:丙酮(85:15)< 苯:乙醚(4:6) < 苯: 乙酸乙酯(1:1) < 氯仿:甲醇(95:5)< 氯仿:丙酮(7:3) < 苯: 乙酸乙酯(3:7) < 苯:乙醚(1:9) < 乙醚:甲醇(99:1) < 乙酸乙酯:甲醇(99:1) < 苯:丙酮(1:1) < 氯仿:甲醇(9:1)

中南大学仪器分析经典习题总结

中南大学仪器分析各章节经典习题 第2章气相色谱分析 一.选择题 1.在气相色谱分析中, 用于定性分析的参数是 (保留值保留值) 2. 在气相色谱分析中, 用于定量分析的参数是 ( D ) A 保留时间 B 保留体积 C 半峰宽 D 峰面积 3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好? ( A ) A H2 B He C Ar D N2 4. 热导池检测器是一种 (浓度型检测器) 5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适? ( D ) A H2 B He C Ar D N2 6、色谱法分离混合物的可能性决定于试样混合物在固定相中( D )的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 7、选择固定液时,一般根据( C )原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 8、相对保留值是指某组分2与某组分1的(调整保留值之比)。 9、气相色谱定量分析时( B )要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 10、理论塔板数反映了(柱的效能。 11、下列气相色谱仪的检测器中,属于质量型检测器的是( B ) A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器; D.火焰光度和电子捕获检测器。 12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?( D ) A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)、(B)和(C) 13、进行色谱分析时,进样时间过长会导致半峰宽(变宽)。 14、在气液色谱中,色谱柱的使用上限温度取决于( D ) A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 15、分配系数与下列哪些因素有关( D ) A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 二、填空题 1.在一定温度下, 采用非极性固定液,用气-液色谱分离同系物有机化合物, 低碳数的有机化合物先流出色谱柱, _____高碳数的有机化合物____后流出色谱柱。 2.气相色谱定量分析中对归一化法要求的最主要的条件是试样中所有组分都要在一定时间内分离流出色谱柱,且在检测器中产生信号。 3.气相色谱分析中, 分离非极性物质, 一般选用非极性固定液, 试样中各组分按沸点的高低分离, 沸点低的组分先流出色谱柱,沸点高的组分后流出色谱柱。 4.在一定的测量温度下,采用非极性固定液的气相色谱法分离有机化合物, 低沸点的有机化合物先流出色谱柱, 高沸点的有机化合物后流出色谱柱。 5.气相色谱分析中, 分离极性物质, 一般选用极性固定液, 试样中各组分按极性的大小分离, 极性小的组分先流出色谱柱, 极性大的组分后流出色谱柱。 6、在气相色谱中,常以理论塔板数(n)和理论塔板高度(H)来评价色谱柱效能,有时也用单位柱长(m) 、有效塔板理论数(n有效)表示柱效能。

过柱子我的经验总结

过柱子经验总结 Swrl20041219据网络资源整理支持小木虫 1、选柱子:现在见到的柱子径高比一般在1:5-10。 2、称量:100-300目硅胶,称30-70倍于上样量;如果极难分,也可以用100 倍量的硅胶书中写硅胶量是样品量的30-40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分R f在0.2--0.4,杂质相差0.1以上),就可以少用硅胶。 3、选洗脱剂:一般淋洗剂是采用TLC分析得到的展开剂的比例再稀释一倍后的溶剂。极性小的用乙酸乙酯:石油醚系统;极性较大的用甲醇:氯仿系统;极性大的用甲醇:水:正丁醇:醋酸系统。要使所需点在Rf值在0.2-0.3左右的比较好。常用溶剂的极性顺序:石油醚<环己烷/己烷<苯乙醚<氯仿<乙酸乙酯<正丁醇<丙酮<乙醇<甲醇<水。 一般把两种溶剂混合时,采用高极性/低极性的体积比为1/3的混合溶剂。拖尾可以加入少量氨水或冰醋酸。乙酸乙酯/石油醚= 4:1可用TLC分开。乙酸乙酯和石油醚(60-90)。 4、搅成匀浆:先把硅胶泡在烧杯中,用干硅胶体积一倍的溶剂泡,用超声波超半个小时,中间看到气泡时用玻璃棒搅一下。如果洗脱剂是石油醚/乙酸乙酯/丙酮体系,就用石油醚拌;如果洗脱剂是氯仿/醇体系,就用氯仿拌。 5、装柱: A、用溶剂把柱子饱和一次,因为溶剂和硅胶饱和时放出的热量可能使产品分解。 B、将柱底用棉花塞紧,不必用海沙,加入约1/3体积石油醚(氯仿),装上蓄液球,打开柱下活塞,将匀浆一次倾入蓄液球内。随着沉降,会有一些硅胶沾在蓄液球内,用石油醚(氯仿)将其冲入柱中。 C、装柱时一定要保证无气泡,同时敲打柱体使柱体更均匀、紧凑,装毕,用洗脱液冲三次。 6、压实:装柱完后,加入更多的石油醚,用双联球或气泵加压,直至流速恒定。柱床约被压缩至9/10体积。无论走常压柱或加压柱,都应进行这一步,可使分离度提高很多,且可以避免过柱时由于柱床萎缩产生开裂。 7、上样:干法湿法都可以。

