框架梁内力调整例题

框架梁内力调整例题
框架梁内力调整例题

框架梁内力组合例题

某跨AB ,q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m

A

B q 2

1、活载的内力是在屋面取雪载的情况下计算出来的。

2、为便于施工(钢筋不要太密)及考虑框架梁端塑性变形内力重分布,通常对竖向荷载作用下的梁端负弯矩进行调幅,调幅系数可取0.8~0.9。上表中恒载和活载两列中的弯矩为经过调幅的弯矩,即内力图中的弯矩乘0.85。

3、弯矩以梁上侧受拉为负。

一、支座A 用来配筋的弯矩的选取和弯矩值调整:

①A 支座负弯矩最大值为-390.12,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩:

54.305425.003.19912.390-=?+-=A M

其中199.03为上表中的剪力值,0.425=2

55.07.0-为边支座中心与支座边的距离 ②将弯矩值乘承载力抗震调整系数RE γ,梁取0.75(抗规5.4.2)

54.30575.0?=A RE M γ=229.16(229.16为配筋所使用的弯矩值)

关于RE γ的说明:在进行抗震验算时,采用的材料承载力设计值并不是材料在地

震作用下的承载力设计值,而是各规范规定的材料承载力,材料抗震承载力要比各规范规定的材料承载力高,故需要以承载力抗震调整系数来考虑,考虑抗震承载力调整系数还有经济性方面的考虑。

二、支座B 用来配筋的弯矩的选取和弯矩值调整:

①B 支座负弯矩最大值为-350.337,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩

18.28027.045.200337.350-=?+-=B M ,其中2

7.0为中柱边长的一半 ②B RE M γ

三、求跨间最大正弯矩

将下面的图用求解器计算,求跨间最大正弯矩。

①1.2(恒载+0.5活载)+1.3左震

350.337

260.74

q 2

q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m

②1.2(恒载+0.5活载)+1.3右震

③1.0(恒载+0.5活载)+1.3左震

q 1=1.0恒,q 2

=1.0(恒+0.5活)

④1.0(恒载+0.5活载)+1.3右震

q 2

226.07

上面四种情况中求出的跨间最大正弯矩中的最大值乘承载力抗震调整系数RE γ即用来配筋的弯矩。

也有可能跨间最大正弯矩出现在第二种组合的支座弯矩中。比如左震时为271.519,右震时为226.07,取左震的271.519。

四、剪力计算:

左震16.26-=A V ,45.200=B V 计算支座边缘处弯矩:

62.249425.016.2674.260=?-=A M 右震03.199=A V ,74.24-=B V 计算支座边缘处弯矩:

11.2062

7.074.24773.214=?-=B M 249.62+280.18=529.8

305.54+206.11=511.65

529.8大于511.65

抗震设计时,梁端剪力设计值按下式调整 ()重力V l M M V n B A Vb ++=/η

1.1=Vb η 梁端剪力增大系数

8.529=B A M M +

n l =4.625 为净跨

83.7528.1625.48.1625.42121=???? ????? ??-+?+?q q V =重力 因此84.201=V

梁斜截面受剪承载力按84.20185.0?=V RE γ计算。

(完整版)梁的内力计算

第四章 梁的内力 第一节 工程实际中的受弯杆 受弯杆件是工程实际中最常见的一种变形杆,通常把以弯曲为主的杆件称为梁。图 4 — i 中列举了例子并画出了它们的计算简图。如图( a 表示的是房屋建筑中的板、梁、柱结 构,其中支撑楼板的大梁 AB 受到由楼板传递来的均布荷载 口;图(b )表示的是一种简易挡 水结构,其支持面板的斜梁 AC 受到由面板传递来的不均匀分布水压力; 图(c )表示的是- 小型公路桥,桥面荷载通过横梁以集中荷载的形式作用到纵梁上;图( d )表示的是机械中 的一种蜗轮杆传动装置,蜗杆受到蜗轮传递来的集中力偶矩 m 的作用。 1.1 梁的受力与变形特点 综合上述杆件受力可以看出: 当杆件受到垂直于其轴线的外力即横向力或受到位于轴线平面 内的外力偶作用时,杆的轴线将由直线变为曲线, 这种变形形式称为弯曲.。在工程实际中受 弯杆件的弯曲变形较为复杂,其中最简单的弯曲为平面弯曲。 1.2 平面弯曲的概念 工程中常见梁的横截面往往至少有一根纵向对称轴, 该对称轴与梁轴线组成一全梁的纵向对.. 称面(如图4 — 2),当梁上所有外力(包括荷载和反力)均作用在此纵向对称面内时,梁轴 线变形后的曲线也在此纵向对称面内, 这种弯曲称为平面弯曲.。它是工程中最常见也最基本 的弯曲问题。 1.3 梁的简化一一计算简图的选取 工程实际中梁的截面、支座与荷载形式多种多样, 较为复杂。为计算方便,必须对实际梁进 行简化,抽象出代表梁几何与受力特征的力学模型,即梁的计算简图...。 选取梁的计算简图时,应注意遵循下列两个原则:(1)尽可能地反映梁的真实受力情况;(2) 尽可能使力学计算简便。 a 房屋建筑中的大梁 c 小跨度公路桥地纵梁 图4-1 b 简易挡水结构中的斜梁

