发动机悬置设计

发动机悬置设计
发动机悬置设计

发动机悬置设计

5.1 概述

汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个

综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车

主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性

力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭

转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身,

引起整车振动与噪声。

汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或

车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通

过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声

向车身传递,是汽车减振和降噪的主要研究内容之一。

5.2、悬置系统功能介绍

5.2.1

悬置总成的功用

a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机

动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉;

b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架

上的振动,能有效的降低振动及噪音;

c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移;

d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力

总成,降低振动及噪音;

e)悬置系统元件需有足够的使用寿命。

5.3 动力总成悬置系统设计方法

5.3.1 设计需解决的问题

a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

个方向的位移和绕三个轴的转角在一定的限度内;

b)发动机自身振动的隔离,即不让发动机不平衡力所造成的振动过分地传向车向车

身,这就要求各悬置的固有频率与各激励源的频率必须满足

f i f IDLE / 2

的条件,其中,

f i为各悬置的固有频率,f IDLE为怠速时各激励源的频率。车身结构振动的降低,十分有利于降低结构的噪声辐射。

c)路面的激励下发动机的晃动问题。即在低频段内,发动机固有频率与整车特性不

匹配时,路面激励所造成的发动机晃动可能引起汽车乘坐舒适性问题,也可能影响到汽

车的操纵舒适性。

5.3.2 主要设计参数的决定因素和最优化的目标

a)布置空间,悬置系统的设计很大程度上受到布置空间的制约,由于轿车的前舱一

般空间很有限,加上其它系统如排气系统、进气系统、冷却系统及转向系统及空调系统

等都在前舱内布置,所以悬置系统首先要满足布置上的要求;

b)发动机的工作模态,由于发动机的工作频率很宽,通过改变悬置元件的刚度、安

装位置、安装角度以及改变悬置元件的阻尼系数,合理的匹配发动机动力总成悬置系统

的各向固有频率,最大限度发挥现有悬置元件的潜能,以达到减振的目的。

5.3.3 满足的工作环境

悬置系统的工作条件一是持续承受动力总成的重量,克服传动轴对动力总成的反作

用扭矩,二是承受发动机工作时的前舱高温(约 100oC),三是承受整车启动后一定频率的来自动力总成和车轮的激励振动。

5.3.4 发动机动力总成设计的基本步骤

a) 动力总成悬置系统方案布置设计,这时,需要了解的是项目背景及与整车项目相

关的一些信息,比如,整车设计的市场定位,对悬置系统的要求(包括成本投入,综合

性能的目标等),前舱的边界条件及悬置系统的布置方案的选择等;因为悬置系统与动力总成的结构及特性有很大的关系,为了便于组建数据库,需在设计前期就必需了解动力

总成的特性(比如,发动机的型号,变速箱的型号,动力总成(或发动机与变速箱)的

重量,重心点坐标及转动惯量等;

b)动力总成悬置系统零部件的概念设计,依据总布置给的边界条件及动力总成的特性

及转动惯量,利用相应的理论指导(如撞击中心理论、刚度矩阵解耦法、能量解耦法等),来确定悬置系统的布置方式及悬置点的布置位置。

汽车悬置系统设计指南

悬置系统设计指南 编制: 审核: 批准: 发动机工程研究二院 动力总成开发部

主题与适用范围 1、主题 本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。 2、适用范围 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。

目录 一、悬置系统中的基本概念 (4) 1.1 悬置系统设计时的基本概念 (4) 1.2动力总成振动激励简介 (6) 二、悬置系统的作用 (8) 2.1 悬置系统的设计意义及目标简介 (8) 2.2 动力总成悬置系统对整车NVH性能的影响 (8) 三、悬置系统的概念设计 (10) 3.1 悬置系统的布置方式选择 (10) 3.2 悬置点的数目及其位置选择 (11) 3.3 悬置系统设计的频率参数 (13) 四、悬置系统相关设计参数 (14) 4.1动力总成参数 (14) 4.2 制约条件 (15) 五、悬置系统设计过程中的相关技术文件 (16) 5.1 悬置系统VTS (16) 5.2 悬置系统DFMEA (17) 5.3 悬置系统DVP&R (17) 5.4 其它技术及流程文件 (17)

一、悬置系统中的基本概念 1.1 悬置系统设计时的基本概念 1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。 (图1-1)整车坐标系 2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。 (图1-2)发动机坐标系 3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。

悬置设计流程

动力总成悬置系统设计流程;5.1悬置系统的设计输入:;一般需要输入以下参数:动力总成的激振源,动力总成;5.2悬置系统的主要设计参数:;悬置位置及数量的选择,悬置安装位置角度的选择,静;5.2.1悬置位置及数量;根据动力总成的长度、质量、用途、安装方式和机舱空;三点式悬置与车架的顺从性最好,因为三点决定一个平;四点式悬置的稳定性好、能克服较大的转矩反作用力, 动力总成悬置系统设计流程 5.1 悬置系统的设计输入: 一般需要输入以下参数:动力总成的激振源,动力总成的惯性参数,隔振性能的要求,频率的匹配,模态的解耦,动力总成的位移控制,动力总成和整车的匹配,悬置元件的设计约束,发动机舱空间等。 5.2 悬置系统的主要设计参数: 悬置位置及数量的选择,悬置安装位置角度的选择,静刚度曲线的确定,动刚度的确定,阻尼参数的确定等。 5.2.1悬置位置及数量 根据动力总成的长度、质量、用途、安装方式和机舱空间等决定。悬置系统可以有3、4、5点悬置,一般在汽车上采用三点及四点悬置系统。因为在振动比较大时,如果悬置点的数目增多,当车架变形时,有的悬置点会发生错位,使发动机或悬置支架受力过大而造成损坏。 三点式悬置与车架的顺从性最好,因为三点决定一个平面,不受车架变形的影响,而且固有频率低,抗扭转振动的效果好。

