《岩体力学》第九章边坡岩体稳定性

《岩体力学》第九章边坡岩体稳定性
《岩体力学》第九章边坡岩体稳定性

第九章 边坡岩体稳定性

斜坡:倾斜的地面,是天然斜坡和人工边坡的总称。 边坡的分类:

()?

?

????

??????

?岩质边坡土质边坡按岩性分坡等铁路公路路堑与路堤边改造形成如采矿边坡、人工开挖、

人工边坡地壳隆起或下降引起天然的山坡和谷坡自然边坡按成因分 ::

本章主要讨论人工开挖的岩质边坡的稳定性。 岩质边坡稳定性分析方法:

1) 数学力学分析法(包括块体极限平衡法、弹性力学法和弹塑性力学分析法及有限

元法等)

2) 模型模拟试验法(相似材料模型试验、光弹试验法和离心模型试验) 3) 原位观测法

此外,还有破坏概率法、信息论方法及风险决策法等。

核心内容:()()

?

????=???

?

??=允滑抗滑安全系数安全性系数稳定性系数稳定性计算K 0K F F K

第一节 边坡岩体中的应力分布特征

一、应力分布特征

假定岩体为连续、均质、各向同性的介质,且不考虑时间效应的情况下 (1)边坡面附近的主应力迹线明显偏转,1σ与坡面趋于平行,3σ与坡面趋于正交,

而向坡体内逐渐恢复初始应力状态;

(2)坡面附近出现应力集中现象;

(3)坡面处的径向应力为零,故坡面岩体仅处于双向应力状态,向坡内逐渐转为三向应力状态;

(4)因主应力偏转,坡体内的最大剪应力迹线由直线变为凹向坡面的弧线。

二、影响边坡应力分布的因素

(1)天然应力:

h σ↑,坡体内拉应力范围加大。

(2)坡形、坡高、坡角及坡底宽度等,对边坡应力分布有一定的影响;

坡高↑,1σ、

3σ也大;

坡角↑,拉应力范围↑,坡脚剪应力↑。 (3)岩体性质及结构特征

变形模量E 对边坡影响不大,μ对边坡应力影响明显。

第二节 边坡岩体的变形与破坏

一、边坡岩体变形破坏的基本类型

1.边坡变形的基本类型

根据其形成机理分为两种类型:卸荷回弹和蠕变变形。 2.边坡破坏的基本模型 四类,见教材P 177

()()()()()()()????????

??

??以崩塌形式拉断破坏以崩塌形成倾倒破坏以滑坡形式剪切破坏圆弧形滑动

楔形状滑动

多平面滑动双平面滑动单平面滑动平面滑动 4 3 2 , ,: 1

实际上,就是两种:滑坡和崩塌。

二、影响岩体边坡变形破坏的因素

1.岩性:岩体越坚硬,边坡不易破坏,反之,容易破坏(一般情况)。 2.岩体结构:岩体结构控制着边坡的破坏形式及稳定程度。

3.水的作用:水的渗入,滑动力↑;软化作用;产生动水压力和静水压力,不利于边坡稳定。

4.风化作用:风化作用降低

f

τ。

5.地形地貌:影响坡内的应力分布特征→影响边坡的变形破坏形成及稳定性。 6.地震:加速边坡破坏。 7.天然应力:

h σ影响边坡拉应力及剪应力分布范围及大小。

8.人为因素:不合理设计、爆破、开挖或加载等等。

第三节 边坡岩体稳定性分析的步骤

边坡岩体稳定性预测,定性分析与定量评价的方法相结合。

?????

?

?性计算及定量评价。进行稳定岩体边坡应用一定的计算方法对在定性分析的基础上定量评价判断。以及破坏形式进行初步可能性对边坡岩体变形破坏的基础上在工程地质勘察工作的定性分析 , ,: ,:

()??

?比较简便且效果较好块体极限平衡法开辟了新的途径有限元方法:: 块体极限平衡法计算边坡岩体稳定性的步骤:

(1)(可能滑动岩体)几何边界条件的分析 滑动面、切割面和临空面

目的:确定边坡中可能滑动岩体的位置、规模及形态, 判断边坡岩体的破坏类型及主滑方向。

赤平投影、实体比例投影等图解法。 (2)受力条件分析

岩体重力、静水压力、动水压力、建筑物作用力和地震(动)力等。 (3)确定计算参数

滑动面的剪切强度参数(C 、φ、E 等); 滑动面上的剪切强度介于峰值强度(p

τ)与残余强度(r τ)之间,从偏安全的角度

出发,应取接近于残余强度。

()p

r ττ9.06.0~=

(4)稳定性系数的计算和稳定性评价

第四节 边坡岩体稳定性计算

在此仅讨论平面滑动和楔形体滑动,圆弧形滑动的计算在土力学中已详细论述过,而对于倾倒破坏可参看Hoke-Bray 的《岩石边坡工程》。

一、平面滑动

假定滑动面的强度服从Mohr-Coulomb 准则。 1.单平面滑动

边坡角为α,坡度H ,ABC 为可能滑动体,AC 为可能滑动面,倾角为

β,如图9.1所示。

1)仅在重力作用下

L C tg G F s ?+?=φβcos

滑动力:βsin G F r =

稳定性系数βφβηsin cos G CL tg G F F r s +?==

由三角关系:

()()()()

βαβραβφηβαβαρρβ

βαα

αβα-+

=?-=

==

=?=

-=

sin sin sin 2sin sin 2sin 21sin -s sin sin sin 2gH C tg tg gH ghL G H L in H

h H h

AB

式中:C 、φ为AC 面上的粘聚力和内摩擦角。 令η=1可得到极限高度

cr H 。

2)当边坡后缘存在拉张裂隙时,地表水从裂隙渗入,沿滑动面渗流并在坡脚出露,形成静水压力。(地下水的影响)

如图9.2所示, 静水压力: 2

21w

w Z V γ=

AD 面上的静水压力:

βγsin 21

w w

w w Z H z U -?=

图 9.1 单平面滑动稳定性计算图

图 9.2 有地下水渗流时边坡稳定性计算图

则:

()β

βφββηcos sin sin cos V G AD

C tg V U G +?+--=

G 为ABCD 的重量。

3)在②的状态下,如考虑地震力,将产生水平地震力EK F ,(地震力的影响)

()G

F F V

G AD

C tg F V U G EK EK EK 1 cos cos sin sin sin cos αβ

ββφβββη=++?+---=

式中1α为水平地震影响系数。 2.同向双平面滑动

1)滑动体为刚体的情况

主要有等K 法、刚体极限平衡法和非等K 法。

(1) 等K 法 ① 非极限平衡等K 法 如图9.3所示。

对B AB '滑动体:

=R AB C tg G ++?111cos φβ

滑动力=βsin 1G

稳定性系数为:

βφβsin cos 11111G R

AB C tg G K ++?=

………………………………………………………①

对BC B '滑动体:

()[]()αβαφαββ-++-+=

cos sin sin cos 22212R G BC C tg R G K …………………………………………②

令K K K ==21,联立求解可得K 。 ②极限平衡等K 法

将AB 、BC 两滑面的抗剪强度参数C 、φtg 除以斜坡稳定性系数K ,此时两滑面将处于极限平衡状态。两边同除以K K K ==21,那么

①式变为:

图 9.3 同向双平面滑动稳定性分析计算图

()

AB K C

tg K G G R G R AB C tg G K --

=?++?=

φβββφβcos sin sin cos 1

11111………………………………………………

②式变为:

()[]()

()[]()

αβααβαφαβαφαβα-+-++=?-+?+-+=

cos sin sin cos cos sin //sin cos 12222

2222R G R G tg BC C K R G K BC C K tg R G …………………………………

③代入④可得:K (2)非等K 法

实际上是等K 法的一种特例,认为B AB '和BC B '两块体的稳定性系数不相等,并假定1='B AB K (即11=K ),此时,BC B '的2K 即代表整个斜坡的稳定性。

由①式令11=K ,得:()

AB C tg G G R 1111cos sin +?-=φββ

上式代入②式可得:

()(

)[

]}

{()(

)[

]

AB

C tg G G G BC C tg AB C tg G G G

K K 111122211112

2cos sin cos sin cos sin sin cos +?--+++?--+=

=φββαβαφφββαβα

注意:非等K 法主要是令次要的那块滑动体的稳定性系数为1即11=K ,否则很不合理。

(3)刚体极限平衡法 如图9.4所示,ABC 为刚性危岩体,滑动面为结构面AB 、BC ,作用于危岩体ABC 上的所有外力(包括重力、地震力及结构面AB 、BC

上的渗透压力等)的

合力为R ,它在x 、y 方向的分量为X 和Y ,那么:

静力平衡条件:

图9.4 刚体极限平衡法分析双平面滑动的稳定性简图

,0 ,0=∑=∑y x F F

得:

??

?----=--+=α

βαβαβαβsin sin cos cos cos cos sin sin 21212121S S N N Y S S N N X ……………………………⑤

假定危岩体不下滑的稳定性系数为K 。根据极限平衡条件,维持危岩体ABC 不下滑;结构面AB 、BC 上的抗滑力S 1和S 2应满足:

K BC C tg N S K

AB

C tg N S 22

221111+=+=

φφ…………………………………………………………………⑥ ⑥代入⑤式可得:

??????

?++=??? ??--??? ??

-++=??

? ??+-??? ??+-X K BC C K AB C K tg N K tg N Y K BC C K AB

C K tg N K tg N αβαφαβφβαβαφαβφβcos cos cos sin cos sin sin sin sin cos sin cos 2122112122

11

…………………………………………⑦

⑦式中有K , ,21及N N 三个未知数,无法求解。

K ↑,由⑥式可知,S 1、S 2↓也即总抗滑力↓,当K ↑→'

K (临界值)时,危岩体ABC 处于临界状态,此时N 1=0,(N 1不能小于0,滑动面不承受拉力,最小只能是N 1=0),并由此求得K 的上限值。

由⑦消去N 2得:

22221

1211C K B K A C K B K A N ++++=

式中

()()[]

()()

()()()

?????????

?