-薄层色谱总结

薄层色谱方法总结 1.方法原理 (1)流动相利用毛细管力带着样品穿过固定相。 (2) 样品与固定相的相互作用是指组份在移行过程中由于偶极- (诱导)- 偶极相互作用,氢键和范德华力的作用而产生不同程度的延缓、吸附、分散、离子交换和络合等分离机理。 2.溶剂 使用的溶剂必须是“分析纯”或“色谱纯”,溶剂组成采用体积量比(如正丁醇- 冰乙酸- 水= 4:1:1,V/V/V),或者绝对量(如18ml 甲苯+ 2 ml 甲醇)。其总量应足以使TLC/HPTLC 板的浸入深度约为5mm。展开剂要求新鲜配制,不要多次反复使用,如需分层,则按要求放置分层后取需要的一相(上层或下层),备用。 一、溶剂选择规则: 1、考虑分离成分的极性、溶解度、吸附度。 2、先加入极性较小的溶剂,若不容再加入少量极性大的溶剂 3、一般根据相似相溶原则,需要注意,极性相差大的不混溶。 4、混合溶剂通常使用一个高极性和低级性溶剂组成的混合溶剂。 5、展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首 先尝试使用该类展开剂,然后不断尝试比例,直到找到一个分离效果好的展开剂。 6、一般把两种溶剂混合时,采用高极性/低极性的体积比为1/3的混合溶剂,如果有分开 的迹象,再调整比例(或者加入第三种溶剂),达到最佳效果;如果没有分开的迹象 (斑点较“拖”),最好是换溶剂。 二、展开剂的选择条件: ①对的所需成分有良好的溶解性;②可使成分间分开; ②待测组分的Rf在0.2~0.8之间,定量测定在0.3~0.5之间; ③不与待测组分或吸附剂发生化学反应;⑤沸点适中,黏度较小; ⑥展开后组分斑点圆且集中;⑦混合溶剂最好用新鲜配制。 三、溶剂极性参数表 环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、乙酸:6.0、水:10.2

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

合成过柱子经验谈

关于柱层析和TLC之我的体会 层析和TLC是有机化学工作者必须下苦功夫的两项实验技术。这两项技术掌握与否,对于提高实验的效率至关重要。常见的例子是:在柱层析时,由于层析柱中的硅胶填料装得不均匀(没有填严实),使得柱子在淋洗过程中就因为出现太多气泡变花,导致分离效果不好。更常见的例子是:层析柱虽然装得不错,但是由于淋洗剂选择不恰当,结果导致几十毫克产品,用了几百毫升淋洗剂都还没有完全分离。分离同样的东西,熟手可能只需要半个小时,而一个层析技术不过关的人可能半天都不能得到纯品。 由此可见,这两项技术掌握与否,对于提高工作效率,减轻工作量,减少有机溶剂的使用,从而对身心健康和环境保护都有明显的作用。 柱层析关键在于柱子是否装好和淋洗剂是否选择恰当。而淋洗剂的选择则是通过TLC确定。这里要指出的一点是:TLC的作用除了跟踪反应进程,检测试剂和原料纯度外,一个重要的用途就是为柱层析选择适当的淋洗剂。 首先谈柱层析: 装柱子(添硅胶)时,有两种方法:即湿法装柱和干法装柱,二者各有优劣。不论干法还是湿法,硅胶(固定相)的上表面一定要平整,并且硅胶(固定相)的高度一般为15cm左右,太短了可能分离效果不好,太长了也会由于扩散或拖尾导致分离效果不好。 湿法装柱是先把硅胶用适当的溶剂拌匀后,再填入柱子中,然后再加压用淋洗剂“走柱子”,本法最大的优点是一般柱子装的比较结实,没有气泡。 干法装柱则是直接往柱子里填入硅胶,然后再轻轻敲打柱子两侧,至硅胶界面不再下降为止,然后再填入硅胶至合适高度,最后再用油泵直接抽,这样就会使得柱子装的很结实。接着是用淋洗剂“走柱子”,一般淋洗剂是采用TLC分析得到的展开剂的比例再稀释一倍后的溶剂。通常上面加压,下面再用油泵抽,这样可以加快速度。干法装柱较方便,但最大的缺陷在于“走柱子”时,由于溶剂和硅胶之间的吸附放热(可以用手摸柱子明显感觉到),容易产生气泡,这一点在使用低沸点的淋洗剂时如乙醚,二氯甲烷更为明显。虽然产生的气泡在加压的情况下不易察觉,但是,一旦撤去压力,如在上样、加溶剂等操作的时候,气泡就会释放出来,严重时,整个柱子变花,样品不可能平整地通过,当然也就谈不上