四点式悬置的稳定性好、能克服较大的转矩反作用力,不过扭转刚度较大,不利于隔离低频振动。 较常见的三点及四点悬置布置形式如下图: 三点悬置布置示意图四点悬置布置示意图 5.2.2悬置安装位置角度的选择 在传统的纵置式发动机中,V 型布置是经常采用的方式, 一般倾斜角度θ:40~45, V型布置的悬置系统的弹性中心较低,在设计中通过倾角及位置的调整容易使其弹性中心落在或接近动力总成的主惯性型轴上。 对于横置动力总成而言,一般采用的是左右悬置支撑动力总成,另配置下拉杆悬置或前后抗扭悬置来承担扭矩载荷,此类布局的优势是从功能配置上来说就区分了承载悬置和抗扭悬置,易于实现悬置系统的刚体模态解耦。 5.2.3悬置的静动刚度确定 受几何空间布置的影响,要想达到悬置系统的解藕,另外一个重要的可调参数即悬置本身的静动刚度。通过调整悬置的刚度及几何位置,使悬置系统的弹性中心与动力总成的质心重合,则振动将大为简化。 理论上,如果使发动机悬置系统的弹性中心同发动机总成的质心重合,就可获得所有六个自由度上oo 的振动解隅。实际上完全解耦在悬置设计中是难以实现的,因为发动机的主要激振力只有垂直和扭转两种,而悬置设计中存在较多的约束。因此只要在几个主要方向上获得近似解耦就行了。

发动机悬置系统安装调整规范

ISC Q/KLQ 金龙联合汽车工业(苏州)有限公司企业标准 Q/KLQ10-01-2008 发动机悬置系统安装调整规范 编制 审核 标准 批准 2008-12-7发布 2009-01-01实施 金龙联合汽车工业(苏州)有限公司发布

Q/KLQ10-01-2008 前言 本标准主要为金龙联合汽车工业(苏州)有限公司发动机悬置系统装配方面的标准,主要规定了悬置系统装配方法,要求及装配误差,为技术中心标准文件。本标准由金龙联合汽车工业(苏州)有限公司提出。 本标准由金龙联合汽车工业(苏州)有限公司归口。 本标准由金龙联合汽车工业(苏州)有限公司技术中心负责起草。 本标准主要起草人:许建平。 本标准首次发布。

1、范围 本标准适用于金龙联合汽车工业(苏州)有限公司发动机悬置系统装配,主要规定了发动机悬置系统的支架装配,发动机吊装时的装配方法、装配要求、装配误差。主要适用于制五部。 2、规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T518-2007 汽车用螺纹紧固件紧固扭矩 3、悬置软垫的布置形式 (1)平置式 平置式软垫呈水平布置,结构简单、装配方 便、尺寸精度要求低。平置式软垫一般有三 种: 一种是桶形(10A12-01050),中心镶有套 管、由上下两段直径不同的橡胶体组成。这 类软垫使用比较普遍,有较好的定位和隔离 冲击振动的功能,但不承担剪切方向的变形。 一种是方块形(10T01-01015),橡胶体上下 表面分别与上下金属骨架(板)硫化粘接成 一体,依靠金属骨架与发动机上的支架和车 架紧固连接,因此形成上下“绝缘式”支承。 它可承担压缩和剪切两个方向上的变形,隔 离扭转振动的功能较强,但水平方向的自由 度较大、横向稳定性差,故软垫的金属骨架 上应设有限位面。

悬置设计指南

1 发动机悬置系统的设计指南

1.1 悬置系统的设计意义及目标简介 现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。 由此可知,悬置系统的设计目标值: 1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉; 2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声; 3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声; 4) 保证发动机机体与飞轮壳的连接弯矩不超过发动机厂家的允许值。

1.2 悬置系统的布置方式选择 每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式: 1) 平置式。这是常用的、传统的布置方式,其特征是布局简单、安装容易。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。 2) 斜置式。这是一种目前汽车发动机中用得最多的布置方式。在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于象汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。此外,它还可以通过斜置角度、布置位置以及隔振器两个方向上的刚度比等适当配合来达到横向——横摇解耦的目的,这是平置式较难做到的。 3) 会聚式。这种布置方式的特点是弹性支承的所有隔振器的主要刚度轴均会聚相交于同一点。除了有良好的稳定性外它最大的优点是可以通过调节倾斜角度和布置坐标的关系来获得六种完全独立的