受静载荷梁的内力及变位计算公式

受静载荷梁的内力及变位计算公式 符号意义及正负号规定简图 P——集中载荷 q——均布载荷 R——支座反力,作用方向向上者为正 Q——剪力,对邻近截面所产生的力矩沿顺时针方向者为正 M——弯矩,使截面上部受压,下部受拉者为正 θ——转角,顺时针方向旋转者为正 f——挠度,向下变位者为正 E——弹性模量 I——截面的轴惯性矩 a、b、c——见各栏图中所示 简图 支座反力、 支座反力矩 区段剪力弯矩挠度转角 R B=P M B=-Pl Q x=-P M x=-P x R B=P M B=-Pb AC Q x=0M x=0 CB Q x=-P M x=-P(x-a) R B=nP R B=ql Q x=-qx R B=qc M B=-qcb AC Q x=0M x=0

CD Q x=-q(x-d)

DB Q x=-qc M x=-qc(x-a) AC CB R B=0 M B=M x=-M Q x=0M x=-M ω值见表梁分段的比值及ω的函数表; a、b、c——见各栏中所示 简图 支座反力、 支座反力矩 区段剪力弯矩挠度转角R A=R B= AC CB R A= R B= AC CB M x=Pa(1-ξ) M C=M max=

R A=R B=P AC Q x= P M x=Px CD Q x=0 M x=M max=Pa AC CD DB若a>c: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数:

R CD Q x=0 R A=R B = AC CD AC CD DB R A=R B=qc AC Q x=qc M x=qcx CD DE Q x=0M x=M max=qcb

#简支T梁内力计算和结果比较

简支T 梁内力计算及结果对比 一、桥梁概况 一座九梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图1-1所示,计算跨径29.5l m =,主梁翼缘板刚性连接。设计荷载:公路—I 级,人群荷载:3.0/kN m , 每侧的栏杆及人行道构件自重作用力为5/kN m ,桥面铺装5.6/kN m ,主梁采用C50混凝土容重为25/kN m 。 (a ) (b ) 图1-1主梁和横隔梁简图(单位:cm ) 二、恒载内力计算 ㈠.恒载集度 主梁:()10.080.140.18 1.30 1.600.18259.76/2g kN m ?+??? =?+?-?= ??????? 横隔梁: 对于边主梁:()12 1.600.18 1.000.110.1572529.500.56/2 g kN m -=-? ???÷= 对于中主梁:2 122220.56 1.12/g g kN m =?=?= 桥面铺装:3 5.6/g kN m =

栏杆和人行道:45/g kN m = 作用于边主梁的全部恒载为: 19.760.56 5.6520.92/i g g kN m ==+++=∑ 作用于中主梁的恒载为: 29.76 1.12 5.6521.48/i g g kN m ==+++=∑ ㈡.恒载内力 计算主梁的弯矩和剪力,计算图式如图2-1所示,则: ()222x gl x gx M x gx l x = ?-?=-,()222 x gl g Q gx l x =-=- g 图2-1 恒载内力计算图式 各计算截面的剪力和弯矩值见表2-1和表2-2。 边主梁恒载内力 表2-1 内力 截面位置 剪力()Q kN 弯矩()M kN m ? 0x = 308.572 gl Q = = 0M = 4l x = 154.294 gl Q == 2 31706.7832gl M == 2 l x = 0Q = 2 2275.708 gl M == 中主梁恒载内力

框架梁内力调整例题

框架梁内力组合例题 某跨AB ,q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m A B q 2 1、活载的内力是在屋面取雪载的情况下计算出来的。 2、为便于施工(钢筋不要太密)及考虑框架梁端塑性变形内力重分布,通常对竖向荷载作用下的梁端负弯矩进行调幅,调幅系数可取0.8~0.9。上表中恒载和活载两列中的弯矩为经过调幅的弯矩,即内力图中的弯矩乘0.85。 3、弯矩以梁上侧受拉为负。 一、支座A 用来配筋的弯矩的选取和弯矩值调整: ①A 支座负弯矩最大值为-390.12,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩: 54.305425.003.19912.390-=?+-=A M 其中199.03为上表中的剪力值,0.425=2 55.07.0-为边支座中心与支座边的距离 ②将弯矩值乘承载力抗震调整系数RE γ,梁取0.75(抗规5.4.2) 54.30575.0?=A RE M γ=229.16(229.16为配筋所使用的弯矩值) 关于RE γ的说明:在进行抗震验算时,采用的材料承载力设计值并不是材料在地

震作用下的承载力设计值,而是各规范规定的材料承载力,材料抗震承载力要比各规范规定的材料承载力高,故需要以承载力抗震调整系数来考虑,考虑抗震承载力调整系数还有经济性方面的考虑。 二、支座B 用来配筋的弯矩的选取和弯矩值调整: ①B 支座负弯矩最大值为-350.337,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩 18.28027.045.200337.350-=?+-=B M ,其中2 7.0为中柱边长的一半 ②B RE M γ 三、求跨间最大正弯矩 将下面的图用求解器计算,求跨间最大正弯矩。 ①1.2(恒载+0.5活载)+1.3左震 350.337 260.74 q 2 q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m ②1.2(恒载+0.5活载)+1.3右震 ③1.0(恒载+0.5活载)+1.3左震 q 1=1.0恒,q 2 =1.0(恒+0.5活) ④1.0(恒载+0.5活载)+1.3右震 q 2 226.07 上面四种情况中求出的跨间最大正弯矩中的最大值乘承载力抗震调整系数RE γ即用来配筋的弯矩。 也有可能跨间最大正弯矩出现在第二种组合的支座弯矩中。比如左震时为271.519,右震时为226.07,取左震的271.519。 四、剪力计算:

梁钢筋的算法例题

一、钢筋算量基本方法 钢筋算量基本方法 第一章梁 第一节框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 注意:下部钢筋不论分排与否,计算的结果都是一样的,所以我们在标注梁的下部纵筋时可以不输入分排信息。 以上三类钢筋中均涉及到支座锚固问题,那么,在软件中是如何实现03G101-1中关于支座锚固的判断呢? 现在我们来总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d }