仪器分析总结习题 (1)

第一章 气象色谱法 1. 死时间tM 2. 保留时间tR 3. 调整保留时间t ’R 4. 死体积VM 5. 保留体积VR 6. 调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度Y1/2 10.峰底宽度Y 1、若一个溶质的分配比为,计算它在色谱柱流动相中的质量分数(%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为和,死时间为1min ,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍? (3,3) 3、某色谱条件下,组分A 的分配比为4,死时间为30s ,求组分A 的保留时间(150s ) 4、下列哪些参数改变会引起相对保留值变化? A 、柱长 B 、相比 C 、柱温 D 、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A 、改变载气流速 B 、改变固定液化学性质 C 、增加柱温 D 、增加柱长 E 、增加固定液的量 例1 已知某组分峰Y =40s ,tR=400s 。计算理论塔板数n 。 例2 已知一根1米长的色谱柱,neff =1600块,组份A 在柱上的调整保留时间为100s ,试求A 峰的半峰宽和Heff 。 例3 在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R= 。计算需要多少块有效塔板。若填充柱的塔板高度为 cm ,柱长是多少? 解: γ2,1= 100 / 85 = n 有效 = 16R2 [γ 2,1 / (γ 2,1 -1) ]2 = 16× × / ) 2 = 1547(块) L 有效 = n 有效·H 有效 = 1547× = 155 cm 1600)40 400(16)(1622===Y t n R 理'21/25.54() R t L n H Y n ==有效有效有效

过柱子的经验总结

过柱子的经验总结 Revised as of 23 November 2020

过柱子的经验总结 单一溶剂的极性大小顺序为: 石油醚(小)→环己烷→四氯化碳→三氯乙烯→苯→甲苯→二氯甲烷→氯仿→乙醚→乙酸乙酯→乙酸甲酯→丙酮→正丙醇→甲醇→吡啶→乙酸(大) 混合溶剂的极性顺序: 苯∶氯仿(1+1)→环己烷∶乙酸乙酯(8+2)→氯仿∶丙酮(95+5)→苯∶丙酮(9+1)→苯∶乙酸乙酯(8+2)→氯仿∶乙醚(9+1)→苯∶甲醇(95+5)→苯∶乙醚(6+4)→环己烷∶乙酸乙酯(1+1)→氯仿∶乙醚(8+2)→氯仿∶甲醇(99+1)→苯∶甲醇(9+1)→氯仿∶丙酮(85+15)→苯∶乙醚(4+6)→苯∶乙酸乙酯(1+1)→氯仿∶甲醇(95+5)→氯仿∶丙酮(7+3)→苯∶乙酸乙酯 (3+7)→苯∶乙醚(1+9)→乙醚∶甲醇(99+1)→乙酸乙酯∶甲醇(99+1)→苯∶丙酮(1+1)→氯仿∶甲醇(9+1) 过柱子经验总结 1, 选柱子:现在见到的柱子径高比一般在 1:5-10. 2, 称量:100-300 目硅胶,称 30-70 倍于上样量;如果极难分,也可以用 100 倍量的硅胶书中写硅胶量是样品量的 30-40 倍,具体的选择要具体分析.如果所需组分和杂质分的比较开(是指在所需组分 Rf 在杂质相差以上) , 就可以少用硅胶.

3, 选洗脱剂:一般淋洗剂是采用 TLC 分析得到的展开剂的比例再稀释一倍后的 溶剂.极性小的用乙酸乙酯:石油醚系统;极性较大的用甲醇:氯仿系统;极性大的 用甲醇:水:正丁醇:醋酸系统.要使所需点在 Rf 值在左右的比较好.常用溶剂 的极性顺序:石油醚<环己烷/己烷<苯乙醚<氯仿<乙酸乙酯 <正丁醇<丙酮<乙醇<甲 醇<水. 一般把两种溶剂混合时, 采用高极性/低极性的体积比为 1/3 的混合溶剂. 拖尾可以加入少量氨水或冰醋酸. 乙酸乙酯/石油醚= 4:1 可用 TLC 分开.乙酸 乙酯和石油醚(60-90). 4, 搅成匀浆:先把硅胶泡在烧杯中,用干硅胶体积一倍的溶剂泡,用超声波超半个 小时,中间看到气泡时用玻璃棒搅一下.如果洗脱剂是石油醚/乙酸乙酯/丙酮体系,就用石油醚拌;如果洗脱剂是氯仿/醇体系,就用氯仿拌. 5, 装柱: A, 用溶剂把柱子饱和一次, 因为溶剂和硅胶饱和时放出的热量可能使 产品分解. B,将柱底用棉花塞紧,不必用海沙,加入约 1/3 体积石油醚(氯仿),装 上蓄液球,打开柱下活塞,将匀浆一次倾入蓄液球内.随着沉降,会有一些硅胶沾在 蓄液球内,用石油醚(氯仿)将其冲入柱中. C,装柱时一定要保证无气泡,同时敲打 柱体使柱体更均匀,紧凑,装毕,用洗脱液冲三次. 6, 压实:装柱完后,加入更多的石油醚,用双联球或气泵加压,直至流速恒定. 柱床 约被压缩至 9/10 体积.无论走常压柱或加压柱,都应进行这一步,可使分离度提 高很多,且可以避免过柱时由于柱床萎缩产生开裂. 7, 上样:干法湿法都可以. A,在硅胶上层加少量无水硫酸钠(以免样品被洗脱剂冲散)取适量样溶液上样.上样后,加入一些洗脱剂,再将一团脱脂棉塞至接近硅胶表面.然后就可以放心地加入大量洗脱剂,而不会冲坏硅胶表面. B,用少量的溶剂溶 样品加样,加完后将下面的活塞打开,待溶剂层下降至石英砂面时,再加少量的低