发动机悬置设计

发动机悬置设计 5.1 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 5.2、悬置系统功能介绍 5.2.1 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 5.3 动力总成悬置系统设计方法 5.3.1 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

发动机悬置设计

整车技术部设计指南73 发动机悬置设计 5.1 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传 递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 5.2、悬置系统功能介绍 5.2.1 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位 移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 5.3 动力总成悬置系统设计方法 5.3.1 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

动力总成悬置系统NVH性能开发

宁波拓普集团股份有限公司研发中心 Ningbo Tuopu Group Co., Ltd. -R&D Center 2012上海汽车NVH 控制技术研讨会 T9 Exhibition 动力总成悬置系统NVH 性能开发 演讲者:段小成dxc@https://www.360docs.net/doc/1c6837882.html,

Exhibition 主要内容 整车NVH对悬置系统需求 动力总成悬置系统设计 常见悬置结构特点 基于悬置系统的NVH测试 宁波拓普NVH试验室简介

激励源 ?发动机点火激励引起的振动 ?发动机工作过程中其自身产生的往复不平衡惯性力?冷却系统、进排气系统等引起的振动 ?路面不平引起的振动 ?其他运动部件引起的振动

悬置系统作用 ?隔离发动机的激励而引起的车架或车身的振动(小振幅) ?隔离由于路面不平度的输入而引起动力总成的振动(大振幅)?支承汽车动力总成的重量(150kg~300kg) ?承受作用于发动机的一切动态力(加减速、颠簸、转弯) ?控制动力总成的位移和转角

动力总成对悬置的要求 ?悬置具有较高的静刚度 ?悬置系统应具有低频(1~50HZ)大阻尼、大刚度,以衰减扭矩的波动、加减速和路面激励 ?悬置在高频区域(50HZ以上),应具有小阻尼、小动刚度,以降低振动传递率和提高降噪效果 ?耐高低温性能(-40°~120°) ?良好的耐久性能以及位移控制

横置前驱平衡扭矩轴式悬置系统 ?悬包括左右支撑悬置与前后抗扭悬置的四点悬置布局、左右支撑悬置和下拉杆抗扭悬置的三点悬置布局 ?左右悬置为支撑悬置,不仅承担动力总成的自重,还承担动力总成在水平方向和垂直方向的载荷 ?前后悬置或下拉杆悬置为抗扭悬置,主要承担动力总成在扭矩作用下的位移控制

发动机-悬置参数设计要求

发动机-悬置参数设计要求 根据人体生理学的研究,人体对振动最敏感的频率范围为4~8Hz,车辆的振动特性要保证人的乘坐舒适性,就要避开4~8Hz时的振动。在车辆设计中,车身-悬挂系统的设计频率一般在1.9~3Hz,簧下质量的振动频率即轴头跳动频率一般在11~15Hz左右,发动机-悬置系统作为一个振动子系统,它其中的悬置是连接发动机和车身的唯一部件,它不但要支承发动机的重量,而且还起到在发动机和车身之间隔振的作用。悬置的刚度太大,就起不到有效的隔振作用,太软又会降低其使用寿命。根据隔振原理,发动机-悬置系统振动的频率要大于车身-悬挂频率的1.4倍,才能起隔振作用。最理想的是2倍以上。(最大不大于2.5倍) ,因此发动机-悬置系统振动的最低频率要保证不小于3×2=6Hz,其次,发动机动力总成作为整车动力减振器,其垂向振动频率应为轴头跳动频率的0.8~0.9倍,换成频率就是12~13.5Hz,另外,发动机怠速时的转速约为750~800转∕分,对应激励频率为28Hz(四缸机),它要大于发动机动力总成绕曲轴轴线转动频率的2倍,即28∕2=14Hz。所以,发动机-悬置系统的设计频率就是6~14Hz。在这个范围内,频率设计区间越小越好。 根据这个设计原理,如果把发动机-悬置系统的频率固定在6~14Hz的话,就要求车架的最低阶频率(一般即为扭转频率)要保证在大于3Hz和小于6Hz之间。或者大于15Hz以上。这要根据车辆设计具体的要求而定。没有统一的模式;但如果发动机悬置的参数达到合理设计(如刚度、布置角度,安装位置等),能够使发动机动力总成-悬置系统的振动频率在6~14Hz内区间更缩小的话,如8~12Hz,那么对车架的频率要求就会宽松一些。因此,这是一个系统参数优化与合理匹配的问题。在汽车研究领域,国内还没有成熟的经验和有用的参考数据,还需作长期、大量的工作来解决。

发动机悬置的结构、作用、设计要求

发动机悬置的结构、作用、设计要求 1. 概述: 随着当前底盘、发动机技术的日臻完善, 车辆的振动、噪声的控制转而成为各个整车厂 在研发上的重中之重。 据统计分析在一个车辆系统的上万个零部件中, 对振动起关键作用的 大概有二百个。 它们又分别在整车的振动系统中起不同的作用。 这里仅对发动机产生的振动经由发动机 悬置到车身的振动系统的结构、作用、设计要求给出一定程度的阐述和说明。 内部噪声 Innenraum 车什 ?* Karosserie Fall rb^hn —Abgasaufhangung Aggregatl^ger Antrebswellen —V/H-Achse 二百个零部件 行腔功力学 女全世 H 丸轩适件 足性 何部塩再 NVH 舒适性 '、:川 衣城振瞬上的丽振会 F 驴Hu 训了EinlcgBF v~| 3丸3合冷门I 合§0