?--=--=-=-=-++--=+=βαφφβαφφαβαβφααφαβααsin cos sin sin cos sin cos sin cos 212212*********tg tg C tg tg B A tg AB c C Y X tg BC C AB C B Y X A

1

1

1211112

1124 0A :0A C A B B K C K B K N -±-=

?=++=得

只有N 1自正值降低至零时的K 值为所求,即K 的上限值。如K<0,则斜坡危岩体不可

能失稳。

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价. 9。1边坡的变形与破坏类型 9。1.1概述

随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边

坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

理正边坡稳定分析

第一章功能概述 边坡失稳破坏是岩土工程中常遇到的工程问题之一。造成的危害及治理费用均非常可观。因此,客观的、正确的评估边坡稳定状况,是摆在工程技术人员面前的一道难题。为满足工程技术人员的需要,编制了“理正边坡稳定分析”软件。 该软件具有下列功能: ⑴本软件具有通用标准、堤防规范、碾压土石坝规范三种标准,以满足不同行业的要求; ⑵本软件提供三种地层分布模式(匀质地层、倾斜地层、复杂地层),可满足各种地层条件的要求; ⑶本软件可计算边坡的稳定安全系数、及剩余下滑力; ⑷本软件提供多种方式计算边坡的稳定安全系数; ⑸本软件提供的自动搜索最小稳定安全系数的方法,是理正技术人员研制、开发、应用到软件中,并取得良好的效果。一般情况下,都可以得到最优解。但是对于较复杂的地质条件,建议先指定区域搜索、分不同精度进行分析,逐步逼近最优解,这样才能既快、又准; ⑹对于圆弧稳定计算,本软件提供三种方法:瑞典条分法、简化Bishop法、及Janbu 法。集三种方法于一体,用户可以根据不同的要求采用不同的方法。用户需要注意的是采用后两种方法计算时,有时不收敛,也是正常的。需要用户调整相关的参数再计算或用第一种方法; ⑺软件可同时考虑地震作用、外加荷载、及锚杆、锚索、土工布等对稳定的影响; ⑻特别是针对水利行业做了大量工作,除按水利的堤防、碾压土石坝规范外,还参照了海堤等规范;提供按不同工况—施工期、稳定渗流期、水位降落期计算堤坝的稳定性(具有总应力法及有效应力法); 详细的分析、考虑水的作用,包括堤坝内部的水(渗流水)及堤坝外部的水(静水压力)的作用;尤其方便的是可以将渗流软件分析的流场数据直接应用到稳定分析,使计算结果更逼近真实状况。 ⑼具有图文并茂的交互界面、计算书。并有及时的提示指导、帮助用户使用软件。 本软件可应用于水利行业、公路行业、铁路行业和其它行业在岩土工程建设中遇到的边坡(主要是土质边坡、岩石边坡可参考)稳定分析。

《岩体力学》第九章边坡岩体稳定性

第九章 边坡岩体稳定性 斜坡:倾斜的地面,是天然斜坡和人工边坡的总称。 边坡的分类: ()? ? ???? ?????? ?岩质边坡土质边坡按岩性分坡等铁路公路路堑与路堤边改造形成如采矿边坡、人工开挖、 人工边坡地壳隆起或下降引起天然的山坡和谷坡自然边坡按成因分 :: 本章主要讨论人工开挖的岩质边坡的稳定性。 岩质边坡稳定性分析方法: 1) 数学力学分析法(包括块体极限平衡法、弹性力学法和弹塑性力学分析法及有限 元法等) 2) 模型模拟试验法(相似材料模型试验、光弹试验法和离心模型试验) 3) 原位观测法 此外,还有破坏概率法、信息论方法及风险决策法等。 核心内容:()() ? ????=??? ? ??=允滑抗滑安全系数安全性系数稳定性系数稳定性计算K 0K F F K 第一节 边坡岩体中的应力分布特征 一、应力分布特征 假定岩体为连续、均质、各向同性的介质,且不考虑时间效应的情况下 (1)边坡面附近的主应力迹线明显偏转,1σ与坡面趋于平行,3σ与坡面趋于正交, 而向坡体内逐渐恢复初始应力状态; (2)坡面附近出现应力集中现象; (3)坡面处的径向应力为零,故坡面岩体仅处于双向应力状态,向坡内逐渐转为三向应力状态; (4)因主应力偏转,坡体内的最大剪应力迹线由直线变为凹向坡面的弧线。 二、影响边坡应力分布的因素

(1)天然应力: h σ↑,坡体内拉应力范围加大。 (2)坡形、坡高、坡角及坡底宽度等,对边坡应力分布有一定的影响; 坡高↑,1σ、 3σ也大; 坡角↑,拉应力范围↑,坡脚剪应力↑。 (3)岩体性质及结构特征 变形模量E 对边坡影响不大,μ对边坡应力影响明显。 第二节 边坡岩体的变形与破坏 一、边坡岩体变形破坏的基本类型 1.边坡变形的基本类型 根据其形成机理分为两种类型:卸荷回弹和蠕变变形。 2.边坡破坏的基本模型 四类,见教材P 177 ()()()()()()()???????? ?? ??以崩塌形式拉断破坏以崩塌形成倾倒破坏以滑坡形式剪切破坏圆弧形滑动 楔形状滑动 多平面滑动双平面滑动单平面滑动平面滑动 4 3 2 , ,: 1 实际上,就是两种:滑坡和崩塌。 二、影响岩体边坡变形破坏的因素 1.岩性:岩体越坚硬,边坡不易破坏,反之,容易破坏(一般情况)。 2.岩体结构:岩体结构控制着边坡的破坏形式及稳定程度。 3.水的作用:水的渗入,滑动力↑;软化作用;产生动水压力和静水压力,不利于边坡稳定。 4.风化作用:风化作用降低 f τ。 5.地形地貌:影响坡内的应力分布特征→影响边坡的变形破坏形成及稳定性。 6.地震:加速边坡破坏。 7.天然应力: h σ影响边坡拉应力及剪应力分布范围及大小。

