支座刚度计算

支座刚度计算
支座刚度计算

橡胶支座的刚度公式来自基本力学公式:

水平方向弹簧系数:Ks=A*G/t

其中:t为各层橡胶板总厚度。A是橡胶的面积,G是橡胶的剪切模量,是给定的基本材料参数。

竖直方向弹簧系数:Kv=A*E/t

其中:t为各层橡胶板总厚度。A是橡胶的面积。

橡胶支座的等价弹性模量E=(3+6.58*S^2)*G

其中,G是橡胶的剪切模量。

S是橡胶支座的形状系数,被拘束的橡胶面积与单层橡胶板自由膨胀的面积之比。

S=a*b/(2*(a+b)*te)

其中,a,b是橡胶的边长,te是单层橡胶的厚度。

板式橡胶支座

杨氏模量 6Mpa

剪切模量1.2Mpa

体积模量 1100Mpa

泊松比在0.6-0.8之间

t=0.03482m E=

midas-减隔震支座的刚度模拟

01、减隔震支座的刚度模拟 具体问题: 根据《公路桥梁抗震细则》(JTGB02-01-2008)中第10.2条中关于减隔震装置的说明,常用的减隔震支座装 置分为整体型和分离型两类。目前常用的整体型减隔震装置有:铅芯橡胶支座、高阻尼橡胶支座、摩擦摆式减隔 震支座;目前常用的分离型减隔震装置有:橡胶支座+金属阻尼器、橡胶支座+摩擦阻尼器、橡胶支座+黏性材料 阻尼器。 目前设计人员普遍存在两个误区,其一:抗震分析时一味的考虑用桥墩的塑性能力耗散地震效应,忽略增设 减隔震支座的设计思路;其二:由于设计人员对减隔震支座的模拟方式不清楚,造成潜意识里回避减隔震支座的 采用。本文考虑上述两点对《公路桥梁抗震细则》(JTGB02-01-2008)第10.2条中涉及的减隔震支座模拟进行说 明。限于篇幅,本文仅对整体型减隔震装置进行叙述。 解决斱法: 1、 铅芯橡胶支座 ① ② 涉及规范及支座示意图(《公路桥梁铅芯隔震橡胶支座》(JT/T 822-2011)) 图1.1 铅芯橡胶支座示意图 铅芯橡胶支座的实际滞回曲线和等价线性化模型

图1.2实际滞回曲线图 从实际滞回曲线可以得到3点重要的结论: 图1.3等价线性化模型 1) 2) 3) ③铅芯橡胶支座的位移剪力曲线所围面积明显大于较普通的橡胶支座,而且滞回曲线所谓面积反映了支座耗能能力,故间隔震支座(对于本图为铅芯橡胶支座)的本质是通过自身的材料或构造特性提供更有效的耗能机制,耗散地震产生的能量,从而起到减轻地震对结构的破坏程度。 实际滞回曲线一般为梭形,图形成反对称形态。目前通用的方法是将其等效为图1.2所示的线性化模型。通过K1、K2、KE、Qy四个参数来模拟铅芯橡胶支座的滞回曲线。 等价线性化模型中涉及的四个参数含义如下: K1——弹性刚度:表示初始加载时,结构处于弹性状态是的刚度(力与变形之间的关系)。 K2——屈服刚度:表示屈服之后的刚度。 KE——等效刚度:等效的含义是指如果不考虑加载由弹性到塑性的变化过程,仅考虑屈服后累计位移与力的关系折算出的刚度。 Qy——上述三个参数仅提供刚度的采用值(可以理解为曲线斜率的概念),但具体受力到多大开始采用屈服刚度,由Qy提供明确的界定点(即屈服点)。 程序中如何实现上述等价线性化模型 程序(805版本)中选择边界》一般连接》一般连接特性》添加,选择特性值类型选择铅芯橡胶支座隔震装置,如图1.4所示:

结构的刚度计算

建筑力学行动导向教学案例教案提纲

模块六:静定结构的位移计算及刚度校核 6.1.1 杆系结构的位移 杆系结构在荷载或其它因素作用下,会发生变形。由于变形,结构上各点的位置将会移动,杆件的横载面会转动,这些移动和转动称为结构的位移。 图6-1 刚架的绝对位移图6-2刚架的相对位移 我们将以上线位移、角位移及相对位移统称为广义位移。 除荷载外,温度改变、支座移动、材料收缩、制造误差等因素,也将会引起位移,如图11.3(a) 和图11.3(b)所示。 图6-3其他因素引起的位移 6.1.2 计算位移的目的 在工程设计和施工过程中,结构的位移计算是很重要的,概括地说,计算位移的目的有以下三个方面: 1、验算结构刚度。即验算结构的位移是否超过允许的位移限制值。 2、为超静定结构的计算打基础。在计算超静定结构内力时,除利用静力平衡条件外,还 需要考虑变形协调条件,因此需计算结构的位移。 3、在结构的制作、架设、养护过程中,有时需要预先知道结构的变形情况,以便采取一 定的施工措施,因而也需要进行位移计算。 建筑力学中计算位移的一般方法是以虚功原理为基础的。本章先介绍虚功原理,然后讨论在荷载等外界因素的影响下静定结构的位移计算方法。 6.2.构件的变形与刚度校核 6.2.1轴心拉压变形 一、纵向变形 1、拉压杆的位移:等直杆在轴向外力作用下,发生变形,会引起杆上某点处在空间位 置的改变,即产生了位移△l。 2、计算公式

