金属材料的裂纹与断口分析资料

金属的断裂条件及断口

金属的断裂条件及断口 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。

机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。断裂是机器零件最危险的失效形式。按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。 韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。 宏观脆性断裂是一种危险的突然事故。脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。. 金属材料产生脆性断裂的条件 (1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。 (2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。裂纹长度裂纹越长,越容易发生脆性断裂。缺陷尖锐程度越尖锐,越容易发生脆性断裂。 (3)厚度钢板越厚,冲击韧性越低,韧-脆性转变温度越高。原因:(A)越厚,在厚度方向的收缩变形所受到的约束作用越大,

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

金属材料的断裂韧性

金属材料的断裂韧性 摘要不同的金属材料的断裂韧性是不一样的,对不同金属材料的断裂韧性进行研究并找出影响的因素对提高金属材料断裂韧性具有非常重要的意义。根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 关键词金属材料;失效;断裂韧性;影响因素 0引言 随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。 根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 1影响金属材料断裂韧性的外部因素 1.1几何因素的影响 几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析: 1)试样厚度 目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。 2)试样的取向 在对金属材料进行取样测试的时候,试样的去向业余金属材料的断裂韧性之

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

金属断裂机理完整版

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

金属--断裂与失效分析刘尚慈

金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I= Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y

(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC/Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs)不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为: J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。

五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法 断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。因此需要严格的科学态度,精心地、有步骤地进行研究分析。 断口分析步骤: (1)所有试样的选择、鉴定、保存以及清洗; (2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象); (3)微观检验和分析; (4)金相剖面的检验和分析以及化学分析; (5)断口定量分析(断裂力学方法); (6)模拟试验。 1 断裂构件的处理及断口的保存 在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。保护和清理断口是断口分析的一个重要前提。对断口和裂纹轨迹进行充分检查后方可进行清洗。 对于不同情况下的断口应该用不同方法处理: (1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。 (2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。 (3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。在这种情况下,需要用综合分析的方法来考虑。因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。通常把带

有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。 去掉腐蚀产物有时可采用干剥法。用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。将一条厚约1mm合适的AC纸,放在丙酮中泡软,然后拿起来放在断口表面上,在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上,干燥后用小镊子把干复型从断口上揭下来。如果断口玷污得很厉害,可将复型操作重复进行,直到获得一个洁净无污染的复型为止。这种方法的一个优点,就是能将从断口上除去的碎屑保存下来,供以后鉴定碎屑使用。还可以用复型法达到长期保存断口的目的。 (4)断口表面不能用酸溶液清洗,以免影响断口分析的准确性。 (5)在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。若用一般有机溶液、超声波洗涤和复型都不能洁净断口表面时,可采用化学清洗。根据不同的金属材料及氧化层情况可采用不同的化学清洗液。 2 断口的宏观分析 用肉眼、放大镜和实体显微镜对断裂零件进行直接观察与分析的方法,称为宏观分析,其放大倍数通常为100倍以下。 宏观分析的优点是:(1)简便、迅速,试样尺寸不十分受限制,不必破坏断裂零件;(2)观察范围大,能够观察与分析断裂全貌,即裂缝和零件形状的关系、断口与变形方向的关系、断口与受力状态(主应力或切应力)的关系;(3)能够初步判断裂起源位置、断裂性质与原因,缩小进一步分析研究的范围,可为确定进一步分析的取样部位和数量提供线索和依据。因此宏观分析是断裂故障分析中最方便、最常用、最主要的不可缺少的步骤和方法,是整个断裂故障分析的基础。 断裂分析的一个主要内容,就是要确定断裂源的位置及裂纹的扩展方向。金属零件若已断裂成多块,则应把所有断块按原来形状拼起来,但要特别小心不能碰合,然后看其密合程度,密合得最差的为最早断裂,即主断口。分析断裂原因时,只需对主断口进行分析。