气相色谱与液相色谱 的比较(总结)

液相色谱和气相色谱相比较,在以下几个方面具有优越性: (1)气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。这使气相色谱法的使用范围受到了限制。据统计,目前气相色谱法所能分析的有机物,只占全部有机物的15%~20%。另一方面,液相色谱却不受样品的挥发性和热稳定性的限制。所以液相色谱非常适合于分离生物、医药有关的大分子和离子型化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定的化合物。 (2)对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因: ①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。 ②液相色谱中具有独特效能的柱填料(固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。 ③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。 (3)和气相色谱相比,液相色谱对样品的回收比较容易,而且是定

量的,样品的各个组分很容易被分离出来。因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。在气相色谱中所分离出的各样品组分虽也可以回收,但一般都不太方便,而且定量性差。液相色谱法由于具有这些气相色谱法不具备的优点,因此在许多领域得到广泛的应用。 气相色谱和液相色谱相比各有什么特点呢?让我们从以下几个方面进行考察: 一、流动相 GC用气体作流动相,又叫载气。常用的载气有氦气、氮气和氢气。与HPLC相比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。而在HPLC中,流动相种类多,且对分离结果的贡献很大。换一个角度看,GC的操作参数优化相对HPLC要简单一些。此外,GC载气的成本要低于HPLC流动相的成本。 二、固定相 因为GC的载气种类相对少,故其分离选择性主要通过不同的固定相来改变,尤其在填充柱GC中,固定相常由载体和涂敷在其表面的固定液组成,这对分离有决定性的影响,所以,导致了种类繁多的GC 固定相的开发研究。迄今已有数百种GC固定相可供我们选择使用,

过柱子经验

过柱经验 2008-09-17 20:59 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 柱子可以分为:加压,常压,减压。压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 关于柱子的尺寸,应该是粗长的最好。柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。 关于无水无氧柱,适用于对氧,水敏感,易分解的产品。 可以湿柱,也可以干柱。不过在样品之前至少要用溶剂把柱子饱和一次,因为溶剂和硅胶饱和时放出的热量有可能是产品分解,毕竟要分离的是敏感的东东,小心不为过。也是因为分离的东西比较敏感,所以接收瓶一定要用可密封的,遵循schlenk操作。至于是加压、常压、减压,随需而定。因为是schlenk操作,所以点板是个问题,如果样品是显色的,恭喜了,不用点板,直接看柱子上的色带就行了。如果样品无色,只好准备几十个schlenk瓶,一瓶一瓶的点,不过几次之后就知道样品在哪,也就可以省些了。像我以前过一根无水无氧柱,需要六个schlenk,现在只一个就能把所要的全收集到。无水无氧柱中用的比较多的是用氧化铝作固定相。因为硅胶中有大量的羟基裸露在外,很容易是样品分解,特别是金属有机化合物和含磷化合物。而氧化铝可以做成碱性、中性和酸性的,选择余地比较大,但是比硅胶要贵些。听说有个方法,就是用石英做柱子,然后用HF254做固定相,这样在柱子外面用紫外灯一 照就知道产品在哪里了,没有验证过。哪位做过可以提出来大家参详参详。 关于湿法、干法上样。 湿法省事,一般用淋洗剂溶解样品,也可以用二氯甲烷、乙酸乙酯等,但溶剂越少越好,不然溶剂就成了淋洗剂了。很多样品在上柱前是粘乎乎的,一般没关系。可是有的上样后在硅胶上又会析出,这一般都是比较大量的样品才会出现,是因为硅胶对样品的吸附饱和,而样品本身又是比较好的固体才会发生,这就应该先重结晶,得到大部分的产品后再柱分,如果不能重结晶那就不管它了,直接过就是了,样品随着淋洗剂流动会溶解的。有些样品溶解性差,能溶解的溶剂又不能上柱(比如DMF,DMSO等,会随着溶剂一起走,显色是一个很长的脱尾),这时就必须用干法上柱了。样品和硅胶的量有一种说法是1:1,我觉得是越少越好,但是要保证在旋干后,不能看到明显的固体颗粒(那说明有的样品没有吸附在硅胶上)。 溶剂的选择。 当然是最便宜,最安全,最环保的了。所以大多选用石油醚,乙酸乙酯。文献中有写用正己烷的,