N N F F l l dx dx dx E EA EA σ ε?====??? 图6-4轴心受拉变形 EA l F l N =?—— EA 称为杆的拉压刚度 (4-2) 上式只适用于在杆长为l 长度N 、E 、A 均为常值的情况下, 即在杆为l 长度内变形是均匀的情况 [例6.2-1]某变截面方形柱受荷情况如图6-5所示,F=40KN 上柱高3m 边长为240mm,下柱高4m 边长为370mm ,E=0.03×105 Mpa 。试求:该柱顶面A 的位移。 解:1.绘内力图 图6-5 二、横向变形 1、横向变形 (公式6-1) 2.横向变形因数或泊松比 (公式6-2) 【例6.2-2】 一矩形截面钢杆,其截面尺寸b ×h =3mm ×80mm ,材料的E =200GPa 。经拉伸试验测得:在纵向100mm 的长度内,杆伸长了0.05mm ,在横向60mm 的高度内杆的尺寸缩小了0.0093mm ,试求:⑴ 该钢材的泊松比;⑵ 杆件所受的轴向拉力F P 。 解:(1)求泊松比。 求杆的纵向线应比ε 求杆的横向线应变ε′ 求泊松比μ (2)计算杆受到的轴向拉力 由虎克定律σ=ε·E 计算图示杆件在F P 作用下任一横截面上的正应力 σ=ε·E =5×10-4×200×103=100MPa 333 3 52522.4010310120104100.03102400.03103701.86BC BC AB AB AB BC AB BC N l N l l l l EA EA ?=?+?=+-???-???=+ ????=-求变形: a a d -1=?a a ?-= 'εε εν' =νεε-='4105100 05 .0-?==?= l l ε4 '1055.160 0093.0-?-=-=?=a a ε31.010 51055.14 4 '=??-==--εεμA F N = σ

杆件的强度刚度计算

材料力学习题 第12章 12-1一桅杆起重机,起重杆AB的横截面积如图所示。钢丝绳的横截面面积为10mm2。起重杆与钢丝的许用σ,试校核二者的强度。 力均为MPa [= 120 ] 习题2-1图习题12-2图 12-2重物F=130kN悬挂在由两根圆杆组成的吊架上。AC是钢杆,直径d1=30mm,许用应力[σ]st=160MPa。BC是铝杆,直径d2= 40mm, 许用应力[σ]al= 60MPa。已知ABC为正三角形,试校核吊架的强度。 12-3图示结构中,钢索BC由一组直径d =2mm的钢丝组成。若钢丝的许用应力[σ]=160MPa,横梁AC单位长度上受均匀分布载荷q =30kN/m作用,试求所需钢丝的根数n。若将AC改用由两根等边角钢形成的组合杆,角钢的许用应力为[σ] =160MPa,试选定所需角钢的型号。 12-4图示结构中AC为钢杆,横截面面积A1=2cm2;BC杆为铜杆,横截面面积A2=3cm2。[σ]st = 160MPa,[σ]cop [F。 = 100MPa,试求许用载荷] 习题12-3图习题12-4图 12-5图示结构,杆AB为5号槽钢,许用应力[σ] = 160MPa,杆BC为b h= 2的矩形截面木杆,其截面尺寸为b = 5cm, h = 10cm,许用应力[σ] = 8MPa,承受载荷F = 128kN,试求: (1)校核结构强度;(2)若要求两杆的应力同时达到各自的许用应力,两杆的截面应取多大? 习题12-5图习题12-6图 12-6图示螺栓,拧紧时产生?l = 0.10mm的轴向变形,试求预紧力F,并校核螺栓强度。已知d1=8mm, d2=6.8mm, d3=7mm, l1=6mm, l2=29mm, l3=8mm; E=210GPa, [σ]=500MPa。 12-7图示传动轴的转速为n=500r/min,主动轮1输入功率P1=368kW,从动轮2和3分别输出功率P2=147kW 和P3=221kW。已知[σ]=212MPa,[ ?]=1?/m, G =80GPa。 (1)试按第四强度理论和刚度条件确定AB段的直径d1和BC段的直径d2。 (2)若AB段和BC段选用同一直径,试确定直径d。