用理正岩土计算边坡稳定性

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价

桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。 还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用)

岩石路堑边坡稳定性分析

岩石路堑边坡稳定性分析 [摘要]本文主要阐述了影响岩石路堑边稳定性的主要因素,并且简要说明了岩石路堑边稳定性的分析方法,最后向大家介绍了,堑边路面稳定性的防治措施。 【关键词】堑边路面稳定性;分析方法;防治措施 1、影响岩石路堑边坡稳定性的主要因素 1.1岩石构造和地质类型 影响边坡稳定性的因素主要有地理因素和工程因素。地理因素包括岩石的结构密度,地貌特征等等因素。而工程因素主要包括人为因素,工程损伤和地震等不可预计的事件。在地理因素之中,岩性对边坡的稳定及其边坡的坡高和坡角起重要的控制作用。坚硬的岩石如花岗岩、石灰岩等可以形成非常稳定的堑边坡。而在淤泥集中的路段,由于淤泥的流动性非常强,几乎难以形成坚固的边坡。 不同的岩是层组成的边坡,其变形破坏的程度也有着很大的不同,以黄土地区为例,边坡的变形破坏形式以滑坡为主,而在花岗岩、厚层石灰岩、沙岩地区则以崩塌为主。在碎屑岩以及松散土层的地区,容易产生碎屑流或者泥石流等自然灾害。在区域构造比较复杂,褶皱比较强烈,新构造运动比较活动的地区,边坡稳定性差。断层带岩石破碎,风化严重,又是地下水最丰富和活动的地区极易发生滑坡。岩层结构的形状对边坡稳定也有很大影响,水平岩层的边坡稳定性较稳定,不过却存在陡倾的节理裂隙,则易形成崩塌和剥落。同向缓倾的岩质边坡的稳定性比反向倾斜的差。同向陡倾层状结构的边坡,一般稳定性较好,但由于是由薄层或软硬岩层的岩石组成,可能因蠕变而产生挠曲弯折或倾倒。比较稳定的山坡上反向倾斜的类型,但垂直层面走向的山坡则易产生切层滑坡[1]。 1.2影响堑边坡稳定性中水的作用 地表水和地下水是影响边坡稳定性的重要因素。不少滑动都是由于水的流动而引起的。处于水下的透水边坡将承受水的浮托力的作用,而不透水的边坡,将承受静水压力;充水的张开裂隙将承受裂隙水静水压力的作用;地下水的渗流,将对边坡岩体产生动水压力;水对边坡岩体还产生软化或泥化作用,使岩土体的抗剪强度大为降低;地表水的冲刷,地下水的溶蚀和潜蚀也直接对边坡产生破坏作用。此外,工程荷载、地震、爆破等因素对边坡稳定性也会产生很大的影响。 2、岩石路堑边的破坏类型及稳定性的分析方法 2.1岩石路堑边的破坏类型 岩坡的破坏类型分为平面滑动和楔形滑动以及旋转滑动三种。从形态上看来

岩质边坡类型、结构面特征及稳定性分析

岩质边坡类型、结构面特征及稳定性分析 【摘要】边坡的稳定性受控于岩土体的基本特性和人为改造的程度两方面因素。由于地质体的复杂性、多变性和不均质性,因而道路工程边坡设计是预测性、风险性的设计。本文针对山区不同的边坡类型突出的边坡岩土体失稳问题,结合四川、重庆、云南等省山区道路工程建设项目边坡工程及滑坡灾害的勘查和治理,在研究山区地质背景和地质特征基础上,系统研究边坡岩体结构分类方法,以及开挖边坡岩体稳定性的岩体结构分析方法。 【关键词】地质灾害;岩体分类;结构特征;软硬岩层;结构面;稳定性 泥岩、泥质粉砂岩比较软弱,该类岩层具有透水性弱、亲水性强,遇水易软化、塑变,抗风化能力弱,易崩解等特性。从边坡角度来讲,多数边坡由软硬岩体构成,对边坡岩体的变形破坏起控制作用,岩质边坡软硬结构体构成,岩性层间结合差、软弱结构面发育,边坡开挖后极易发生山体变形、滑坡,特别是山前地带岩土质边坡、顺层岩质边坡及以岩层走向发育沟谷的一侧的边坡,多属顺层易滑地带。雨季经常诱发大量滑坡灾害,在道路等工程建设项目中,也经常诱发大量开挖边坡岩体失稳灾害。 开挖边坡岩土体失稳灾害的根本原因在于具有特殊的岩体结构特征和不利的岩体力学性质,其中开挖边坡岩体结构特征是控制开挖边坡稳定性的重要因素,边坡岩体的变形与破坏与边坡岩体结构面发育特征、结构面与开挖面的空间组合有密切关系,因此对边坡岩体结构、结构面特征的系统研究具有重要意义。 1.边坡岩体结构类型划分 边坡岩体的变形破坏与其岩体结构特征有密切的关系。根据岩体结构面、结构体特性,并充分考虑控制性结构面与边坡开挖临空面之间的空间组合关系,系统研究岩体结构类型的划分,给出各种岩体结构类型边坡稳定性分析模型,以便于在工程勘察设计中简便、快速应用。 针对岩体结构类型和边坡工程的特点,在边坡岩体结构类型划分中考虑如下因素: 1)岩质边坡的岩性特点及岩性组合特征 岩质边坡岩性组合最为显著的特点是不同力学性质的岩层互层,从边坡工程角度,开挖边坡工程的岩性组合主要有软质泥质岩为主的层状结构、软硬相间的砂泥岩互层结构和巨厚层硬岩为主的层状结构。 软质泥质岩为主的层状结构主要指开挖边坡岩体以软弱泥质岩为主,边坡岩体中夹少量薄层硬岩,但对整个边坡岩体性质影响不大。