材料力学 论金属的断裂

工程材料力学期中作业 班级成型2班 姓名陶帅 学号20113650

论述金属的断裂 一、基本介绍 概念:金属材料在外力作用下断裂成两部分的现象。 磨损、腐蚀和断裂是机件的三种主要失效形式,其中以断裂的危害最大。在应力作用下(有时还兼有热及介的共同作用),金属材料被分成两个或几个部分,称为完全断裂;内部存在裂纹,则为不完全断裂。实践证明,大多数金属材料的断裂过程都包括裂纹形成与扩展两个阶段。对于不同的断裂类型,这两个阶段的机理与特征并不相同。 二、断裂的基本类型 弹性变形→塑性变形→断裂 1,根据材料断裂前产生的宏观塑性变形量的大小来确定断裂类型,可分为韧性断裂和脆性断裂。 2,多晶体金属断裂时,按裂纹扩展路径可以分为穿晶断裂和沿晶断裂。 3,根据应力类型可分为纯剪切断裂和微孔聚集型断裂、解理断裂。 三、具体分析 1,韧性断裂 韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量。韧性断裂的断裂面一

般平行于最大切应力并与主应力成45o角。用肉眼或放大镜观察时,端口呈纤维状,灰暗色。纤维状是苏醒变形过程中微裂纹不断扩展和相连造成的,灰暗色则是纤维断口表面对光反射能力很弱所致。 中、低强度钢的光滑圆柱试样在室温下的静拉伸断裂是典型的韧性断裂,其宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。 当光滑圆柱拉伸试样受拉伸力作用,在试验力达到拉伸力-伸长曲线最高点时,便在试样局部区域产生缩颈,同时试样的应力状态也由单向变为三向,且中心轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中心部分的夹杂物或第二相质点本身碎裂,或使夹杂物质点与基体界面脱离而形成微孔。微孔不断长大和聚合就形成显微裂纹。早期形成的显微裂纹,其端部产生较大塑性变形,且集中于极窄的高变形带内。这些剪切变形带从宏观上看大致与径向呈50o~60o角。新的微孔就在变形带内成核、长大和聚合,当其与裂纹连接时,裂纹便向前扩展了一段距离。这样的过程重复进行就形成锯齿

金属断口分析

名词解释 延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。 蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。 准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口 沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。 解理断裂:在正应力作用下沿解理面发生的穿晶脆断。 应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断 疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。 冲击韧性:冲击过程中材料吸收的功除以断的面积。 位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断 裂机理或断裂过程。 河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。其形状类似地图上的河 流。 断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些 质点的晶体结构。 氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。 卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。 等轴韧窝:拉伸正应力作用下形成的圆形微坑。 均匀分布于断口表面,显微洞孔沿空间三 维方向均匀长大。 第一章 断裂的分类及特点 1.根据宏观现象分:脆性断裂和延伸断裂。 脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45o . 2.根据断裂扩展途分:穿晶断裂与沿晶断裂。 穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。应力腐蚀断口,氢脆断口。 3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45o交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系 Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则 相似) a Y K c c πσ?=1

金属断口分析

《金属断口分析》 第一章金属的断裂 第一节断裂分类 失效形式:过大的弹性变形;塑性形变;断裂;材料变化。其中危害最大的是破裂特别是断裂。通过对断口形貌特征进行分析从而获得金属断裂机理。一,宏观脆性断裂与延伸断裂 从宏观上看,断裂分为脆性断裂和延性断裂 脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。 延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。 二,穿晶断裂和沿晶断裂 依据裂纹扩展途径不同,断裂分为穿晶断裂和沿晶断裂,或二者兼有。 穿晶断裂是指裂纹穿过晶体内部的途径发生的;穿晶断裂可能是延性的,也可能是脆性的。若断裂是穿过晶体沿解理面断开,但无明显塑性变形为脆性断裂。若穿晶断裂时出现塑性变形则为延性断裂。 沿晶断裂指以裂纹沿着晶界扩展的方式进行。沿晶断裂多为脆性断裂,,但也有延性的。应力腐蚀断口,氢脆断口都是沿晶断裂的脆性断裂。三,韧窝、解理、准解理、沿晶和疲劳断裂 这主要是根据微观断裂机制上而言 四,正断和切断 根据断面的宏观取向与最大正应力交角,断裂方式分为正断和切断 正断性断裂是指宏观断面的取向与最大正应力相垂直,如解理断裂 切断性断裂指宏观断面的取向与最大切应力方向相一致,而与最大正应力成45度