薄层色谱法实验报告

实验报告 一、实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 二、实验原理 有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值R f表示。 R f 原点至层析斑点中心的距离原点至溶剂前沿的距离 三、实验仪器与药品 5.0cm×15.0cm硅胶层析板两块,卧式层析槽一个,点样用毛细管。 四、物理常数 五、仪器装置图

“浸有层析板的层析槽”图 1-层析缸,2-薄层板,3-展开剂饱和蒸汽,4-层析液 六、实验步骤 (1)薄层板的制备: 称取2~5g层析用硅胶,加适量水调成糊状,等石膏开始固化时,再加少许水,调成匀浆,平均摊在两块5.0×15cm的层析玻璃板上,再轻敲使其涂布均匀。(老师代做!)固化后,经105℃烘烤活化0.5h,贮于干燥器内备用。 (2)点样。 在层析板下端2.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取毛细管,分别蘸取偶氮苯、偶氮苯与苏丹红混合液,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1~2mm为宜!斑点间距为1cm) (3)定位及定性分析 用铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前沿到起始线的距离,然后计算各样品的比移值并定性确定混合物中各物质名称。

实验注意事项 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。 3、展开用的烧杯要洗净烘干,放入板之前,要先加展开剂,盖上表面皿,让烧杯内形成一定的蒸气压。点样的一端要浸入展开剂0.5cm 以上,但展开剂不可没过样品原点。当展开剂上升到距上端0.5-1cm 时要及时将板取出,用铅笔标示出展开剂前沿的位置。 讨论: 七、思考题

柱层析的一些心得

常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分离的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 1.吸附剂 常用的吸附剂有氧化铝、硅胶、氧化镁、碳酸钙和活性炭等:吸附剂一般要经过纯化和活性处理,颗粒大小应当均匀。对吸附剂来说粒子小、表面积大,吸附能力就高,但是颗粒小时,溶剂的流速就太慢,因此应根据实际分离需要而定。供柱色谱使用的氧化铝有酸性、中性和碱性3种。酸性氧化铝是用1%盐酸浸泡后,用蒸馏水洗至氧化铝的悬浮液pH为4,用于分离酸性物质;中性氧化铝的pH约为7.5,用于分离中性物质;碱性氧化铝的pH约为10,用于胺或其它碱性化合物的分离。 因硅胶略带酸性,只能用于对酸不敏感的化合物的分离。常用300-400目的柱硅胶或H 硅胶。若化合物的R f值相差较大,则可考虑使用200-300目硅胶以加快层析速度。 另:因吸附剂的比表面较大,天气潮湿时或长期放置中吸附的水分会对分离效果产生极大的影响(相当于大大增加了固定相的极性导致样品分不开),因此应将吸附剂放入90~100度烘箱内烘2小时后,取出在干燥器中冷却后再使用。使用的硅胶,不用时一定要密封,防止吸潮。TLC所用的硅胶板一定要保存在干燥器里面,或使用前在红外烘箱里干燥一段时间。 2.溶质的结构与吸附能力的关系 化合物的吸附性与它们的极性成正比,化合物分子中含有极性较大的基团时,吸附性也较强,氧化铝对各种化合物的吸附性按以下次序递减: 酸和碱>醇、胺、硫醇>酯、醛、酮>芳香族化合物>卤代物、醚>烯>饱和烃 3.柱子可以分为:加压,常压,减压。 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。 加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球是常用的手动加压的方法。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 体会:过柱时是否加压要具体分析,通常情况下直径比较粗的柱子用常压即可,因其横截面积的缘故淋洗剂的流速已足够快。通常控制柱子下端液体流速大约在0.5~1滴每秒的范围比较合适。 减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。一般不推荐使用。 4.柱子的尺寸 从理论上讲应该是粗长的好。柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了。