4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。(如下图所示)

钢筋工程量计算例题

1、计算多跨楼层框架梁KL1的钢筋量,如图所示。 柱的截面尺寸为700×700,轴线与柱中线重合 计算条件见表1和表2 表1 混凝土强度等级梁保护层 厚度 柱保护层 厚度 抗震等级连接方式钢筋类型锚固长度 C30 25 30 三级抗震对焊普通钢筋按 03G101-1图集及 表2 直径 6 8 10 20 22 25 单根钢筋 理论重量 (kg/m) 0.222 0.395 0.617 2.47 2.98 3.85 钢筋单根长度值按实际计算值取定,总长值保留两位小数,总重量值

保留三位小数。 2、已知某教学楼钢筋混凝土框架梁KL1的截面尺寸与配筋见图1,共计5根。混凝土强度等级为C25。求各种钢筋下料长度。 图1 钢筋混凝土框架梁KLl平法施工图

3、某6m长钢筋混凝土简支梁(见下图),试计算各型号钢筋下料长度。

4、某抗震框架梁跨中截面尺寸b×h=250mm×500mm,梁内配筋箍筋φ6@150,纵向钢筋的保护层厚度c=25mm,求一根箍筋的下料长度。 5、某框架建筑结构,抗震等级为4级,共有10根框架梁,其配筋如图5.23所示,混凝土等级为C30,钢筋锚固长度LαE为30d。柱截面尺寸为500mm x 500mm。试计算该梁钢筋下料长度并编制配料单(参见混凝土结构平面整体表示方法03G10l-l构造详图)。

6、试编制下图所示5根梁的钢筋配料单。 各种钢筋的线重量如下:10(0.617kg/m);12(0.888kg/m); 25(3.853kg/m)。

7、某建筑物第一层楼共有5根L1梁,梁的钢筋如图所示,要求按图计算各钢筋下料长度并编制钢筋配料单。

梁钢筋计算实例

二钢筋混凝土梁板的配筋构造 3.1 受弯构件的构造要求 (1)梁的一般构造 钢筋混凝土梁的常用截面有矩形、T形、工形和花篮形等形式,如图 图3.25梁的截面形式 受弯构件在外荷载作用下,截面上将同时承受弯矩M和剪力y的作用。在弯矩较大的区段可能发生沿横截面的(称为正截面)受弯破坏,在剪力较大的区段可能发生沿斜截面的受剪破坏,当受力钢筋过早切断、弯起或锚固不满足要求时,还可能发生沿斜截面的受弯破坏。 一、梁和板的一般构造规定 (一)梁的配筋构造 1)梁的截面尺寸 梁的截面高度h与梁的跨度l及所受荷载大小有关。一般情况下,独立简支梁,其截面高度h与其跨度l的比值(称为高跨比) h/l=1/12—1/8 ;独立的悬臂梁h/l为1/6左右;多跨连续梁h/l=1/18—1/12 。 梁的截面宽度b与截面高度h的比值b/h,对于矩形截面一般为1/2.5~1/2;对于T形截面一般为1/3~1/2.5 。 为了统一模板尺寸便于施工,梁的常用宽度一般为180mm、200mm、220mm、250mm,250mm以上以50mm为模数;而梁的高度h一般为250mm、300 mm、…、1000mm等尺寸,当h≤800mm时以50mm为模数,当h>800mm时以1OOmm为模数。 2)梁的配筋 梁中一般配置下列几种钢筋(图3.26): ①纵向受力筋。如①号筋,它是用来承受弯矩的钢筋。纵向受力钢筋的常用直径为10-28mm,根数不得少于2根。梁内受力纵筋的直径应尽可能相同;当采用不同的直径时,它们之间相差至少应为2mm以上,便于施工中容易用肉眼识别,但相差也不宜超过6mm。 ②弯起钢筋。如②、③号钢筋,它是由纵向受力钢筋弯起而成。它的作用是:中间段同纵向受力钢筋一样,可以承受跨中正弯矩;弯起段可以承受剪力;弯起后的水平段有时还可以用来承受支座处的负弯矩。 弯起钢筋的弯起角度—般是:当梁高h ≤800mm时为45°;当梁高h>800mm 时为60°

内力组合表

表4.1横向框架A柱弯矩和轴力组合表横向框架A柱弯矩和轴力组合表 层次截面位置内力SGk SQk Swk 1.2SGk+1.4(SQk+Swk) 1.35SGk +SQk 1.2SGk +1.4SQk ∣Mmax∣ 与相应N Nmin与 相应的M Nmax与 相应的M →← 5 柱顶 M 133.9435.60 2.04 2.04208.15203.01216.42210.57216.42203.01216.42 N 261.3855.450.420.42384.05382.99408.31391.29408.31382.99408.31柱底 M 74.2424.300.590.59120.45118.96124.52123.11124.52118.96124.52 N 293.7855.450.420.42422.93421.87452.05430.17452.05421.87452.05 4 柱顶 M 38.7918.10 3.73 3.7374.0564.6570.4771.8974.0564.6570.47 N 478.27111.60 1.86 1.86716.88712.20757.26730.16716.88712.20757.26柱底 M 53.2620.63 1.79 1.7992.1687.6592.5392.7992.7987.6592.53 N 510.67111.60 1.86 1.86755.76751.08801.00769.04769.04751.08801.00 3 柱顶 M 53.2620.63 5.04 5.0496.2683.5692.5392.7996.2683.5692.53 N 694.70167.64 4.06 4.061049.981039.751105.491068.341049.981039.751105.49柱底 M 49.9319.34 3.36 3.3688.5280.0586.7586.9988.5280.0586.75 N 727.10167.64 4.06 4.061087.811078.631149.231107.221087.811078.631149.23 2 柱顶 M 58.0922.51 5.36 5.36104.8291.32100.93101.22104.8291.3291.32 N 911.28223.74 6.96 6.961384.221366.681453.971406.771384.221366.681366.68