断裂分类

断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是

金属断裂机理

1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

断口分析资料讲解

1.弹性不匹配的裂纹形核:晶粒间由于取向,化学成分不同,弹性模量是不一样的,外部施加的应力或内部产生的应力在两个经理内产生不同的弹性应变,从而可能导致局部的高应力,并通过形成裂纹加以释放。 2.结晶固体中的塑性形变引起的裂纹形核:低温下的结晶材料,如金属和陶瓷,会发生剪切形变。从微观结构的层次来看,这是由单个位错的滑动(滑移)或大批的位错协调移动(局部形变孪生)引起的晶体内或晶粒内的剪切形变。由此产生的剪切应力可能局限在一个窄带内。当剪切带遇到障碍,例如晶界或者第二相粒子,在剪切带尖上会产生很大的局部应力,这就引起了裂纹形核。材料的晶体结构及外加应力的方向决定了滑移面或孪生面的方向以及剪切发生的方向。裂纹形核的平面与材料的晶体结构和“障碍”界面的强度密切相关。由于结晶解理,裂纹产生在同一晶粒的剪切带中。当然裂纹也可能会产生在“障碍”处,或者在材料中弱界面处,沿界面形成。高应力集中也可能会通过普通的塑性形变而不是裂纹形核释放出来。裂纹是否产生取决于多个不同变量,包括剪切应力大小、障碍的强度、形变动力学以及滑移系的几何性质等。有些材料比较易碎,容易产生裂纹,是因为无法释放由于塑性形变所产生的高的应力集中。 3.塑性孔洞聚合引起的裂纹形核:这种机制多发生于很多含有刚性颗粒的延性固体中,具体细节取决于固体的微观结构。当受力变形时,延性基体通过两种方式产生形变:晶体材料的滑移,或者在非晶和半结晶体材料中更为普遍的剪切过程,但其中的坚硬颗粒不会发生形变。

因此,随着颗粒周围产生的许多塑性孔洞,颗粒和基体开始分离。而一旦形核,由于基体的进一步剪切或高温下的扩散过程,塑性孔洞会不断扩大。最终,不断变大的塑性孔洞的应力场会彼此交互作用,基体剪切应力逐渐集中到颗粒之间的区域,导致其与基体的分离而形成裂纹。裂纹是由不规则排列的多个聚集的塑性孔洞构成的。这说明,裂纹可能是由许多较小的裂纹形成的,在本例中指的就是刚性颗粒与基体界面间的小裂纹。 4.界面滑移产生的裂纹形核:在足够高的温度下,多晶材料,或者更准确地说,球状半结晶聚合物的形变原因是这些相对来说呈刚性的晶体之间的滑移。由于热活化过程的作用,材料在发生形变前,晶粒或者球晶会发生晶界弛豫,所以整个滑移过程就成为形变的主要模式。当三相点的晶粒棱角导致滑移过程中断时,材料上就会出现楔形裂纹。在滑移过程中,位于晶界上的刚性颗粒可能会导致塑性孔洞的形核。这些塑性孔洞不断扩展和聚集,在晶界上形成裂纹,这个原理和的塑性孔洞的道理类似。 5.交变应力(机械疲劳)产生的裂纹形核:以上所述的裂纹形核的示例都是由单调加载引起的。在单调加载条件下,当施加循环应力时,尽管应力尚未达到裂纹产生和扩展的临界水平,也会导致机械疲劳。循环应力导致较小的形变,逐渐累积并最终产生裂纹。一般来说,滑动或滑移是在一个主滑移面上进行的,而循环应力则会导致其在几个相互紧邻的平行平面的狭窄区域或窄带内来回滑动,该区域被称为永久滑移带。这时,由于晶体的滑动,表面上就会出现锯齿和像裂纹一样

相关文档
最新文档