气体色谱分析方法总结

永久性气体色谱分析 .方法原理 以或分子筛为固定相,用气固色谱法分析混合气中地氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分地含量. .仪器和试剂①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 或分子筛(目);使用前预先在高温炉内,于℃活化后备 用.纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中.氢气装在高压钢瓶内. .色谱分析条件 固定相:或分子筛(目);不锈钢填充柱管φ×;柱温:室温. 载气:氢气,流量个人收集整理勿做商业用途 检测器:热导池检测器,桥流;衰减,检测室温度:室温. 气化室:室温,进样量用六通阀进样,定量管. .定性分析个人收集整理勿做商业用途 记录各组分从色谱柱流出地保留时间,用纯物质进行对照. .定量分析 由谱图中测得各个组分地峰高和半峰宽计算各组分地峰面积.已知氧、氮、甲烷、一氧化碳地相对摩尔校正因子分别为、、、.再用峰面积归一法就可计算出各个组分地体积百分数().个人收集整理勿做商业用途 白酒中主要成分地色谱分析 .方法原理 白酒地主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测. 个人收集整理勿做商业用途为分离白酒中地主要成分可使用填充柱或毛细管柱,常用地填充柱固定相为;邻苯二甲酸二壬酯吐温硅烷化白色载体(目);聚乙二醇有机载体(目);吐温司班红色载体(目)等.也可使用以聚乙二醇或交联制备地石英弹性毛细管柱. .仪器和试剂个人收集整理勿做商业用途 ①仪器带有分流进样器和氢火焰离子化检测器地气相色谱仪、皂膜流量计、微处理机. ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应地醛、醇、酯地色谱纯标样. .色谱分析条件个人收集整理勿做商业用途 色谱柱:冠醚交联石英弹性毛细管柱φ×,固定液液膜厚度.程序升温:℃()以℃升温至℃(). 载气:氮气,流量.燃气:氢气,流量.助燃气:压缩空气,流量. 个人收集整理勿做商业用途 检测器:氢火焰离子化检测器,高阻 Ω,衰减,检测室温度℃. 气化室:℃,分流进样分流比:,进样量. .定性分析个人收集整理勿做商业用途 记录各组分地保留时间和保留温度,用标准样品对照. .定量分析 以乙酸正丁酯作内标,用内标法定量. 有机溶剂中微量水地分析 .方法原理 以为固定相,利用高分子多孔小球地弱极性、强憎水性,可分析有机溶剂甲醇中地微量水含量.用纯水对照定性,用外标法测水地含量. .仪器和试剂①仪器气相色谱仪,热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 氢气,苯水饱和溶液;(目). .色谱分析条件 色谱柱:(目);不锈钢填充柱管φ×;柱温:℃. 载气:氢气,流量. 个人收集整理勿做商业用途

过柱子经验教学内容

过柱子经验

过柱经验 2008-09-17 20:59 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 柱子可以分为:加压,常压,减压。压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 关于柱子的尺寸,应该是粗长的最好。柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用 2cm×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。 关于无水无氧柱,适用于对氧,水敏感,易分解的产品。 可以湿柱,也可以干柱。不过在样品之前至少要用溶剂把柱子饱和一次,因为溶剂和硅胶饱和时放出的热量有可能是产品分解,毕竟要分离的是敏感的东东,小心不为过。也是因为分离的东西比较敏感,所以接收瓶一定要用可密封的,遵循schlenk操作。至于是加压、常压、减压,随需而定。因为是schlenk操作,所以点板是个问题,如果样品是显色的,恭喜了,不用点板,直接看柱子上的色带就行了。如果样品无色,只好准备几十个schlenk瓶,一瓶一瓶的点,不过几次之后就知道样品在哪,也就可以省些了。像我以前过一根无水无氧柱,需要六个schlenk,现在只一个就能把所要的全收集到。无水无氧柱中用的比较多的是用氧化铝作固定相。因为硅胶中有大量的羟基裸露在外,很容易是样品分解,特别是金属有机化合物和含磷化合物。而氧化铝可以做成碱性、中性和酸性的,选择余地比较大,但是比硅胶要贵些。听说有个方

薄层色谱法在药物分析中的应用

1 薄层色谱法概述 (2) 1.1 定义 (2) 1.2 原理 (2) 1.3 特点 (2) 1.4 定量检测方法 (3) 2 TLC在药物分析方面的应用 (3) 2.1 中药材的鉴别 (3) 2.2 植物药成分的鉴别 (4) 2.3 化学药品及复方制剂 (5) 2.4 药品杂质检验 (6) 2.5 中药指纹图谱分析 (6) 2.6 在定量分析中得应用[13] (7) 2.6.1 薄层色谱定量方法 (7) 2.6.2 薄层色谱在定量分析中得应用 (8) 3 薄层色谱新技术及其应用 (8) 3.1 高效薄层色谱(HPTLC) (8) 3.2假相薄层色谱 (9) 3.3 反相薄层色谱( RPTLC) (10) 3.4 薄层扫描法[17] (11) 4 总结 (12)