梁钢筋平法识图及算量入门

一、箍筋表示方法: ⑴ φ10@100/200(2)表示箍筋为φ10 ,加密区间距100,非加密区间距200,全为双肢箍。 ⑵ φ10@100/200(4)表示箍筋为φ10 ,加密区间距100,非加密区间距200,全为四肢箍。 ⑶ φ8@200(2)表示箍筋为φ8,间距为200,双肢箍。 ⑷ φ8@100(4)/150(2)表示箍筋为φ8,加密区间距100,四肢箍,非加密区间距150,双肢箍。 一、梁上主筋和梁下主筋同时表示方法: ⑴ 3Φ22,3Φ20表示上部钢筋为3Φ22,下部钢筋为3Φ20。 ⑵ 2φ12,3Φ18表示上部钢筋为2φ12,下部钢筋为3Φ18。 ⑶ 4Φ25,4Φ25表示上部钢筋为4Φ25,下部钢筋为4Φ25。 ⑷ 3Φ25,5Φ25表示上部钢筋为3Φ25,下部钢筋为5Φ25。 二、梁上部钢筋表示方法:(标在梁上支座处) ⑴ 2Φ20表示两根Φ20的钢筋,通长布置,用于双肢箍。 ⑵ 2Φ22+(4Φ12)表示2Φ22 为通长,4φ12架立筋,用于六肢箍。 ⑶ 6Φ25 4/2表示上部钢筋上排为4Φ25,下排为2Φ25。 ⑷ 2Φ22+ 2Φ22表示只有一排钢筋,两根在角部,两根在中部,均匀布置。 三、梁腰中钢筋表示方法: ⑴ G2φ12表示梁两侧的构造钢筋,每侧一根φ12。 ⑵ G4Φ14表示梁两侧的构造钢筋,每侧两根Φ14。 ⑶ N2Φ22表示梁两侧的抗扭钢筋,每侧一根Φ22。 ⑷ N4Φ18表示梁两侧的抗扭钢筋,每侧两根Φ18。 四、梁下部钢筋表示方法:(标在梁的下部) ⑴ 4Φ25表示只有一排主筋,4Φ25 全部伸入支座内。 ⑵ 6Φ25 2/4表示有两排钢筋,上排筋为2Φ25,下排筋4Φ25。 ⑶ 6Φ25 (-2 )/4 表示有两排钢筋,上排筋为2Φ25,不伸入支座,下排筋4Φ25,全部伸入支座。 ⑷ 2Φ25 + 3Φ22(-3)/ 5Φ25表示有两排筋,上排筋为5根。2Φ25伸入支座,3Φ22,不伸入支座。下排筋5Φ25,通长布置。 五、标注示例: KL7(3)300×700 Y500×250 φ10@100/200(2) 2Φ25 N4Φ18 () 4Φ256Φ25 4/26Φ25 4/26Φ25 4/2 4Φ25 □———————————□———————□———————————□4Φ252Φ254Φ25 300×700 N4φ10 KL7(3) 300×700表示框架梁7,有三跨,断面宽300,高700。 Y500×250表示梁下加腋,宽500,高250。

2.9框架梁柱内力组合

广州大学土木工程学院(毕业设计)学士学位论文 2.9框架梁柱内力组合 (1)(永久荷载和可变荷载均相同) 考虑竖向荷载作用下梁端出现塑性铰,产生塑性内力重分布。因此对梁端支座负弯矩乘以调辐系数予以降低,本结构为全现浇框架结构,调幅系数取0.85。而为了将调低的弯矩加到跨中中去,跨中弯矩乘以1.2增大系数。梁端弯矩计算及内力调整结果见表 表1竖向永久荷载作用下的AB跨梁内力调整 表2竖向永久荷载作用下的BC跨梁内力调整

2 上部结构设计 表3竖向永久荷载作用下的CD跨梁内力调整 表4竖向可变荷载作用下的AB跨梁内力调整 表5竖向可变荷载作用下的BC跨梁内力调整

广州大学土木工程学院(毕业设计)学士学位论文 表6竖向可变荷载作用下的CD 跨梁内力调整 (2)组合类型: 根据《高层建筑混凝土结构技术规程》(JGJ3-2002)式(5.6.1)及式(5.6.3) 规定,当无地震作用效应组合时,荷载效应组合的设计值应按下式确定: wk w w Q k Q Q G k G S S S S γψγψγ++=; 当有地震效应组合时,荷载效应和地震作用效应组合的设计值应按下式确定: wk w w Evk Ev Ehk Eh G E G S S S S S γψγγγ+++=。根据(JGJ3-2002)所规定的系数取值,最后确定内力组合类型为以下四类: 1.1.35永久+1.4×0. 7可变 2.1.2×永久+1.4×可变 3.1.2×永久+1.4×0.9(可变+风) 4.1.2(永久+可变)+1.3地震 (3)框架梁的内力组合: ① 框架梁的内力组合具体见表7。 ②框架柱的内力组合具体见表7~12。