板式橡胶支座的安装

衡水国岳橡胶介绍板式橡胶支座的安装施工 橡胶支座处于桥梁上、下部结构连接点的重要位置,它的可靠程度直接影响桥梁结构的安全度耐久性。因此除了确保橡胶支座的设计选型合理,及加工质量符合技术标准外,正确的施工与安装是橡胶支座应用成功与否的关键所在。 1、支撑垫石的设置 为了保证橡胶支座的施工质量,以及安装、调整、观察及更换制作的方便,不管是采用现浇梁法还是采用预制梁施工法,不管是安装任何种类形的橡胶支座,在墩台顶设置支撑垫石是必须的。 支撑垫石示意图单位:mm 板梁与箱梁的支承垫石布置 (1)支撑垫石的平面尺寸大小应能承受上部结构荷载为宜,一般长度与宽度应比橡胶支座大10cm左右,垫石高度应大于6cm,也保证从梁底到墩台顶面有足够的空间高度,用来安放千斤顶(或扁千斤顶)供支座调整时使用。 (2)支撑垫石内应布钢筋网,竖向钢筋与墩台内钢筋相连接。浇筑垫石用的水泥标号应不低于250垫石混凝土顶面应预先用水平尺标准,力求平整而光滑。 (3)支撑垫石的顶面标高力求准确一致,尤其是一片梁一端安置两个支座时,此两上支撑垫石顶面标高的水平误差要严格控制。同一片梁的两个或四个支座的支撑垫石顶面应处于同一平面内,以免发生偏压,初始剪切与不均匀受力现象。 2、普通板式橡胶支座的安装 衡水国岳工程橡胶有限公司提醒用户关于橡胶支座安装的步骤: (1)现浇梁橡胶支座的安装 现浇梁安装橡胶支座较方便。施工顺序如下: ①先将墩台垫石顶面除去浮沙,表面应清洁、平整无油污。若墩台垫石的标高差距不过大,

可用水泥砂浆调整。 ②在支撑垫石上按设计图标出支座位置中心线,同时在橡胶支座上也标上十字交叉中心线,将橡胶支座安放在垫石上,使支座的中心线与墩台上的设计位置中心线重合,支座就位准确。 ③在同一片梁的两个或四个支座应处于同一平面上,为方便找平,可于浇注前在橡胶支座与垫石间铺土一层水泥砂浆,让支座在梁的重力下自动找平。 ④在浇注混凝土梁体前,在橡胶支座上需加设一块比支座平面稍大的支撑钢板,钢板上焊锚固钢筋于梁体相链接。将此支撑钢板(俗称,“梁体钢板”)视做现浇梁模板的一部分浇注。为防止漏浆,可在支撑钢板与模板之间四周空隙处,用软木板填塞。以后在拆除模板时,再将软木板除去。按以上施工,可是支座同梁底钢板、垫石顶面全部密贴。 现浇梁支座施工示意图 现浇梁支座支承钢板示意图 (2)预制梁橡胶支座的安装 安装好预制梁橡胶制作的关键在于尽可能的保证梁底与垫石顶面的平整,平行,使其同橡胶支座上下部全部密贴,避免偏压,脱空,不均匀制成的发生,施工顺序如下: ①先处理好支承垫石。 ②预制梁同支座接触的底平面应保证水平与平整,若有蜂窝状或倾斜度应预先用水泥砂浆导实、整平。 ③橡胶支座的正确就位。 先将橡胶支座在墩台垫石按上设计中心位置就位。架梁落梁时,T型梁的总轴线应同支座中心线相重合,板梁与箱梁的纵轴线与支座中心线相平行。为落梁准确,在架第一跨桥梁或箱梁时,可在梁底划好两个支座的十字位置中心线。在梁的端立面上标出两个支座位置中心的垂直线,落梁时同墩台上的位置中心线相吻合。(如图)。以后各跨以第一跨为基准落梁。