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

理正岩土常见问题-边坡

常见问题 边坡 1.在边坡稳定分析中,土体中的孔隙水压力有几种计算方法,他们的区别是什么? 答:两种,分别为近似方法计算、渗流方法计算。 区别是: 前者认为孔隙水压力等于静水压力,是一种近似方法; 后者是精确计算孔隙水压力。需要通过读入渗流软件计算结果才能实现。 2.边坡软件中,如何考虑锚杆作用? 答:软件要求输入锚杆抗拉力、锚杆总长、锚固段长度、锚固段周长、粘结强度等参数,当锚杆穿过圆弧滑动面时,则锚杆的有效作用力=min{锚杆抗拔力、锚杆抗拉力} 锚杆抗拔力=圆弧滑动面外锚杆锚固段长度*锚固段周长*粘结强度 锚杆抗拉力=锚杆抗拉力 3.锚杆的抗拉力交互的是标准值还是设计值?粘结强度是标准值还是设计值? 答:标准值和设计值的概念是在锚杆设计时用的,由于软件不设计锚杆,而是应用锚杆提供的锚杆力的分力作用在滑面上,使得抗滑力增加或下滑力减少,来计算边坡的稳定。 锚杆力=Min﹛抗拉力,锚固体周长*锚固长度*粘结强度﹜。在软件中,交互的数值在软件中被直接使用,软件不做任何修正。9 4.土工布或锚杆的抗拉力和水平间距的关系是什么? 答:软件是先用交互的抗拉力除以水平间距,得出单位宽度的抗拉力,以单位宽度的抗拉力带入计算。 如果土工布时满铺的,水平间距要输入1,抗拉力输入单位宽度土工布的抗拉力。 5.边坡软件出现滑动面总在坡的表皮时,怎样处理? 答:此现象主要发生在边坡坡面部分为无粘性土的情况。 处理方法:(1)适当输入较小的粘聚力,再计算; (2)在建模时,把坡地表层加一个薄区域,模拟面层处理

(3)用“给定圆弧出入口范围搜索危险滑面”方法计算 6.软件是否考虑锚杆力法向分力产生的抗滑力? 答:软件可以考虑锚杆力法向分力产生的抗滑力,但要注意在“加筋”表中有个参数“法向力发挥系数”,该值输0则表示不考虑法向分力产生的抗滑力。 7.通用方法的有效应力法的公式中,条块受到的浮力U的计算公式是什么? 答:公式为:U=(h1+h2)/2×b×10 h1、h2-----土条左右侧的水高 b------土条宽度 8.通常情况下认为:“简化Bishop法不适用于折线滑动法”,软件为何采用? 答:传统意义上经典简化Bishop法确实只能应用在圆弧滑面上,但是在岩土力学杂志的论文中有学者提出了扩展简化Bishop法,可以用于非圆弧滑面安全系数的求解,理正软件正是参考了这种算法。 9.软件如何设置,才能用传递系数法计算安全系数? 答:计算目标设置成“剩余下滑力计算”,剩余下滑力计算目标设置成“计算安全系数”。 10.软件中用的传递系数法和《公路路基设计规范》JTG D30-2004中63页所用的方法是否是相同的? 答:是相同的,都是传递系数法中的KT模型。

GEO5和理正对比(总体边坡)170301

GEO5和理正对比 总体对比 结果 彩色二维和三维显示,视图效果可自定义仅二维,视图效果不可以修改GEO5 支持导入和导出DXF文件,所有模块之间数据可部分模块支持导入和导出DXF文件,少数模块基于数据共享和调用文案大全

实现一些复杂的功能立题方面得心应手 电话、QQ、邮件、售后培训。库仑问答平台(PC 端+移动端)大大提高了解决用户问题的效率。电话、QQ、邮件、售后培训、论坛GEO5 支持,提高了技术支持的即时性和响 应效率,且支持移动端。理正采用论 坛进行常规技术支持,响应效率较低。 文案大全

文案大全 按解决方案对比 1 边坡稳定分析 土质边坡稳定分析 DXF 建模、图形交互建模、任意工况(包括填挖方)、添加挡土墙、锚杆、锚索、土工材料、抗滑桩、中国规范支持、海外规范支持、8种计算方法、滑面搜索快、和抗滑桩设计模块数据对接 边坡稳定分析 DXF 建模、坐标交互建模、确定工况(填挖方必须用多个文件)、添加锚杆、锚索、土工材料、中国规范支持、4种计算方法、滑面搜慢。 GEO5建模和计算效率更高、灵活性和自定义功能更强桩、支持海外规范、更多的滑面搜索和计算方法,复杂滑面计算结果更准确,可以和抗滑桩设计 抗滑桩设计 GEO5