多跨铰接静定梁计算

基本参数: 1:计算点标高:72.7m; 2:力学模型:多跨铰接连续静定梁; 3:立柱跨度:参见内力分析部分; 4:立柱左分格宽:1150mm;立柱右分格宽:1150mm; 5:立柱计算间距:B=1150mm; 6:板块配置:石材; 7:立柱材质:Q235; 8:安装方式:偏心受拉; 本处幕墙立柱按多跨铰接连续静定梁力学模型进行设计计算,受力模型如下: 1.1立柱型材选材计算: (1)风荷载作用的线荷载集度(按矩形分布): q wk:风荷载线分布最大荷载集度标准值(N/mm); w k:风荷载标准值(MPa); B:幕墙立柱计算间距(mm); q wk=w k B =0.002782×1150 =3.199N/mm q w:风荷载线分布最大荷载集度设计值(N/mm); q w=1.4q wk =1.4×3.199 =4.479N/mm (2)水平地震作用线荷载集度(按矩形分布): q EAk:垂直于幕墙平面的分布水平地震作用标准值(MPa); βE:动力放大系数,取5.0;

αmax:水平地震影响系数最大值,取0.12; G k:幕墙构件的重力荷载标准值(N),(含面板和框架); A:幕墙平面面积(mm2); q EAk=βEαmax G k/A ……5.3.4[JGJ102-2003] =5×0.12×0.0011 =0.00066MPa q Ek:水平地震作用线荷载集度标准值(N/mm); B:幕墙立柱计算间距(mm); q Ek=q EAk B =0.00066×1150 =0.759N/mm q E:水平地震作用线荷载集度设计值(N/mm); q E=1.3q Ek =1.3×0.759 =0.987N/mm (3)幕墙受荷载集度组合: 用于强度计算时,采用S w+0.5S E设计值组合:……5.4.1[JGJ102-2003] q=q w+0.5q E =4.479+0.5×0.987 =4.972N/mm 用于挠度计算时,采用S w标准值:……5.4.1[JGJ102-2003] q k=q wk =3.199N/mm 1.2选用立柱型材的截面特性: 按上一项计算结果选用型材号:矩形钢管100×50×4 型材的抗弯强度设计值:f s=215MPa 型材的抗剪强度设计值:τs=125MPa 型材弹性模量:E=206000MPa 绕X轴惯性矩:I x=1441300mm4 绕Y轴惯性矩:I y=473700mm4 绕X轴净截面抵抗矩:W nx1=28830mm3 绕X轴净截面抵抗矩:W nx2=28830mm3 型材净截面面积:A n=1136mm2 型材线密度:γg=0.089176N/mm 型材截面垂直于X轴腹板的截面总宽度:t=8mm 型材受力面对中性轴的面积矩:S x=18060mm3 塑性发展系数: 对于钢材龙骨,按JGJ133或JGJ102规范,取1.05; 对于铝合金龙骨,按最新《铝合金结构设计规范》GB 50429-2007,取1.00; 此处:γ=1.05 1.3立柱的内力分析: 第1跨内力分析: R Bi=qL i×[1-(A i/L i)2]/2-P i×(A i/L i),i=1 =5.026×3060×[1-(800/3060)2]/2-0×(800/3060) =7164N M i=qL i2×[1-(A i/L i)2]2/8,i=1 =5.026×30602×[1-(800/3060)2]2/8 =5106004N·mm 第2跨内力分析:

框架梁钢筋计算公式汇总

1上部通长筋 上部通长筋=总净跨长度+左支座锚固长度+右支座锚固长度+搭接长度*搭接个数 锚固的取值: (1)端支座 支座宽-C≥max(laE,0.5Hc+5d),直锚,锚固取Max(laE,0.5Hc+5d)。 支座宽-C<max(laE,0.5Hc+5d),弯锚,取Max(0.4laE+15d,Hc-C+15d )。 (2)中间支座 支座宽≥max(laE,0.5Hc+5d),直锚,锚固取Max(laE,0.5Hc+5d)。 支座宽<max(laE,0.5Hc+5d),弯锚,取Max(laE,0.5Hc+5d)。 2上部边支座负筋 上部边支座负筋(第1排)=1/3净跨长+支座锚固长度 上部边支座负筋(第2排)=1/4净跨长+支座锚固长度 锚固的取值: (1)端支座 支座宽-C≥max(laE,0.5Hc+5d),直锚,锚固取Max(laE,0.5Hc+5d)。 支座宽-C<max(laE,0.5Hc+5d),弯锚,取Max(0.4laE+15d,Hc-C+15d )。 (2)中间支座 支座宽≥max(laE,0.5Hc+5d),直锚,锚固取Max(laE,0.5Hc+5d)。 支座宽<max(laE,0.5Hc+5d),弯锚,取Max(laE,0.5Hc+5d)。 3上部中间支座负筋 上部中间支座负筋(第1排)=1/3净跨长(取大值)*2+支座宽度 上部中间支座负筋(第2排)=1/4净跨长(取大值)*2+支座宽度 4下部通长筋 下部通长筋=总净跨长+左右支座锚固长度+搭接长度*搭接个数 5下部边跨负筋 下部边跨钢筋=净跨长+左右锚固长度 6下部中间跨负筋

下部中间跨钢筋=净跨长+左右锚固长度 7构造钢筋 构造钢筋长度=净跨长+左右锚固长度 8抗扭钢筋 抗扭钢筋长度=净跨长+左右锚固长度 9拉筋 9.1拉筋长度 拉筋长度=(梁宽-2×保护层)+2×11.9d+2d 9.2拉筋根数 9.2.1没有给定拉筋的布筋间距 拉筋的根数=(箍筋根数/2)×(构造筋根数/2) 9.2.2给定了拉筋的布筋间距 拉筋的根数=布筋长度/布筋间距 10箍筋 10.1箍筋长度 箍筋长度=(梁宽-保护层*2 +梁高-保护层*2)*2+11.9d*2+8d 10.2箍筋根数 箍筋根数=加密区根数*2+非加密区根数 一级抗震: 加密区长度=max(梁高*2,500) 加密区根数=[(梁高*2-50)/加密区间距+1]*2 非加密区根数=(净跨长-加密区长*2)/非加密区间距-1 二至四级抗震: 加密区长度=max(梁高*1.5,500) 加密区根数=[(梁高*1.5-50)/加密区间距+1]*2 非加密区根数=(净跨长-加密区长*2)/非加密区间距-1