GPZ(Ⅱ)型盆式橡胶支座的安装与质量监控

GPZ(Ⅱ)型盆式橡胶支座的安装与质量监控 [摘要]:支座是桥跨结构的重要传力机构,却也是施工中常常不被人重视的部分。作者通过重庆市一横线张家梁立交匝道桥工程实践,从支座进场验收、支座灌浆等方面论述了GPZ(Ⅱ)型盆式橡胶支座的正确安装与质量控制要点。 [关键字]:盆式橡胶支座;安装;质量控制 (支座的定义)支座的作用是将桥跨结构的荷载反力顺适、安全地传递到桥梁盖梁上,并将集中的反力扩散到一个足够大的面积上,保证桥跨结构在各种因素的作用下,自由地变形。支座的类别有很多,大方向分类如下:支座可分为铸钢支座、钢支座、钢筋砼支座、板式橡胶支座、盆式橡胶支座、拉力支座、减震支座等。支座的结构型式主要由容器自身的型式和支座的形状来决定,通常分为立式支座、卧式支座和球形容器支座三类。立式支座又分为悬挂式支座、支承式支座、支承式支脚,支承式支腿、裙式支座等;卧式支座分鞍式支座、圈座和支腿式支座等;球形容器支座分支柱式、裙式、半埋式和V形支承等。常用的桥梁支座的类型很多,可根据桥梁跨径、支点反力和对支座建筑高度的要求等选用。一般分为以下几种: 垫层支座:由油毡、石棉泥或水泥沙浆垫层做成的简单的支座,10m以下的跨径简支板、梁桥,可不设专门的支座,而将板或梁直接放在上述垫层上。变形性能较差,固定支座除了设垫层外,还应用锚栓将上下部结构相连。 铸钢支座:1.弧形钢板支座:又称切线式支座或线支座。上支座为平板,下支座为弧形钢板,二者彼此相切而成线接触的支座。钢板采用约40~50mm的铸钢板或热扎钢板,缺点是移动时要克服较大的摩阻力,用钢量大,加工麻烦,一般用于中小桥梁中。2.铸钢支座:采用碳素钢或优质钢,经过制模、翻砂、铸造、机械加工和热处理等工艺制成的支座。有尺寸大、耗钢量大,容易锈蚀和养护费用高等缺点。 新型钢支座:1.不锈钢或合金钢支座2.滑板钢支座3.球面支座:又称点支座,为适应桥梁多方面转动的要求,将支座上、下两部分的接触面分别做成曲率半径相同的凸、凹的球面支座。 钢筋混凝土支座:1.摆柱式支座:活动部分由钢筋混凝土摆柱构成的活动支座。外形和活动机理与割边的单辊轴钢支座相同,但在构造上则用矩形截面的钢筋混凝土短柱来代替辊轴的中间部分,辊轴的顶部和底部为弧形钢板,常用于跨径大于20m的钢筋混凝土或预应力混凝土梁桥。2.混凝土铰:通过缩小混凝土截面来降低截面刚度,因此能产生少量转动而能承受足够的轴力的一种简化支座。 板式橡胶支座:由几层橡胶片和嵌在其间的各类加劲物构成或仅由一块橡胶板构成的支座。外形有长方形、梯形、圆形等。 盆式橡胶支座:橡胶块紧密地放置在钢盆里的大吨位橡胶支座。由于橡胶块受到三向压力作用,因此使支座的极限承载能力有所加强。 拉力支座:又称负反力支座,可以同时承受正负反力的支座。分为拉力铰支座和拉力连杆支座两类,前者又分为固定式和活动式。固定式铰支的上摇座锚于

模板计算书

400x1600梁模板支架计算书一、梁侧模板计算 (一)参数信息 1、梁侧模板及构造参数 梁截面宽度 B(m):;梁截面高度 D(m):; 混凝土板厚度(mm):; 采用的钢管类型为Φ48×3; 次楞间距(mm):300;主楞竖向道数:4; 穿梁螺栓直径(mm):M12; 穿梁螺栓水平间距(mm):600; 主楞材料:圆钢管; 直径(mm):;壁厚(mm):; 主楞合并根数:2; 次楞材料:木方; 宽度(mm):;高度(mm):; 2、荷载参数

新浇混凝土侧压力标准值(kN/m2):; 倾倒混凝土侧压力(kN/m2):; 3、材料参数 木材弹性模量E(N/mm2):; 木材抗弯强度设计值fm(N/mm2):;木材抗剪强度设计值fv(N/mm2):; 面板类型:胶合面板;面板弹性模量E(N/mm2):; 面板抗弯强度设计值fm(N/mm2):; (二)梁侧模板荷载标准值计算 =m2; 新浇混凝土侧压力标准值F 1 (三)梁侧模板面板的计算 面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。 面板计算简图(单位:mm) 1、强度计算 面板抗弯强度验算公式如下: σ = M/W < f 其中,W -- 面板的净截面抵抗矩,W = 150××6=81cm3; M -- 面板的最大弯矩(N·mm); σ -- 面板的弯曲应力计算值(N/mm2) [f] -- 面板的抗弯强度设计值(N/mm2); 按照均布活荷载最不利布置下的三跨连续梁计算:

M = 1l+ 2 l 其中,q -- 作用在模板上的侧压力,包括: 新浇混凝土侧压力设计值: q 1 = ×××= kN/m; 倾倒混凝土侧压力设计值: q 2 = ××4×=m; 计算跨度(次楞间距): l = 300mm; 面板的最大弯矩 M= ××3002+××3002= ×105N·mm; 面板的最大支座反力为: N= 1l+ 2 l=××+××=; 经计算得到,面板的受弯应力计算值: σ = ×105/ ×104=mm2; 面板的抗弯强度设计值: [f] = 15N/mm2; 面板的受弯应力计算值σ =mm2小于面板的抗弯强度设计值 [f]=15N/mm2,满足要求! 2、抗剪验算 Q=××300+××300)/1000=; τ=3Q/2bh=3××1000/(2×1500×18)=mm2; 面板抗剪强度设计值:[fv]=mm2; 面板的抗剪强度计算值τ=mm2小于面板的抗剪强度设计值 [f]=mm2,满足要求! 3、挠度验算 ν=(100EI)≤[ν]=l/150 q--作用在模板上的侧压力线荷载标准值: q=×; l--计算跨度: l = 300mm; E--面板材质的弹性模量: E = 6000N/mm2; I--面板的截面惯性矩: I = 150×××12=72.9cm4; 面板的最大挠度计算值: ν = ××3004/(100×6000××105) = 0.722 mm; 面板的最大容许挠度值:[v] = min(l/150,10) =min(300/150,10) = 2mm; 面板的最大挠度计算值ν =0.722mm 小于面板的最大容许挠度值 [v]=2mm,满

(整理)MIDAS支座模拟.

MIDAS中支座的模拟 对于空间结构而言,墩柱与梁体连接条件,支座刚度的模拟至关重要。在我们做的“多支座节点模拟”技术资料里,重点说明了多支座模拟的过程。 首先“在支座下端建立节点,并将所有的支座节点按固结约束”,这是一种模拟实际情况的建模方法。意思是:在墩顶处结构是全约束的,在各个方向都不可能有位移和转角。 然后“复制支座节点到梁底标高位置生成支座顶部节点,并将支座节点与复制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定义一般弹性连接的刚度”,这句话的意思是相当于建立一个支座单元,它的三个方向的刚度值则是由实际工程中支座的类型和尺寸来提供。 然后再建立支座顶部节点与主梁节点之间的联系。此时将利用Civil提供的“刚性连接”,以主梁节点作为主节点,支座顶部单元作为从节点,将其连接起来。这样做的意思是:将主梁节点与支座顶部节点形成一个受力的整体,目的也是为了真实模拟其受力情况。 在MIDAS中,在使用“弹性连接”中的一般类型时,会要求输入您说到的SDX,SDY,SDZ这三个值,它们分别是指:SDx:单元局部坐标系x轴方向的刚度。SDy:单元局部坐标系y轴方向的刚度。SDz:单元局部坐标系z轴方向的刚度。另外,在弯桥中需要定义支座节点的局部坐标系和BETA角。

这三个值是由由实际桥梁工程使用的橡胶支座类型决定的,也就是说与支座的刚度系数指标有关。在桥梁工程中,一般使用较多的是板式支座和盆式支座。其中大桥盆式支座使用相对较多,在输入这种类型支座的刚度值时,一般要么很大,要么取0;中小桥多用板式支座,在输入刚度值时可以根据支座橡胶层厚度来计算即可。具体的计算式如下: 板式橡胶支座的刚度计算式: 单元局部坐标系X轴方向刚度:SDx=EA/L 单元局部坐标系y ,z轴方向刚度:SDy =SDz=GA / L 单元局部坐标系x轴方向转动刚度:SRx=GIp/L 单元局部坐标系y.轴方向转动刚度:SRy=EIy/L 单元局部坐标系y.轴方向转动刚度:SRz=EIz/L 式中:E、G为板式橡胶支座抗压、抗剪弹性模量;A为支座承压面积;Iy , Iz为支座承压面对局部坐标轴y、z的抗弯惯性矩;Ip 为支座抗扭惯性矩;L为支座净高。 固定盆式支座以较大的刚度约束板体的位移而放松对转动的约束,因此模拟在墩顶设置一个横、纵、竖二维抗压、抗剪的大值,各方向抗弯的小值.即SDx=SDy=SDz=无穷大,而SRx=SRy=SRz=0的一个弹性连接 五.支座〔边界条件〕 1.几中常用边界条件 a.桥墩底部固接