基于汽车振动学的相应设计优化,应最大可能的避免整车主要部件在各种工况下的振动耦合。悬置的作用概括来说就是对发动机振动和路面激励的隔离和吸收,减少乘客舱中人所受 的影响,降低其他零部件因为过多振动产生的疲劳破坏。 2. 悬置系统的结构 布置概念: 前轮驱动一一较低排量, 后轮驱动一一较大排量。 Fahrtrichtung 存驶方向

动力总成纵置,如海狮、阁瑞斯。 3 Punkt Lagerung bei Stanclardantrieb 一点式戻动机悬笛 动力总成横置,如尊驰、骏捷等。 3-Punkt 4-Punkt 四点式 4G63 4G64 4G93 I 〉4G18等动力总成 P ED d^lstutze 摆动式 中华1.8T 宝来等车的动力 总成。 Aggregatlagerungen bei Querantrieb IT旨发动UL悬旨 结构概念: 橡胶悬置 悬置结构为橡胶+金属支架,在低频、大振幅的动刚度和滞后角变化小。在高频、小振幅激励下的动刚度和滞后角变化不大,容易产生动态硬化现象,常用于发动机前后悬置,阻止发动机过渡扭转。 液力悬置

汽车发动机橡胶悬置产品结构

汽车发动机橡胶悬置产品结构 (中鼎密封件有限公司赵季勇242300) 摘要:本文介绍了常规结构发动机悬置的特点和应用,液压结构发动机悬置的发展历程和应用. 关键词: 减震橡胶发动机悬置静刚度动刚度 Abstract This text gives a description of the characteristic and application on generally configurated engine mount, of hydraulic engine mount development and application Key words: damping rubber engine mount static stiffness dynamic stiffness 1.前言 现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向. 减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,于1932年出现了最早的橡胶减震制品,使得减少底盘和引擎系统产生的振动成为可能, 20世纪50年代起越来越多的发动机悬置得以应用, 1979年德国大众成功地将液压悬置应用到发动机悬置系统,使得减震技术得到很大的发展. 2.普通标准结构 发动机悬置的工作状况如下:发动机是通过发动机悬置与车身相连接,发动机与车身之间发动机是振动源车身是防振对象,这就要求发动机悬置的性能为:能够有效地吸收振动,降低振动的传导率,避免将发动机的振动传递到车身,发动机工作时振动频率与振幅有如下关系,在低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置则要求在发动机低频振动区域有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在发动机高频振动区域有较小的动刚度, 以便能够更好地吸收发动机的振动降低振动的传导率. 通过近几十年的研究开发,一些形状结构被确定为基础设计,实际使用的发动机悬置大部分是在这些结构基础上的改型和调整.如图1-1所示,发动机的前悬置大多采用这种压缩/剪切结构,一般情况三点支撑的发动机都是采用前端两点后端一点的支撑形式,且两发动机前悬置采用倾斜一定的角度对装,在工作中同时受到压缩和剪切载荷的作用.而发动机的后悬置大多采用如图1-2所示这种楔形座结构,这种楔形对称结构的悬置在工作中易受到压缩和剪切变形,同时当弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置的三个方向的刚度可以由空间尺寸和角度来决定,为各方向的刚度调整提供了方便. 图1-3所示的是一种衬套式的发动机悬置,这种结构都是由内外金属套管和橡胶硫化成型在一起的,它能实现较大的径向与轴向刚度比.

动力总成悬置系统布置设计研究

动力总成悬置系统布置设计研究 1 影响悬置系统布置设计的因素 1.1 发动机汽缸数的影响 不同缸数的发动机对动力总成的振动激励型式和激励频率不同。对于四缸四冲程发动机,在低频区的激振成分主要是第二阶不平衡往复惯性力;对于六缸四冲程发动机,其激振成分主要是第三、六阶转矩谐量。根据隔振理论,动力总成刚体振动模态频率应比主要激振频率的0.707倍要小。考虑怠速隔振的情况,当发动机的怠速转速相同时,四缸发动机动力总成的刚体振动临界频率上限需低于六缸机。对于四缸机,应特别注意其二阶不平衡往复惯性力。 1.2 发动机布置方式的影响 FF(发动机前置前轮驱动)式汽车的发动机可以横置或纵置,而横置发动机和纵置发动机的倾覆力矩对车身的低阶弯曲、扭转振动模态的相互耦合、匹配关系也完全不同。虽然动力总成的转动惯量几一般比几要大得多(3一倍左右),但动力总成的俯仰振动模态频率一般低于侧倾振动模态频率,动力总成的俯仰振动幅值往往小于侧倾振动幅值。 在发动机怠速工况下,动力总成的侧倾振动较大,为了避免动力总成的振动引起车身的低阶弯曲、扭转模态共振,在动力总成悬置系统设计过程中需要合理匹配车身弯曲或扭转振动模态与动力总成刚体侧倾振动模态的频率,同时对动力总成悬置安装点与车身固有振型节线的相对位置关系进行合理匹配。例如,对于横置式发动机,动力总成的前后悬置不宜跨置于车身弯曲振型节线的两侧。 1.3 动力传动系统型式的影响 对于发动机前置—前轮驱动的FF式汽车动力传动系,其动力总成还包括驱动桥主减速器,使得作用在动力总成上的驱动反力矩比FR式汽车大大增加,就要求