内力组合,配筋

一、一般规定 1、两端负弯矩调幅 当考虑结构塑性内力重分布的有利影响,应在内力组合之前对竖向荷载作用下的内力进行调幅(本设计梁端负弯矩调幅系数取),水平 荷载作用下的弯矩不能调幅。 2、控制截面 框架梁的控制截面通常是梁端支座截面和跨中截面。在竖向荷载作用下,支座截面可能长生最大负弯矩和最大剪力;在水平荷载作用 下,支座截面还会出现正弯矩。跨中截面一般产生最大正弯矩,有时 也可能出现负弯矩。框架梁的控制截面最不利内力组合有一下几种:梁跨中截面:+Mmax及相应的V(正截面设计),有时需组合-M。 梁支座截面:-Mmax及相应的V(正截面设计),Vmax及相应的M (斜截面设计),有时需组合+Mmax。 框架柱的控制截面通常是柱上、下梁端截面。柱的剪力和轴力在同一层柱内变化很小,甚至没有变化,而柱的梁端弯矩最大。同一端 柱截面在不同内力组合时,有可能出现正弯矩或负弯矩,考虑到框架 柱一般采用对称配筋,组合时只需选择绝对值最大的弯矩。框架柱的 控制截面最不利内力组合有以下几种: 柱截面:|Mmax|及相应的N、V; Nmax及相应的M、V; Nmin及相应的M、V; Vmax及相应的M、N; |M|比较大(不是绝对最大),但N比较小或N比较大(不是绝对最小或绝对最大)。 3、内力换算 梁支座边缘处的内力值:=M-V =V-q 4、荷载效应组合的种类 (1)非抗震设计时的基本组合 以永久荷载效应控制的组合:×恒载+××活载=×恒载+×活载; 以可变荷载效应控制的组合:×恒载+×活载; 考虑恒载、活载和风载组合时,采用简化规则:×恒载+××(活载+风载)。 (2)地震作用效应和其他荷载效应的基本组合。 考虑重力荷载代表值、风载和水平地震组合(对一般结构,风载组 合系数为0):×重力荷载+×水平地震。 (3)荷载效应的标准组合 荷载效应的标准组合:×恒载+×活载。 二、框架梁内力组合 选择第四层BF框架梁为例进行内力组合,考虑恒载、活载、重力荷载代表值、风荷载和水平地震作用五种荷载。 1、内力换算和梁端负弯矩调幅根据式:

静定梁内力计算

第三章静定结构的受力分析 学习目的和要求 不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。通过本章学习要求达到: 1、练掌握截面内力计算和内力图的形状特征。 2、练掌握截绘制弯矩图的叠加法。 3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和 受力特点。 4、了解桁架的受力特点及按几何组成分类。熟练运用结点法和截面法及其联合应用,会计算简 单桁架、联合桁架既复杂桁架。 5、掌握对称条件的利用;掌握组合结构的计算。 6、熟练掌握截三铰拱的反力和内力计算。了解三铰拱的内力图绘制的步骤。掌握三铰拱合理拱 轴的形状及其特征 学习内容 梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。静定梁的弯矩图和剪力图绘制。桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。 §3.1梁的内力计算回顾 一、截面法 1、平面杆件的截面内力分量及正负规定: 轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。 剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。 弯矩M (bending moment) 截面上应力对截面中性轴的力矩。不规定正负,但弯矩图画在拉侧。

2、截面内力计算的基本方法: 截面法:截开、代替、平衡。 内力的直接算式:直接由截面一边的外力求出内力。 1、轴力=截面一边的所有外力沿轴切向投影代数和。 2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。 3、弯矩=截面一边的所有外力对截面形心的外力矩之和。弯矩及外力矩产生相同的受拉边。 (例子5) 二、内力图的形状特征 内力图与荷载的对应关系 内力图与支承、连接之间的对应关系 1、在自由端、铰结点、铰支座处的截面上无集中力偶作用时,该截面弯矩等于零(如图1-(a)C 右截面、图1-(b)A截面),有集中力偶作用时,该截面弯矩等于这个集中力偶,受拉侧可由力偶的转向直接确定(如图1-(a)C左截面和D截面)。

主梁内力计算

二、 主梁内力计算 [1][2][3][4][5] 1. 恒载集度 (1)主梁:10.080.14 [0.20 1.5()(2.00.2)]2512.45/2 g KN m +=?+?-?= (2)横隔梁 对于边主梁: 20.080.1420.20.150.16[(1.3)()525]/21.50.965/222g KN m +-+?? =- ????= ??? 对于中主梁:' 220.965 1.93/g KN m =?= (3)桥面铺装层: 30.05 2.1210.08 2.123 6.069/g KN m =??+??= (4)栏杆和人行道:4 4.52/5 1.8/g KN m =?= 作用于边主梁的全部恒载强度: 12.450.965 6.069 1.821.284/i g g KN m ==+++=∑ 作用于中主梁的全部恒载强度: 12.03 2.27 6.069 1.822.245/i g g KN m ==+++=∑ 2. 恒载内力的计算 边跨弯矩剪力影响线 1#及5#梁内力(边跨)