模板强度刚度计算书

行下道工序。 九、脚手架计算 一.梁模板计算书 浇注750×1300屋面梁混凝土,模板采用18厚木质多层板,次龙骨40×90木方,间距300,主龙骨Ф48×3.5钢管,间距500,支撑系统采用Ф48×3.5钢管脚手架。立杆间距900,横杆间距1.50米。验算模板及支撑的强度与刚度。 1. 荷载: (1)模板结构的自重标准值(G 1K ) 模板及小楞的自重标准值:04KN/m 2 (2)新浇注混凝土自重标准值(G 2K ) 大梁新浇混凝土自重标准值:24×0.75×1.33=23.94 KN/m 2 (3)钢筋自重标准值(G 3K ) 1.5×1.33×0.75=1.5 KN/m 2 (4)施工人员及施工设备荷载标准值(Q 1K ) 计算模板及直接支撑模板的小楞时,均布活荷载取2.5 KN/m 2 再以集中荷载2.5KN 进行验算,比较两者所得的弯矩值,取其 最大者采用: 荷载组合 施工荷载为均布荷载 F'=Υ0(ΥG S GK +ΥQK S QK ) =0.9×[1.2×(0.4+23.94+1.5)+1.4×2.5] =31.06 KN/m 2 F'=Υ0[ΥG S GK +∑=n i 1 ΥQi φCi S Qik ] =0.9[1.35×(0.4+23.94+1.5)+1.4×0.7×2.5]

=33.60 KN/m2 两者取较大值,应取33.60 KN/m2作为计算依据,以1m长为算单元,化为均布线荷载。 q1=33.60×1=33.60 KN/m 施工荷载为集中荷载时 q2=[0.9×1.2(0.4+1.5+23.94)]×1=27.91 KN/m P=0.9×1.4×2.5=3.15 KN/m 2.模板面板验算 (1)强度验算 施工荷载为均布荷载时,按四跨连续梁计算。 计算简图 M1=0.077×q1l2=0.077×33.60×0.32=0.233 KN/m 施工荷载为集中荷载时 计算简图

承台模板受力验算

主桥承台木模板计算 一、计算依据 1、《施工图纸》 2、《公路桥涵施工技术规范》(JTG/T F50-2011) 3、《路桥施工计算手册》 二、承台模板设计 主桥承台平面尺寸为11.5×11.5m,高4m,由于主桥承台基坑开挖深度达10m,基坑钢支撑较多,不利于大块钢模板的吊装,故承台模板考虑采用木模板拼装。 面板采用15mm厚竹胶板(平面尺寸2440×1220mm),水平内楞为80×80mm方木,水平内楞外设竖向外楞,外楞为双拼φ48×3mm钢管,对拉螺杆采用直径20mm的螺纹钢。 承台模板立面局部示意图 承台模板平面局部示意图 三、模板系统受力验算 3.1 设计荷载计算 1、新浇混凝土对模板的侧压力 模板主要承受混凝土侧压力,本工程砼一次最大浇筑高度为4m,新浇筑混凝土作用于模板的最大侧压力取下列二式中的较小值:

1 F=0.22γc t0β1β2V2 F=γc H 式中 F—新浇筑混凝土对模板的最大侧压力(KN/m2); γc—混凝土的重力密度,取24KN/m3; t0—新浇混凝土的初凝时间,取10h; V—混凝土的浇灌速度,取0.6m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,取4m; β1—外加剂影响修正系数,取1.0; β2—混凝土坍落度影响修正系数,取1.15; 1 所以 F=0.22γc t0β1β2V2 1 =0.22×24×10×1.0×1.15×0.62 =47.03 KN/m2 F=γc H =24×4=96 KN/m2 综上混凝土的最大侧压力F=47.03 KN/m2 2、倾倒混凝土时冲击产生的水平荷载

考虑两台泵车同时浇筑,倾倒混凝土产生的水平荷载标准值取4KN/m2。 3、水平总荷载 分别取荷载分项系数1.2和1.4,则作用于模板的水平荷载设计值为:q1=47.03×1.2+4×1.4=62 KN/m2 有效压头高度为 h=F/γc =62/24=2.585 m 3.2面板验算 木模板支护方式为典型的单向板受力方式,可按多跨连续梁计算。 内楞采用竖向80×80mm方木,方木中心间距250mm,模板宽度取b=2440mm,作用于模板的线荷载:q1=62×2.44=151.28kN/m,模板截面特性 1bh2=2440×152/6=91500mm3。 为:W= 6 1bh3=2440×153/12=686250mm4; I= 12 模板强度验算: 根据《路桥施工计算手册》表8-13查得最大弯距系数为0.1。 M max=0.1q1l2=0.1×151.28×2502=9.455×105N·mm σ=M max/W=9.455×105/91500=10.3Mpa<[f m]=13Mpa,模板强度符合要求。 模板刚度验算:

桥梁板式橡胶支座及安装技术要求

桥梁板式橡胶支座及安装技术要求 桥梁支座是在桥跨结构与桥墩或桥台的支承处设置的传力装置。支座不仅要承受和传递很大的荷载,并且还应保证桥跨结构可以产生一定的变位,支座要有比较合理的传力方式,使支座传力通顺,不致发生过度的应力集中。支座的作用主要有:传递桥跨结构的支承反力,包括恒载和活载引起的竖向反力和水平推力。保证桥跨结构在活载、温度变化、混凝土收缩和徐变等因素作用下的自由变形。 一、板式橡胶支座及安装技术要求 板式橡胶支座在安装时,要求梁体底面和墩台上的支承垫后顶面具有较高的平整度。一般要求支承垫石顶面相对水平误差不大于1mm,相邻两墩台上支承垫石顶面相对水平误差不大于3mm。 板式橡胶支座安装正确与否对支座的受力状况和使用寿命有直接的影响,如果支座安放不平整,造成支座局部承压,则支座在活载作用下会产生转动、滑移,甚至脱落。此外,板式橡胶支座安装时要保持位置准确,橡胶支座的中心要对准梁体轴线,防止偏心过大而损坏支座。为防止支座产生过大的剪切变形,支座安装最好选择在气温相当于全年平均气温的季节里进行,以保证像胶支座在低温或高温时偏离支座中心位置不会过大。 1、安装板式橡胶支座时应注意事项 预制梁支座安装的关键:应尽可能地保证梁底与垫石顶面平行、

平整,使其与橡胶支座上下面全部密贴,避免偏心受压、脱空、不均匀受力的现象发生。 ⑴橡胶支座在安装前,应全面检查产品合格证书中有关技术性能指标。 ⑵支座在安装前应对橡胶支座各项技术性能指标进行复检(本桥橡胶支座已经浙江大学测试中心检验合格)。 ⑶支座安装前应将墩、台支座支垫处和梁底面清理干净。 ⑷安装前应计算并检查支座的中心位置。 ⑸当墩、台两端标高不同,顺桥向有纵坡时,支座标高应按设计规定执行。 ⑹梁板安放时,必须仔细,使梁板就位准确与支座密贴,就位不准时,必须吊起重放,不得用撬棍移动梁板。 2、连续端板式橡胶支座安装技术要求 ⑴先将支座支承垫石顶平面冲洗干净、风干。 ⑵复测支座垫石平面标高,使梁端两个支座处在同一平面内。 ⑶在支承垫石上按设计图标出支座位置中心线,同时也标出安装后梁板宽度的边线和中心线。 ⑷在橡胶支座上也标出十字交叉中心线,将支座安放在支承垫石上,使支座中心线同垫石中心线相重合。 ⑸最后在橡胶支座上面需加盖一块比支座平面每边大5cm的预埋钢板,厚度为1cm。

梁的强度和刚度计算.