提高悬置的静刚度。同时,FF式汽车动力总成与FR式相比,其扭矩轴与曲轴的夹角明显增大,当其悬置系统采用V型布置方案时,往往由于布置空间和布置位置的限制,难以使得悬置组在布置达到使悬置组的弹性中心落在扭矩轴上的目标。因此,有必要在整车总布置初期预留必要的空间。 1.4 整车隔振性能要求对动力总成悬置系统设计的影响 为了抑制路面激起的整车振动,可适当配置动力总成悬置系统的垂向振动模态频率,使其起到控制整车振动的动力吸振器的作用,由动力总成吸收经过悬架传递上来的振动,从而减小车身的振动。这往往要求动力总成悬置系统有较高的垂向刚度。 2 不同动力总成型式下的悬置布置设计 2.1 前置后驱式(FR式)汽车 前置后驱式(FR)汽车经常采用对称布置的三点或四点式悬置系统,二者隔振原理基本相同。 在FR式汽车动力总成悬置系统中,多在动力总成质心的左右各有一悬置,在变速器后部选用一点或两点悬置,组成三点或四点式悬置系统。 动力总成质心附近的悬置支承了动力总成质量的60%—80%,起主要隔振作用,被称作主悬置。 而变速器后部悬置的垂直方向刚度较低,主要起限制动力总成振幅的作用,防止其产生俯仰运动,被称作止动式悬置。 动力总成有六个刚体模态,在耦合振动系统中的某一模态受到激发的同时,其它模态振动也受到激发,不利于控制系统的振动。理想的解耦式振动系统中,悬置系统的弹性中心与动力总成的质心重合,这样六个刚体模态完全解耦。但由于动力总成在汽车上的安装空间受到限制,无法实现完全解耦。 Adam Opel汽车动力总成采用的三点式悬置系统中,在发动机前部的两侧各有一个与垂直方向倾斜一定角度的解耦式主悬置,在变速器后部有一止动式悬置,如图2-1所示。考虑到动力总成中扭矩波动、往复惯性力引起的扭振和垂直

汽车发动机橡胶悬置产品的结构介绍

第27 卷 第2期2006年4月特种橡胶制品 Special Purpose Rubber Products Vol.27 No.2 April 2006 汽车发动机橡胶悬置产品的结构介绍 赵季勇,李晓武,刘彩萍 (中鼎密封件有限公司,安徽宁国 242300) 摘 要:介绍了发动机常规结构橡胶悬置的特点和应用,以及液压悬置结构的发展历程和应用。关键词:减振橡胶;发动机悬置;静刚度;动刚度 中图分类号:336.4+2 文献标识码:B 文章编号:1005-4030(2006)02-0047-03 收稿日期:2005-07-06 作者简介:赵季勇(1973-),男,安徽宣城人,工程师,从事汽车减 振橡胶制品的开发研究。 现实生活中振动无处不在,振动现象不容忽 视。怎样将振动产生的不利影响减到最小程度,是当前减振技术发展的方向。1 普通标准结构 发动机是通过悬置系统与车身相连接,发动机是振动源,车身是防振对象,这就要求发动机悬置能够有效地吸收振动或降低振动;发动机工作时振动频率与振幅有如下关系,低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置要求是在低频振动时有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在高频振动时有较小的动刚度,以便能够更好地吸收振动。 通过近几十年来的研究开发,一些悬置的结构 被确定为基础结构,实际使用的发动机悬置大部分 是这些结构的改型。如图1-1,发动机前悬置大多采用这种压缩/剪切结构,一般情况3点支撑的发动机都是采用前端2点后端1点的支撑形式,且2个前悬置采用一定的倾斜角度对装,在工作中同 时受到压缩和剪切载荷的作用。发动机后悬置大多采用图1-2所示的楔形座结构,这种楔形对称结构在工作中易受到压缩和剪切变形,同时把弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置在3个方向上的刚度可以由空间尺寸和角度来决定,为各个方向上的刚度调整提供了方便。图1-3是一种衬套式发动机悬置,这种结构是由内外金属套管和橡胶硫化在一起, 它能实现较大的径向与轴向刚度比。 图1 发动机悬置常用的标准结构型式 以上这些悬置都是属于常规的普通结构形 式,在减振性能上都存在一定的局限性。对发动机悬置在高频振动时具有低的动刚度,低频振动

汽车发动机液压悬置

湖北汽车工业学院 Hubei Automotive Industries Institute 《汽车新技术》 课程结业论文 论文题目:汽车发动机液压悬置 指导教师:姚胜华张庆永 学校名称:湖北汽车工业学院