跨中弯矩 2 1121.521.521.2841115.4152424 l l M l g KN m = ???=???=? 跨中剪力 2 0l V = 支点剪力 01 121.521.284228.2032 Q KN =???= 1/4跨处弯矩: 1313 21.521.521.284922.362216216 M l l g KN m = ???=????=? 1/4跨处剪力: /41311 21.50.7521.28421.50.2521.284114.4022424 l Q KN =????-????= 2#、3#及4#梁内力(中间跨) 跨中弯矩 2 121.5 0.521.522.2451285.344244 l l M l g KN m = ???=???= 跨中剪力 2 0l V = 支点剪力 01 121.522.245239.1342 Q KN =???= 1/4跨处弯矩: '1313 21.521.522.245964.008216216 M l l g KN m = ???=????=? 1/4跨处剪力: /41311 21.50.7520.38521.50.2522.245119.5672424 l Q KN =????-????= 3. 活载内力 1 . 汽车荷载冲击系数 主梁横截面图 结构跨中处的单位长度量: 3 21.284102169.623/9.81 c G m kg m g ?=== 主梁截面形心到T 梁上缘的距离:

六跨连续梁内力计算程序程序

六跨连续梁内力计算程序 说明文档

一.程序适用范围 本程序用来解决六跨连续梁在荷载作用下的弯矩计算。荷载可以是集中力Fp(作用于跨中)、分布荷载q(分布全垮)、集中力偶m(作用于结点)的任意组合情况。端部支承可为铰支或固支。 二.程序编辑方法 使用Turbo C按矩阵位移法的思路进行编辑,用Turbo C中的数组来完成矩阵的实现,关键的求解K⊿=P的步骤用高斯消元法。 三.程序使用方法 运行程序后,按照提示,依次输入结点编号,单元编号,单元长度,抗弯刚度(EI的倍数),集中力,均部荷载,集中力偶,各个数据间用空格隔开,每一项输入完毕后按回车键,所有数据输入完毕后按任意键输出结果。 输出结果中包括输入的数据(以便校核),角位移的值(以1/EI为单位)以及每个单元的左右两端弯矩值。 四.程序试算 1.算例1 算力图示: 输入数据: 结点:1 2 3 4 5 6 0;单元:1 2 3 4 5 6;长度:4 6 6 8 4 6;EI:1 1.5 1 2 1 1.5;Fp:0 12 8 0 6 0;q:8 0 0 4 0 6;m:0 0 -8 0 10 0 0 运行程序如下:

结果为: 角位移为:1 (11.383738,-1.434142,-8.980504,14.053733,-10.192107,10.048027,0)EI 单元编号 1 2 3 4 5 6 左端弯矩 0.00000 -14.92439 -7.30243 -12.37565 -8.16809 -7.95197 右端弯矩 14.92439 -0.69757 12.37565 18.16809 7.95197 23.02401 2. 算例2 算例图示: 6EI 8kN/m 4m 3m 2m 8m kN/m 123 6547 4kN/m 3m 3m 3m 2m 6m 12kN 8kN 8kN.m 6kN 10kN.m EI EI EI 1.5EI 1.52EI 输入数据: 结点:0 1 2 3 4 5 6; 单元:1 2 3 4 5 6; 长度:4 6 6 8 4 6; EI :1 1.5 1 2 1 1.5; Fp :0 12 8 0 6 0; q :8 0 0 4 0 6; m :0 0 -8 0 10 0 0

梁钢筋工程量计算含实例

第3章梁钢筋工程量计算 第一节梁的平面表示方法 一、平面注写方式 系在梁的平面布置图上,分别在不同编号的梁中各选一根梁,在其上注写梁的截面尺寸和配筋的具体数值,如图3.1 图3.1 梁的平面注写方式示意图 平面注写包括集中标注和原位标注。集中标注表达梁的通用数值,原位标注表达梁的特殊数值。当集中标注中的某项数值不适用于梁的某部位时,则将该项数值用原位标注,使用时,原位标注取值优先。 二、截面注写方式 系在梁平面布置图上,分别在不同编号的梁中各选择1根梁,用剖面号引出配筋图,并在其上注写梁的截面尺寸和配筋具体数值。 图4.1中的KL2用截面注写方式表示见图3.2。

图3.2 截面注写方式示意图 三、梁的集中标注内容 (1)梁的编号 在实际工程中可能遇到各种各样的梁,平法图集将梁归类如下,且表3.1 表3.1 梁的分类与编号 注: (XXA)为一端悬眺;(XXB)为两端最挑,悬挑不计人跨数。 比如: KL2(2A)表示第2号框架梁,2跨,一端悬挑; L9 (7B)表示第9号非框架梁,7跨,两端有悬挑。 (2)梁截面 梁编号后面紧跟着的是梁的截面,一般用"截面宽×截面高"表示,如: 300 ×650表示梁的截面宽为300mm,截面高为650mm。 (3)箍筋的表示方法 箍筋包括钢筋级别、直径、加密区与非加密区间距及肢数等内容。比如:φ10@100/200 (4),表示箍筋为HPB235一级钢筋,直径为10mm,加密区间距为100mm,非加密区间距为200mm,均为四肢箍。