文案大全 加筋土式挡土墙设计 图形交互建模、任意工况、添加砌块、支持多台阶、常用筋材数据库、倾斜坡面、砌块连接强度验算、倾覆滑移验算、筋材抗拉抗拔验算、内部滑移验算、整体稳定性验算、地基承载力验算、任意墙前墙后地形、支持中国规范、支持海外规范 加筋土式挡土墙计算 坐标交互建模、确定工况、仅竖直坡面、任意墙后地形、支持中国规范 GEO5式挡土墙有如下优势:建模和计算效率更高、灵活性和自定义功能更强阶加筋挡墙、自带筋材数据库、支持海外规范、更多的计算方法、任意墙前和墙后坡面、和边坡模块数据对接,复杂情况计算更合理等。 岩质边坡稳定分析 岩质边坡分析 GEO5

岩质边坡类型、结构面特征稳定性分析

岩质边坡类型、结构面特征及稳定性分析【摘要】边坡的稳定性受控于岩土体的基本特性和人为改造的程度两方面因素。由于地质体的复杂性、多变性和不均质性,因而道路工程边坡设计是预测性、风险性的设计。本文针对山区不同的边坡类型突出的边坡岩土体失稳问题,结合四川、重庆、云南等省山区道路工程建设项目边坡工程及滑坡灾害的勘查和治理,在研究山区地质背景和地质特征基础上,系统研究边坡岩体结构分类方法,以及开挖边坡岩体稳定性的岩体结构分析方法。 【关键词】地质灾害;岩体分类;结构特征;软硬岩层;结构面;稳定性 泥岩、泥质粉砂岩比较软弱,该类岩层具有透水性弱、亲水性强,遇水易软化、塑变,抗风化能力弱,易崩解等特性。从边坡角度来讲,多数边坡由软硬岩体构成,对边坡岩体的变形破坏起控制作用,岩质边坡软硬结构体构成,岩性层间结合差、软弱结构面发育,边坡开挖后极易发生山体变形、滑坡,特别是山前地带岩土质边坡、顺层岩质边坡及以岩层走向发育沟谷的一侧的边坡,多属顺层易滑地带。雨季经常诱发大量滑坡灾害,在道路等工程建设项目中,也经常诱发大量开挖边坡岩体失稳灾害。 开挖边坡岩土体失稳灾害的根本原因在于具有特殊的岩体结构特征和不利的岩体力学性质,其中开挖边坡岩体结构特征是控制开挖边坡稳定性的重要因素,边坡岩体的变形与破坏与边坡岩体结构面发育特征、结构面与开挖面的空间组合有密切关系,因此对边坡

岩体结构、结构面特征的系统研究具有重要意义。 1.边坡岩体结构类型划分 边坡岩体的变形破坏与其岩体结构特征有密切的关系。根据岩体结构面、结构体特性,并充分考虑控制性结构面与边坡开挖临空面之间的空间组合关系,系统研究岩体结构类型的划分,给出各种岩体结构类型边坡稳定性分析模型,以便于在工程勘察设计中简便、快速应用。 针对岩体结构类型和边坡工程的特点,在边坡岩体结构类型划分中考虑如下因素: 1)岩质边坡的岩性特点及岩性组合特征 岩质边坡岩性组合最为显著的特点是不同力学性质的岩层互层,从边坡工程角度,开挖边坡工程的岩性组合主要有软质泥质岩为主的层状结构、软硬相间的砂泥岩互层结构和巨厚层硬岩为主的层状结构。 软质泥质岩为主的层状结构主要指开挖边坡岩体以软弱泥质岩为主,边坡岩体中夹少量薄层硬岩,但对整个边坡岩体性质影响不大。 软硬相间的互层结构指开挖边坡岩体为硬质岩(砂岩、灰岩、白云岩、硅质岩等)、软质岩(泥岩、页岩等)等各种力学性质岩层互层,在丘陵区软硬相间岩体结构互层最为普遍、最为典型的岩性组合形式。 巨厚层硬岩为主的层状结构主要指开挖边坡岩体中以巨厚层硬