薄层色谱在药物分析中的应用 薄层色谱( Thin Layer Chromatography,TLC) 在药物,尤其在植物药成分的定性和定量分析方面早已有了非常广泛的应用。随着科学技术的发展以及新材料的应用,使其得到了很大发展,出现了许多新技术,如高效薄层色谱、假相薄层色谱、反相薄层色谱、微乳薄层色谱在中药药物分析中已有一定的应用。TLC 在规范化、仪器化方面均取得了长足的进步,在大批量样品及某些特殊样品的快速分析中,显示了分析容量大、可采用特征专属的显色剂以及极低的溶剂消耗等优势。近年来TLC 广泛应用于有机化合物的分析鉴定、植物药有效部位的分离精制、有机合成、结构分析、生物测定等,尤其在研究开发植物药有效部位和中成药质量控制中,是用于定性、定量分析的最简便的科学方法。但TLC亦有其缺陷,其色谱结果易受铺板质量、点样技术、展开剂配制、层析环境中展开剂的饱和度、环境温湿度等因素的影响,有时难于重复;显色又受均匀性、灵敏度、稳定性等影响,这均使测定结果偏差较大[1]。最近几年围绕着测定过程的标准化和自动化,薄层色谱技术有了全新的发展,扩大了TLC技术在中药药物定性定量分析中的应用。 1 薄层色谱法概述 1.1 定义 薄层色谱法(TLC)系将适宜的固定相涂布于玻璃板、塑料或铝基片上, 成一均匀薄层。待点样,展开后, 根据比移值(Rf) 与适宜的对照物按同法所得的色谱图的比移值(Rf ) 作对比,用以进行药品的鉴别、杂质检查或含量测定的方法。 1.2 原理 薄层色谱法是一种吸附薄层色谱分离法,它利用各成分对同一吸附剂吸附能力不同,使在移动相(溶剂) 流过固定相(吸附剂) 的过程中,连续的产生吸附、解吸附、再吸附、再解吸附, 从而达到各成分的互相分离的目的。 1.3 特点 薄层色谱法是快速分离和定性分析少量物质的一种很重要的实验技术,也

高效液相试题及答案

高效液相色谱基础知识测试 一、填空题 1、我们公司所用的高效液相色谱仪的品牌是:安捷伦1260 。高效气相色谱仪的型号是安捷伦7890 。 2、高效液相色谱系统由恒温器、四元泵、进样器、色谱柱、检测器和分析系统组成。 3、本公司所用的高效液相,为防止压力过大导致柱内填料空间发生变化,影响分离效果。一般采用C18(十八烷基硅烷键合硅胶)填料的色谱柱,最高工作压力为400 bar。 4、高效液相根据流动相与固定相极性分为:正相高效液相色谱和反相高效液相色谱。 5、开机步骤:接通电源,依次开启不间断电源、真空脱气机、四元泵、检测器,待泵和检测器自检结束后,打开电脑显示器、主机,最后打开色谱工作站。 6、高效液相的维护:最后一次进样完成后,应用流动相冲洗20分钟,以保证洗脱完全,若流动相中含有无机盐类,应用高纯水冲洗30分钟,。 7、进样器的保养:每次分析结束后,要反复冲洗进样口,防止样品的交叉污染。 8、气相色谱仪常用的检测器有热导检测器,氢火焰检测器,电子捕获检测器和火焰光度检测器。 二、选择题 1.在液相色谱法中,提高柱效最有效的途径是(D ) A.提高柱温 B.降低板高 C.降低流动相流速 D.减小填料粒度 2. 在高固定液含量色谱柱的情况下,为了使柱效能提高,可选用( A )

A.适当提高柱温 B.增加固定液含量 C.增大载体颗粒直径 D.增加柱长 3. 在液相色谱中, 为了提高分离效率, 缩短分析时间, 应采用的装置是( B ) A. 高压泵 B. 梯度淋洗 C. 贮液器 D. 加温 4. 在液相色谱中, 最通用型检测器是( A ) A.示差折光检测器 B.极谱检测器 C.荧光检测器 D.电化学检测器 5. 在液相色谱中, 为了获得较高柱效能, 常用的色谱柱是( A ) A.直形填充柱 B.毛细管柱 C.U形柱 D.螺旋形柱 6. 实验室常用气相色谱仪的基本组成是(B )。(1)光源;(2)气路系统;(3)单色器系统;(4)进样系统;(5)分离系统;(6)吸收系统;(7)电导池;(8)检测系统;(9)记录系统。 A 1-3-6-8-9 B 2-4-5-8-9 C 2-4-5-7-9 D 2-4-6-7-9 7.在气相色谱定性分析中,实验室之间可以通用的定性参数是( D )。 A 调整保留时间 B 校正保留时间C保留时间D相对保留值 三、判断题:(正确-----√;错误----×) 1. 确基线噪音和漂移是检测器稳定性的主要技术指标(√) 2. 灵敏度是检测器的主要性能指标(√) 3. 检出限与噪音无关(×) 4. 要提高柱的分离效能,可以考虑增加柱长,增加色谱柱选择性,调节流动相的组成等措施(√) 5. 溶解于流动相中的气体在色谱分离的过程中不会影响流动相的流速和检测器的稳定性(×) 6. 分析一个复杂混合物,恒溶剂洗脱是不能令人满意的。可在分离的过程中连续改变流动相的组成,即所谓梯度洗脱( √)