13φ10@ 150/200(2),表示箍筋为HPB235一级钢筋,直径为10mm;梁的两端各有13个四肢箍,间距为150mm;梁的中部间距为200mm,四肢箍。 18φ12@ 150(4)/200(2),表示箍筋为HPB235一级钢筋,直径为12mm;梁的两端各有18个四肢箍,间距为150mm,梁跨中部分,间距为200mm,双肢箍。 (4)梁上下通长筋和架立筋的表示方法 1)如果只有上部通长筋,没有下部通长筋,则在集中标注只表示上部通长筋。比如:图4.1集中标注中2 B25表示上部通长筋为两根二级钢筋,直径为25. 2)如果同时有上部通长筋和下部通长筋,用分号“;”隔开。 比如: 2 B22;3 B25表示梁上部通长筋为2根二级钢,直径为22;梁下部通长筋为3根二级钢,直径为25。 3)架立筋需要用括号将其括起来。 比如: 2 B22 + (4φ12)用于六肢箍,其中2 B22为通长筋,4φ12为架立筋。 (5)梁侧面纵筋表示方法 1)构造腰筋:当梁腹高(梁高—板厚)≥450mm时,需配置纵向构造钢筋,此项注写值以大写字母C打头,其跟数表示梁两侧的总跟数,且对称配置。 比如:G4φ12,表示梁的两个侧面共配置4φ12的纵向构造钢筋,每侧各配置2φ12。 2)抗扭腰筋:当两侧需配置受扭纵向钢筋时,此项注写值以大写字母N打头。比如: N6 B22,表示梁的两个侧面共配置6 B22的受扭纵向钢筋,每侧各配置3 B22。 (6)梁顶面标高高差表示方法 梁顶面标高高差,系指相对于结构层楼面标高的高差值,有相对高差时,须将其写人括号内,无高差时不注。 当某梁的顶面高于所在结构层的楼面标高时,其标高高差为正值;反之为负值。例:某结构层的楼面标高为44.950m,当某梁的梁顶面标高高差注写值为(— 0.05 )时,即表明该梁顶面标高相对于44.950m低0.05m。 四、梁的原位标注内容 (1)梁支座上部纵筋表示方法 1)当上部纵筋为一排时,用如下方式表示,见图3.3

任务二十七单跨超静定梁的内力计算及内力图绘制

任务二十七单跨超静定梁的内力计算及内力图绘制 一、填空题 1.超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件不能求出其全部支座反力和内力,还须考虑(变形协调条件)。 2.计算超静定结构的基本方法是(力法)和(位移法)。 4.对称荷载包括(正对称荷载)和(反对称荷载)。 5.去掉一个固定端支座或者切断一根梁式杆,相当于去掉(三个约束)。 将一个固定端支座改为铰支座或者将一刚性连接改为单铰连接,相当于去掉(一个约束)。去掉一个固定端支座或者切断一根梁式杆,相当于去掉(三个约束)。将一个固定端支座改为铰支座或者将一刚性连接改为单铰连接,相当于去掉(一个约 束)。 6.力法基本结构必须是几何不变的(静定结构)。 二、选择题 1.力法典型方程的物理意义是( C )。 A.结构的平衡条件 B.结点的平衡条件 C.结构的变形协调条件 D.结构的平衡条件和变形协调条件 2.当结构对称,荷载也对称时,反力与内力( B )。 A.不对称 B.对称 C.不一定对称 3.下面哪个条件不是应用图乘法的先决条件?( B ) A.抗弯刚度为常数 B.最大挠度为常数 C.单位荷载弯矩图或实际荷载弯矩图至少有一为直线图形 D.直杆 4.用图乘法求位移的必要条件之一是( B )。 A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI为常数且相同; D.结构必须是静定的。 5.力法的基本结构是( B )。 A.超静定结构 B.静定结构 C.都可以。 6.对称结构在对称荷载作用下,内力图为反对称的是( C )。 A.弯矩图 B.轴力图 C.剪力图 7.力法以( A )作为基本未知量。

钢筋工程量计算例题

一、计算多跨楼层框架梁KL1的钢筋量,如图所示。 柱的截面尺寸为700×700,轴线与柱中线重合 计算条件见表1和表2 表1 混凝土强度等级梁保护层 厚度 柱保护层 厚度 抗震等级连接方式钢筋类型锚固长度 C302530三级抗震对焊普通钢筋按 03G101-1图集及 表2 直径6810202225

钢筋单根长度值按实际计算值取定,总长值保留两位小数,总重量值保留三位小数。 解: 1.上部通常筋长度 2Φ25 单根长度L1=Ln+左锚固长度+右端下弯长度 判断是否弯锚:左支座hc-c=(700-30)mm =670mm<LaE=29d=29 ×25=725mm,所以左支座应弯锚。 锚固长度=max(+15d,hc-c+15d,LaE)=max(×725+15×25,670+15×25,725)=max(665,1045,725)=1045mm=1.045m (见101图集54页) 右端下弯长度(悬挑板上部钢筋下弯收头):12d=12×25=300mm (见101图集66页) L1=6000+6900++1045+300=15645mm=1.5645m 由以上计算可见:本题中除构造筋以外的纵筋在支座处只要是弯锚皆取1045mm,因为支座宽度和直径都相同。 2. 一跨左支座负筋第一排 2Φ25 单根长度L2=Ln/3+锚固长度=(6000-350×2) /3+1045=2812mm=2.812m (见101图集54页)

3. 一跨左支座负筋第二排 2Φ25 单根长度L3=Ln/4+锚固长度=(6000-350×2)/4+1045=2370mm=2.37m (见101图集54页) 4. 一跨下部纵筋 6Φ25(未说明,按照非通常计算) 单根长度L4=Ln+左端锚固长度+右端锚固长度=6000-700+1045×2=7390mm=(此处有误,右段锚固长度=max( +5d,LaE)=max(475mm,725mm))后面同类错误相同 (见101图集54页) 5.侧面构造钢筋 4Ф12 单根长度L5=Ln+15d×2=6000-700+15×12×2=5660mm=5.66m (见101图集24页) 6.一跨右支座负筋第一排 2Φ25 单根长度L6=max(5300,6200)/3×2+700=4833mm=4.833m (见101图集54页) 7.一跨右支座负筋第二排 2Φ25 单根长度L7= max(5300,6200)/4×2+700=3800mm=

相关文档
最新文档