边坡稳定性分析

边坡稳定性分析作业及答案 (注:复习内容错误在所难免,答案可能不全,请大家结合教材复习) 1、边坡、要素、分类。 答:倾斜的地坡面称为坡或斜坡,因斜坡往往构成了工程边界,故又称边坡。 边坡要素:坡顶、坡底、坡面;坡肩、坡脚;坡高、坡面角。 分类:土质边坡和岩质边坡。 2、导致滑坡的因素。 答:①应力过大:破坏了坡体力学平衡; ②强度过低:导致滑面抗剪强度不足; ③地质缺陷:岩坡主要是地质界面,土坡主要是孔隙; ④地下水:弱化地质界面抗剪力强度和土粒粘结力,产生静/动水压力; ⑤爆破震动:动力效应的影响; ⑥人为破坏:切断了坡脚,降低了抗滑力; ⑦不利产状:裂隙等地质缺陷的不利产状导致了滑坡; ⑧地下开采:地下开采对疏水稳坡有利,但对岩移失稳不利。 3、边坡稳定性设计思路。 答:①工程地质勘察:包括工程地质和水文地质; ②滑塌模式识别:识别潜在滑塌体及其滑塌模式; ③稳定性分析:计算潜滑体安全系数; ④采取稳坡措施:包括疏干排水、减荷载、降坡角、机械加固等; ⑤接受局部滑坡:进行监测、预报并综合计算其危害、损失、影响; ⑥最终决策:④、⑤比较,使经济效益、社会效益最优。 4、边坡稳定性安全系数。 答:定义一: 定义二:使c、 值降低的系数。 5、节理调查包括哪些内容? 答:①测点和测线的位置和坐标; ②间断面的产状(走向,倾角,倾向); ③间断面的延展长度和开口宽度; ④间断面的弯曲程度或平直度; ⑤间断面的干湿度(干燥,稍湿,潮湿,滴水,涌水); ⑥相邻间断面的间距(密度/频度); ⑦间断面两臂间的充填物和粗糙度; ⑧间断面两臂的岩性。 6、结构面统计方法有哪些? 答:主要有两种①如果有路堑式的露头可供选择,则通常采用沿一根固定线逐一观测所有与此线交切的地质间断面并按上面的内容逐一测记每个地质间断的方法。 ②场地只有零星小露头而无法布置扫描线的场合也不见少,这时只能采用见露头测露头的散点法,这种方法要求测绘者有较丰富经验,能迅速区分同组的节

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

用理正岩土计算边坡稳定性66816讲解学习

用理正岩土计算边坡稳定性66816

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。

还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

影响边坡的主要因素

边坡工程地质问题 边坡是自然或人工形成的斜坡,是人类工程活动中最基本的地质环境之一,也是工程建设中最常见的工程形式。斜坡的形成,使岩土体内部原有应力状态发生变化,出现坡体应力重新分布,主应力方向改变,应力又产生集中;而且,其应力状态在各种自然营力及工程影响下,随着斜坡演变而又不断变化,使斜坡岩土体发生不同形式的变形与破坏。不稳定的天然胁迫和人工边坡,在岩土体重力、水及震动力以及其它因素作用下,常常发生危害性的变形与破坏,导致交通中断、江河堵塞,塘库淤填,甚至酿成巨大灾害。 根据组成边坡的主体材料不同,边坡可分为土质边坡和岩质边坡两种,而这两者主体材料的结构、性质差别很大,其存在的工程地质问题也不相同,需要分开进行研究。 边坡的稳定是一个比较复杂的问题,影响边坡稳定性的因素较多,简单归纳起来有边坡体自身材料的物理力学性质、边坡的形状和尺寸、边坡的工作条件及边坡的加固措施等几个方面。 一、岩质边坡工程地质问题 (一)岩体结构及稳定性分析方法 1、岩体结构 存在于岩体中的各种地质界面,如岩层层面,裂隙面、断层面、不整合面等,统称为结构面。岩体受结构面切割而产生的单个块体(岩块)称为结构体。所谓岩体结构,就是指岩体中结构面和结构体两个要素的组合特征,它既表达岩体中结构面的发育程度组合,又反映了结构体的大小、几何形式及排列。 大量的工程实践表明,无论是边坡岩体的破坏,地基岩体的滑移,还是隧洞岩体的塌落等,大多是沿着岩体中软弱结构面发生的。也就是说.岩体受工程作用力的破坏过程,主要是结构体沿结构面的剪切滑移、拉开以及整体的累积变形和破裂。因此,从岩体结构的观点分析岩体稳定问题,首先应研究结构面和结构体的类型及其特征。 (1)结构面及类型 按其成因可分为沉积结构面、火成结构面、变质结构面、构造结构面和次生结构面五类。其主要特征见表6-1。 (2)结构体及类型 不同形式的结构体的组合方式决定着岩体结构类型。常见的岩体结构类型可划分为块体结构、镶嵌结构、碎裂结构、层状结构、层状碎裂结构和等六类。其主要特征见表6-2。 2、岩体稳定性分析方法 在公路工程实践中,遇到的各种各样工程地质问题,归纳起来,主要就是路堑边坡稳定问题以及路、桥地基稳定问题和隧道围岩稳定问题。这三方面的问题,实质上就是一个岩体的稳定问题。所谓岩体稳定,它是一个相对的概念,是指在一定的时间内、一定的自然条件和人为因素的影响下,岩体不产生破坏性的剪切滑动、塑性变形或张裂破坏。 岩体稳定分析,目前一般多通过岩体结构分析、力学分析及对比分析进行,三者互相结合,互相补充,互相验证,作出综合评价。 表1-1 岩体结构面类型及其特征 成因类型地质类型 主要特征 工程地质评价产状分布性质

边坡稳定性计算书(理正软件计算)

计算书 目录 1理正边坡稳定分析成果 (1) 1.1Ⅰ-Ⅰ剖面 (1) 1.2Ⅱ-Ⅱ剖面 (5) 1.3Ⅲ-Ⅲ剖面 (8) 1.4Ⅳ-Ⅳ剖面 (11) 2Geoslpe 计算成果 (14) 2.1Ⅰ-Ⅰ剖面(Ⅰ区) (14) 2.2剖面Ⅳ-Ⅳ(Ⅱ区) (18)