发动机液压悬置 摘要:发动机液压悬置是非线性很强的隔振元件,其动特性因激振频率和激振振幅的改变而改变。试验分析和理论研究是研究液压悬置的两种基本方法。文中通过分析典型液压悬置的结构特征,全面总结液压悬置的试验方法、理论模型和优化设计方法等方面的研究现状,分析了将试验研究和理论分析相结合、采用系统参数识别方法对液压悬置进行研究的可行性,并探讨了最优试验设计准则。 关键词:发动机液压悬置振动噪声发展 发动机液压悬置是连接发动机与车体之间的支承隔振元件,它能隔离发动机的振动和噪音向车厢内的传递,明显提高整车车内的舒适性。液压悬置主要应用于中高档轿车的发动机支承。 发动机通过悬置弹性连接在车架上。悬置元件既要隔离发动机在正常工作范围内产生的振动和高频噪声向车体的传递,又要保证汽车在振动、突然加减速、转弯等工况下,发动机始终保持在设计位置,使整个动力总成不因发动机与车架之间的相对运动过大而受损。为此,发动机悬置应在高频振动激励(大于25Hz)下,具有低刚度和小阻尼的特性,以减小振动的传递和高频噪声,一般认为这时的激振振幅很小,为0.1mm级;同时在低频振动激励(1~25Hz)下,具有高刚度大阻尼的特征,以有效衰减车架的低频振动对发动机的影响,这时的激振振幅较大,为1mm级。因此理想的发动机悬置是一个动特性随激振振幅和振动频率变化而变化的元件。液压悬置因其具有良好的隔振性能而广泛应用于现在的汽车上。 本文从介绍液压悬置的基本结够,从试验研究和理论分析两方面对液压悬置的研究现状进行介绍,并对液压悬置的未来研究方向进行了探讨 液压悬置的基本结构和性能评价指标。按控制方式分,液压悬置可分为被动式、半主动控制式和主动控制式。后两种控制方式的液压悬置虽然在隔振、减振、降噪性能方面均优于被动式液压悬置,但由于结构复杂、成本高、系统稳定性差等问题,还没有被广泛使用。目前中低档轿车普遍使用的。 早期的被动式液压悬置在上、下液室之间只有小孔连接,靠液体流过小孔的节流阻尼来衰减发动机振动,其大阻尼特性在低频振动时可以控制发动机的位移,但高频时会恶化隔振效果。

发动机悬置

悬置系统 发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。引起零部件的损坏和乘坐的不舒适等。所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。一般来讲对发动机悬置系统有如下要求。 ①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。同时在发动机大修前,不出现零部件损坏。 ②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。 ③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。 ④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。 悬置系统的激振源 作用于发动机悬置系统的激振源主要如下: ①发动机起动及熄火停转时的摇动; ②怠速运转时的抖动; ③发动机高速运转时的振动; ④路面冲击所引起的车体振动; ⑤大转矩时的摇动; ⑥汽车起步或变速时转矩变化所引起的冲击; ⑦过大错位所引起的干涉和破损。 作用在发动机悬置上的振动频率十分广泛。按着振动频率可以把振动分为高频振动和低频振动。频率低于30Hz的低频振动源如下: ①发动机低速运转时的转矩波动; ②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功; ③轮胎旋转时由于轮胎动平衡不好使车身产生的振动; ④路面不平使车身产生的振动; ⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。 频率高于30Hz的高频振动源如下: ①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动; ②变速时产生的振动; ③燃烧压力脉动使机体产生的振动; ④发动机配气机构产生的振动; ⑤曲轴的弯曲振动和扭振; ⑥动力总成的弯曲振动和扭振; ⑦传动轴不平衡产生的振动。 总之,使发动机总成产生振动的主要振源概括起来有两类:一为内振源,主要是由于燃烧脉动、活塞和连杆的运动产生的不平衡力和力矩。二为外振源,主要来源于不平的道路或传动系。这两种振源几乎总是同时作用,使发动机处于复杂的振动状态。 (1) 燃烧激振频率 这是由发动机气缸内混合气燃烧,曲轴输出脉冲转矩,由于转矩周期性地发生变化,导致发动机上反作用

发动机悬置设计

< 整车技术部设计指南)73 发动机悬置设计 概述 汽车的乘坐舒适性——NVH(Noise-噪声、Vibration-振动和 Harshness-声振舒适性)越来越受到人们的重视和关注,因为噪声、振动和舒适性,是衡量汽车制造质量的一个 综合问题,它给汽车用户的感觉是最直接和最表面的。作为汽车动力源的发动机是汽车 主要的振动激励源之一,其气缸燃气压力、转速及输出转矩的周期性波动及不平衡惯性 力(矩)既激起发动机动力总成本身的刚体振动和弹性振动,又激起汽车动力传动的扭 转振动和弯曲振动等,从而导致十分严重的振动、噪声及结构问题,最终传递给车身, 引起整车振动与噪声。 汽车动力总成悬置系统是指动力总成(包括发动机、离合器及变速箱等)与车架或 车身之间通过弹性悬置元件连接而成的系统,发动机动力总成的振动与路面激励力是通 过弹性悬置元件传给车身,该项系统性能设计的好坏直接关系到发动机振动向车体的传递,影响整车的 NVH 特性。因此,最大限度的减小发动机动力总成所产生的振动及噪声 向车身传递,是汽车减振和降噪的主要研究内容之一。 、悬置系统功能介绍 悬置总成的功用 a)悬置系统的首要作用即最基本的作用是支承动力总成的动、静载荷,并使发动机 动力总成在所有方向上的位移处于可接受的范围内,不与前舱内其它零部件发生干涉; b)隔离发动机动力总成的振动,最大限度地降低从发动机动力总成传递到车身/车架 上的振动,能有效的降低振动及噪音; c)在汽车做紧急制动、加速或受其它外界负荷的作用下时,发动机不应有过大的位移; d)隔离由于轮胎及车身的抖动而产生的振动和噪音通过悬置系统而传向发动机动力 总成,降低振动及噪音; e)悬置系统元件需有足够的使用寿命。 动力总成悬置系统设计方法 设计需解决的问题 a)主要起支撑减振的作用,因而,悬置必须要能够支撑起动力总成,并且保证其三