色谱分析课程报告

目录 1理论概述 (1) 1.1液相色谱法定义: (1) 1.2历史起源: (1) 1.3基本原理: (1) 1.4装置的基本组成及作用: (2) 1.4.1进样装置 (2) 1.4.2色谱柱 (2) 1.4.3检测器 (2) 1.5发展状况: (3) 2文献总结 (3) 3参考文献 (6)

液相色谱分析技术应用 1理论概述 1.1液相色谱法定义: 色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法 1.2历史起源: 1903年俄国植物化学家茨维特(Tswett)首次提出“色谱法”(Chromotography)和“色谱图”(Chromatogram)的概念。他在论文中写到: “(原文)一植物色素的石油醚溶液从一根主要装有碳酸钙吸附剂的玻璃管上端加入,沿管滤下,后用纯石油醚淋洗,结果按照不同色素的吸附顺序在管内观察到它们相应的色带,就象光谱一样,称之为色谱图。” 1930年以后,相继出现了纸色谱、离子交换色谱和薄层色谱等液相色谱技术。 1952年,英国学者Martin和Synge 基于他们在分配色谱方面的研究工作,提出了关于气-液分配色谱的比较完整的理论和方法,把色谱技术向前推进了一大步,这是气相色谱在此后的十多年间发展十分迅速的原因。 1958年,基于Moore和Stein的工作,离子交换色谱的仪器化导致了氨基酸分析仪的出现,这是近代液相色谱的一个重要尝试,但分离效率尚不理想。 1960年中后期,气相色谱理论和实践发展,以及机械、光学、电子等技术上的进步,液相色谱又开始活跃。到60年代末期把高压泵和化学键合固定相用于液相色谱就出现了HPLC。 1970年中期以后,微处理机技术用于液相色谱,进一步提高了仪器的自动化水平和分析精度。 1990年以后,生物工程和生命科学在国际和国内的迅速发展,为高效液相色谱技术提出了更多、更新的分离、纯化、制备的课题,如人类基因组计划,蛋白质组学有HPLC作预分离等。 1.3基本原理: 在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。

柱层析方法经验归纳汇总

1、选柱子:有玻璃柱和不锈钢柱两种,实验室常用玻璃柱。径高比一般在1:5-10。 根据吸附剂用量(体积)确定柱子大小,一般吸附剂应填充到柱子体积的1/4~1/5。 柱子可以分为:加压,常压,减压。 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。 其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。 减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。 加压柱是种比较好的方法,与常压柱类似,只是外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或小气泵。特别在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。加压柱在普通的有机化合物的分离中是比较适用的。 柱子的尺寸为粗长的最好。柱子越长,相应的塔板数就越高。柱子越,上样后样品的原点就越小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。 无水无氧柱适用于对氧、水敏感,易分解的产品。可以湿柱,也可以干柱。不过在样品之前至少要用溶剂把柱子饱和一次,因为溶剂和硅胶饱

和时放出的热量有可能是产品分解,毕竟要分离的是敏感的物质,小心不为过。因为分离的物质比较敏感,所以接收瓶一定要用可密封的,遵循schlenk操作。至于是加压、常压、减压,随需而定。因为是schlenk操作,所以点板是个问题,如果样品是显色的,恭喜了,不用点板,直接看柱子上的色带就行了。如果样品无色,只好准备几十个schlenk瓶,一瓶一瓶的点,不过几次之后就知道样品在哪,也就可以省些了。 无水无氧柱中用的比较多的是用氧化铝作固定相。因为硅胶中有大量的羟基裸露在外,很容易是样品分解,特别是金属有机化合物和含磷化合物。而氧化铝有碱性、中性和酸性的,选择余地比较大,但比硅胶要贵些。听说有个方法,就是用石英做柱子,然后用HF254做固定相,这样在柱子外面用紫外灯一照就知道产品在哪里了,没有验证过。 2、选择吸附剂:200-300目硅胶,称30-70倍于上样量;如果极难分,也可以用100倍量的硅胶。干硅胶的视密度在左右,所以要称40 g硅胶,用烧杯量100 ml也可以。 书中写硅胶量是样品量的30-40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分Rf在,杂质相差以上),就可以少用硅胶。 用硅胶作固定相过柱子的原理是一个吸附与解吸的平衡。所以如果样品与硅胶的吸附比较强的话,就不容易流出。这样就会发生,后面的点先出,而前面的点后出。这时可以采用氧化铝作固定相。 常用吸附剂的种类:氧化铝、硅胶、聚酰胺、硅酸镁、滑石粉、氧化钙(镁)、淀粉、纤维素、蔗糖和活性炭等。

相关文档
最新文档