1理正边坡稳定分析成果 1.1Ⅰ-Ⅰ剖面 ------------------------------------------------------------------------ 1.1.1计算项目:Ⅰ-Ⅰ土坡稳定(工况1-一般气象条件+土体自重) ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 剩余下滑力计算 不考虑地震 不同土性区域数 4 区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数 1 19.300 19.960 25.000 20.000 --- 2 19.300 20.000 15.000 18.000 --- 3 17.800 18.230 15.000 12.000 --- 4 25.800 26.300 24440.000 21.150 --- [水面信息] 采用总应力法 考虑渗透力作用 不考虑边坡外侧静水压力 [计算条件] 剩余下滑力计算目标: 计算剩余下滑力 剩余下滑力计算时的安全系数: 1.015 计算结果: 剩余下滑力 = -0.942(kN) 本块下滑力角度 = 328.833(度) [计算条件] 剩余下滑力计算目标: 计算剩余下滑力 剩余下滑力计算时的安全系数: 1.000 计算结果: 剩余下滑力 = -21.855(kN) 本块下滑力角度 = 328.833(度) ------------------------------------------------------------------------ 1.1.2计算项目:Ⅰ-Ⅰ土坡稳定(工况2-久雨(暴雨)+土体自重) ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 剩余下滑力计算 不考虑地震 [坡面信息] 不同土性区域数 4 区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数 1 19.300 19.960 25.000 20.000 --- 2 19.300 20.000 15.000 18.000 ---

理正岩土使用手册 岩质边坡稳定

第一章功能概述 理正岩质边坡(稳定)分析软件主要功能是分析计算简单平面、复杂平面、简单三维楔体岩质边坡的稳定计算及相关的分析。 考虑的因素包括:岩体结构的结构面、裂隙、裂隙水、外加荷载、锚杆及结构面的抗剪强度、地震作用等。 简单平面稳定问题: 1)利用极限平衡法及莫尔-库仑准则进行分析,计算岩体的稳定安全系数、设计锚杆、及反分析滑面的抗剪强度指标; 2)可分析坡角、坡高、裂隙水等与安全系数的关系曲线; 3)可按几种不同方法计算岩石压力等。 复杂平面稳定问题: 1)对于不加锚杆、不加外部荷载的情况可采用Sarma法计算安全;对于有锚杆、有外部荷载的情况只能采用通用方法(扩展Sarma法)计算安全系数,这是理正依据Sarma法改进的公式计算安全系数; 2)分析计算临界地震加速度系数; 3)分析计算临界地震加速度系数与安全系数的关系曲线等。 简单三维楔体稳定问题: 1)利用空间张量法分析空间三维楔体的形状,并分析三维楔体在体积力、锚杆力、地震作用、外加荷载等作用,考虑结构面的抗剪强度,计算三维楔体的稳定系数; 2)分析在给定安全系数的条件下,计算锚杆的最小拉力等。

第二章快速操作指南 2.1 操作流程 理正岩质边坡稳定分析软件的操作流程如图2.1-1,每一步骤都有相对应的菜单操作。 图2.1-1 操作流程 2.2 快速操作指南 2.2.1 选择工作路径 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某一计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 选择岩质边坡型式 选择参与计算的岩质边坡型式,选择界面如下图:

边坡稳定性计算书理正软件计算

计算书 目录 1理正边坡稳定分析成果 (2) 1.1Ⅰ-Ⅰ剖面 (2) 1.2Ⅱ-Ⅱ剖面 (6) 1.3Ⅲ-Ⅲ剖面 (9) 1.4Ⅳ-Ⅳ剖面 (12) 2Geoslpe 计算成果 (15) 2.1Ⅰ-Ⅰ剖面(Ⅰ区) (15) 2.2剖面Ⅳ-Ⅳ(Ⅱ区) (19)

1理正边坡稳定分析成果 1.1Ⅰ-Ⅰ剖面 ------------------------------------------------------------------------1.1.1计算项目:Ⅰ-Ⅰ土坡稳定(工况1-一般气象条件+土体自重) ------------------------------------------------------------------------[计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 剩余下滑力计算 不考虑地震 不同土性区域数 4 区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数 1 19.300 19.960 25.000 20.000 --- 2 19.300 20.000 15.000 18.000 --- 3 17.800 18.230 15.000 12.000 --- 4 25.800 26.300 24440.000 21.150 --- [水面信息] 采用总应力法 考虑渗透力作用 不考虑边坡外侧静水压力 [计算条件] 剩余下滑力计算目标: 计算剩余下滑力 剩余下滑力计算时的安全系数: 1.015 计算结果: 剩余下滑力 = -0.942(kN) 本块下滑力角度 = 328.833(度) [计算条件] 剩余下滑力计算目标: 计算剩余下滑力 剩余下滑力计算时的安全系数: 1.000 计算结果: 剩余下滑力 = -21.855(kN) 本块下滑力角度 = 328.833(度) ------------------------------------------------------------------------1.1.2计算项目:Ⅰ-Ⅰ土坡稳定(工况2-久雨(暴雨)+土体自重) ------------------------------------------------------------------------[计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 剩余下滑力计算 不考虑地震 [坡面信息] 不同土性区域数 4 区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数 1 19.300 19.960 25.000 20.000 --- 2 19.300 20.000 15.000 18.000 ---

相关文档
最新文档