发动机悬置设计

动力总成悬置系统的设计是很复杂的。 一般来说对于悬置系统是一个6自由度的系统,要求对动力总成在各个方向上解耦。但是也要控制一定的位移。 悬置是将发动机的震动(扭矩变化,发动机离心惯性力,往复惯性力等)尽量隔离,将路面对发动机的激励和急加速急减速以及急转弯造成的发动机的位移与震动尽量降低。 一般说来,动力总成悬置的正向设计是复杂的,要对动力总成的质心,转动惯量,主惯性轴等参数获得,通过一定的计算对发动机悬置的布置点进行布置,当然要考虑到发动机舱的实际情况。将悬置在3个方向的弹性轴与动力总成三个方向的主惯性轴重合就能使动力总成在6个方向上解耦(似乎是这样的)。对于发动机舱而言,要控制动力总成相对发动机舱的距离,有文献说要控制在20mm以上,建议在25mm 以上,在各个方向上的绕轴旋转控制在6度,推荐3~4度,在三个方向的位移控制在正负15mm以内。 对悬置的位置,和个数(3个以上)确定之后才是设计悬置单个件,橡胶悬置的静刚度曲线一般是3刚度曲线,需要在一定的方向上有限位,限位处为静刚度曲线的拐点。动刚度曲线在低频大幅震动刚度基本是随着频率增大而增大,高频时容易出现动态硬化的现象,即刚度值理论上非常大。 液压悬置在动刚度曲线的走向上比较而言好控制,因为他的工作原理不同,有点像单筒式液压减震器,通过液体(乙二醇)在惯性通道或者节流管道的阻尼力减少振动,将振动的能量转化成内能。液压悬置的静刚度曲线与橡胶悬置没什么区别,也就是说漏液的液压悬置与好的液压悬置静刚度曲线相同。动刚度曲线就截然不同,一般说来,在最大阻尼角附近,动刚度曲线突然升高,在一定频率之后,动刚度曲线呈下降趋势,不会出现橡胶悬置随频率增大而增大,出现动态硬化。 悬置设计主要是考虑高频低幅振动和低频大幅振动的工况。减少发动机高频的噪声和低频的振动,同时使发动机不会出现过大的位移,造成发动机舱内零件干涉以致于破坏零件,使零件失效。建议在设计时进行ADMAS分析。 刚度 受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。各向同性材料的刚度取决于它的弹性模量E和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的刚度外,还同其几何形状、边界条件等因素以及外力的作用形式有关。分析材料和结构的刚度是工程设计中的一项重要工作。对于一些须严格限制变形的结构(如机翼、高精度的装配件等),须通过刚度分析来控制变形。许多结构(如建筑物、机械等)也要通过控制刚度以防止发生振动、颤振或失稳。另外,如弹簧秤、环式测力计等,须通过控制其刚度为某一合理值以确保其特定功能。在结构力学的位移法分析中,为确定结构的变形和应力,通常也要分析其各部分的刚度。 刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的了或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚

悬置设计

发动机悬置系统的初步设计(一) 1 发动机悬置系统的功用及激振力分析 发动机悬置系统(以下简称悬置系统)应该具备: ①隔振功能; ②支承限位功能; ③降噪等功能。 发动机总成本身是一个内在的振动源, 同时又受到来自外部的各种振动干扰, 使其处于复杂的振动状态, 引起周围零件的损坏和乘坐的不舒适等。其中: 燃烧激振频率, 是由发动机气缸内混合气燃烧, 曲轴输出脉冲扭矩, 导致发动机上反作用力矩的波动, 从而使发动机产生周期性的扭转振动, 其振动频率实际上就是发动机的发火频率,计算公式为[2] : 其中: f1——点火干扰频率, Hz; n——发动机转速, r/min; i——发动机气缸数; —发动机的冲程系数(2 或4)。 惯性力激振频率, 是由发动机不平衡的旋转质量和往复运动的质量所引起的惯性激振力和激振力矩的频率。它与发动机的缸数无关, 但惯性力的不平衡量与发动机缸数和结构特征有着密切关系。计算公式为[2]: 其中: f2——惯性力激振频率, Hz; n——发动机转速, r /min; Q——比例系

数(一级不平衡惯性力或力矩Q=1、二级不平衡惯性力或力矩Q=2) 选用的直列四缸发动机(见图3), 其主要激振力为低速区段的二阶扭矩波动和高速区段的二阶惯性力, 表达式为(1-3)[3]: 式中, γ为总成布置倾斜角(通常指布置后曲轴与水平面的夹角); m 为单缸活塞及往复运动部分质量; r 为曲柄半径; λ为曲柄半径与连杆长度之比(λ=r /L); ω为发动机曲轴角速度(ω=2πn /60); Me0 为发动机输出扭矩平均值; A 为2、3 缸中心线至动力总成重心的纵向X 距离。 2 发动机悬置系统支承点位置的最佳设计 在确定悬置系统支承点位置时, 应该考虑到低速(怠速)和高速时的不同要求。发动机总成在低速运转时, 其自身的弹性振动影响较小, 将其看成刚体, 按照刚体运动理论进行研究; 高速时自身弹性振动影响较大, 必须通过试验得到其弹性振动形态, 选择振幅最小的位置, 即将悬置系统支承点布置在弹性振动的节点位置上。 在实际设计过程时, 首先以较低频率为对象, 从刚体的振动理论出发进行研究, 然后以高频率为对象, 通过试验振动分析确定支承点最合适的位置。当激振频率较低时, 接近悬置系统的固有频率, 有可能发生共振, 此时应该尽量避免各阶振动的耦合, 至少要保证变位行程大或角变位大的主振动, 例如由激振力和力矩引起的垂直方向的振动和侧倾方向的转动独立而不耦合。 以皮卡车为例, 其发动机总成在作自由扭转振动时, 是以主惯性轴作为扭转中心轴线, 在实际运行中, 受到来自曲轴的扭转外力矩, 而主惯性轴与曲轴之间有一个夹角!, 故发动机总成在作扭转振动时实际环绕的曲线是扭矩轴(如图1所示),

动力总成悬置设计流程

动力总成悬置系统设计流程 5.1 悬置系统的设计输入: 一般需要输入以下参数:动力总成的激振源,动力总成的惯性参数,隔振性能的要求,频率的匹配,模态的解耦,动力总成的位移控制,动力总成和整车的匹配,悬置元件的设计约束,发动机舱空间等。 5.2 悬置系统的主要设计参数: 悬置位置及数量的选择,悬置安装位置角度的选择,静刚度曲线的确定,动刚度的确定,阻尼参数的确定等。 5.2.1悬置位置及数量 根据动力总成的长度、质量、用途、安装方式和机舱空间等决定。悬置系统可以有3、4、5点悬置,一般在汽车上采用三点及四点悬置系统。因为在振动比较大时,如果悬置点的数目增多,当车架变形时,有的悬置点会发生错位,使发动机或悬置支架受力过大而造成损坏。 三点式悬置与车架的顺从性最好,因为三点决定一个平面,不受车架变形的影响,而且固有频率低,抗扭转振动的效果好。 四点式悬置的稳定性好、能克服较大的转矩反作用力,不过扭转刚度较大,不利于隔离低频振动。较常见的三点及四点悬置布置形式如下图: 三点悬置布置示意图四点悬置布置示意图 5.2.2悬置安装位置角度的选择 在传统的纵置式发动机中,V 型布置是经常采用的方式, 一般倾斜角度θ:40o~45o, V型布置的悬置系统的弹性中心较低,在设计中通过倾角及位置的调整容易使其弹性中心落在或接近动力总成的主惯性型轴上。 对于横置动力总成而言,一般采用的是左右悬置支撑动力总成,另配置下拉杆悬置或前后抗扭悬置来承担扭矩载荷,此类布局的优势是从功能配置上来说就区分了承载悬置和抗扭悬置,易于实现悬置系统的刚体模态解耦。 5.2.3悬置的静动刚度确定 受几何空间布置的影响,要想达到悬置系统的解藕,另外一个重要的可调参数即悬置本身的静动刚度。通过调整悬置的刚度及几何位置,使悬置系统的弹性中心与动力总成的质心重合,则振动将大为简化。 理论上,如果使发动机悬置系统的弹性中心同发动机总成的质心重合,就可获得所有六个自由度上

悬置系统设计计算

悬置系统设计计算

悬置系统 发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。引起零部件的损坏和乘坐的不舒适等。因此设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。一般来讲对 发动机悬置系统有如下要求。 ①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉。同时在发动机大修前,不出现零部件损坏。 ②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。 ③能充分地隔离由于路面不平产生的经过悬置而传向发动机的振动,降低振动噪声。 ④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。 悬置系统的激振源

作用于发动机悬置系统的激振源主要如下: ①发动机起动及熄火停转时的摇动; ②怠速运转时的抖动; ③发动机高速运转时的振动; ④路面冲击所引起的车体振动; ⑤大转矩时的摇动; ⑥汽车起步或变速时转矩变化所引起的冲击; ⑦过大错位所引起的干涉和破损。作用在发动机悬置上的振动频率十分广泛。按着振动频率能够把振动分为高频振动和低频振动。频率低于30Hz的低频振动源如下: ①发动机低速运转时的转矩波动; ②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功; ③轮胎旋转时由于轮胎动平衡不好使车身产生的振动; ④路面不平使车身产生的振动; ⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。 频率高于30Hz的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;

相关文档
最新文档