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

网架结构支座类型选取方法及支座刚度取值研究

网架结构支座类型选取方法及支座刚度取值研究 ■ 龚 凯 贾建坡 [摘 要] 本文从实际工程中用到的各种网架支座类型展开介绍,从结构体系合理的角度出发,对具体项目如何选择合适的支座类型提出了自己的观点。通过计算分析和工程实例,给出了网架支座刚度取值的具体方法。 [关键词] 网架 支座 约束 弹簧刚度 目前网架设计师一般习惯把网架支座简化为弹性约束,弹簧刚度取值正确与否直接影响了网架结构的安全。目前国家规范对网架支座弹簧刚度的取值没有严格的规定,不同的设计师对弹簧刚度的理解千差万别,通过研究得出网架支座弹簧刚度取值的科学方法是非常必要的。 一、 网架结构支座类型 网架结构支座类型一般可以从力学模型和支座构造两方面分类。 1. 按力学模型分 固定铰支座、单向滑动铰支座、双向滑动铰支座、单向弹簧铰支座、双向弹簧铰支座。 2. 按支座构造分 平板压力支座、平板拉力支座、板式橡胶支座、盆式橡胶支座、球形钢支座等。 3. 支座构造与力学模型的对应关系 平板支座(平板压力支座、平板拉力支座)可以实现固定铰支座,但是无法实现比较理想的单向滑动铰支座和双向滑动铰支座,也不能实现准确弹簧约束值的单向弹簧铰支座和双向弹簧铰支座。另外平板支座对弯矩释放不是很好,对于大跨度网架(>60m)、支座转角较大(>0.005rad)和受力复杂的支座节点不宜选用,否则将造成计算假定与实际受力偏差较大。 板式橡胶支座和盆式橡胶支座可以实现固定铰支座、单向弹簧铰支座、双向弹簧铰支座,不能实现比较理想的单向滑动铰支座和双向滑动铰支座。另外板式橡胶支座和盆式橡胶支座耐久性差,设计使用年限一般不大于20年,对于检修比较困难或检修代价比较大的工程不宜采用。 球形钢支座可以实现固定铰支座、单向滑动铰支座、双向滑动铰支座、单向弹簧铰支座和双向弹簧铰支座,耐久性又非常好,正常维护的情况下一般可以达到50年以上,是非常好的一种支座形式。但是球形钢支座也有一个缺点,就是价格比其它支座类型要高。 二、 网架结构支座类型如何选择 在具体项目中网架结构支座类型如何选择,要根据结构整体受力合理、网架跨度、支座受力复杂程度、耐久性、造价等因素综合确定。 1. 结构整体受力合理 不少网架设计师喜欢将网架全部或部分支座水平位移约束释放以简化计算,但是网架支座水平位移约束释放后,网架下部支承结构水平力传递有可能会变的不合理。比如对于屋顶为网架结构的单层空旷建筑,如将全部支座水平位移约束释放的话, 水平地震作用下网架支承柱就成了悬臂柱,此时网 架起不到协调各支承柱共同抵抗水平力的作用,中 震或大震下支承柱柱顶发生大变形,网架支座开始 传递水平力,由于支座刚开始是释放水平位移的, 我们无法保证各个支座同时传递水平力,若是某一 个或某几个支座最先开始受力,那么很可能会各个 击破,各个支座先后破坏,从而导致网架整体偏离 支承结构而发生塌落破坏。所以网架支座选用何种 形式应从结构整体受力合理来考虑,不能仅考虑网 架计算简化或者仅考虑网架自身安全。 2. 网架跨度。 大跨度屋盖结构应考虑构件变形、支撑结构位 移、边界约束条件和温度变化等对其内力产生的影 响;同时可根据结构的具体情况采用能适应变形的 支座以释放内力。大跨度屋盖结构系指跨度≥60m 的屋盖结构。跨度﹥36m的两端铰支承的桁架,在 竖向荷载作用下,下弦弹性伸长对支承构件产生水 平推力时,应考虑其影响。对于风敏感的或跨度﹥ 36m的柔性屋盖结构,应考虑风压脉动对结构产生 风振的影响。有以上几条可以看出,当网架结构跨 度﹥36m时,在恒载作用下,下弦会因伸长而对支 承构件产生一定的水平推力;在风荷载作用下,网 架会产生风振影响,当风荷载为压力时,支座转角 会增大,当风荷载为吸力时,支座转角会减小,由 于风荷载为脉动荷载,时大时小,时有时无,所以 对支座转动释放能力要求较高。当网架跨度≥60m 时,以上影响将会更大。所以当网架跨度﹥36m时 宜采用释放转动和位移性能更好的橡胶支座、盆式 橡胶支座或者球形钢支座;当网架跨度≥60m时应 选用橡胶支座、盆式橡胶支座或者球形钢支座。对 于检修比较困难或检修代价比较大的工程优选球形 钢支座。 3. 支座受力复杂程度 支座受力无非是拉、压、弯、剪、扭几种情况, 哪种受力算是复杂?对于平板支座、橡胶支座和球 形钢支座均能承受拉力、压力、剪力,所以拉、压、 剪不能算是复杂,而对于释放位移约束和释放转动 不是每一种支座都能实现的,所以对于释放位移和 释放转动的应该算是受力复杂。下面分情况介绍各 种受力复杂情况下如何选择合适的支座。 (1)需要位移释放时 当释放位移≤50mm时,可以采用带过渡板的平 板支座,过渡板与支座底板间应放置聚四氟乙烯板, 并且过渡板上应开孔,开孔孔径保证位移量≥50mm; 宜采用橡胶支座,但应验算橡胶支座剪切变形位移 量以满足设计要求;优先采用能释放位移的球形钢 支座。当释放位移50~100mm时,平板支座已很难 实现,可以采用橡胶支座,但应验算橡胶支座剪切 变形位移量以满足设计要求,此时因为释放位移的 要求橡胶支座平面尺寸会比较大;宜优先考虑能释 放位移的球形钢支座。当释放位移≥100mm时,平 板支座已不能实现,橡胶支座平面尺寸会非常大, 所以应采用能释放位移的球形钢支座。 (2)需要释放转动时 当支座转角≤0.005rad时,可以采用带过渡板 的平板支座,宜采用橡胶支座,优先采用球形钢支 座。当支座转角0.005~0.02rad时,可以采用橡 胶支座,宜采用球形钢支座。当支座转角≥0.02rad 时,应采用球形钢支座。当支座转角不是很大 (≤0.02rad),但支座转动变形往复变化很频繁时, 考虑到橡胶支座易老化,所以建议选用球形钢支座。 (3)需要减小支座水平刚度时 对于网架支承结构水平刚度较大、大跨度(≥60m) 网架和长度超长(≥120m)的网架,在温度荷载作 用下,网架对支承结构水平推力较大,导致下部结 构截面或配筋很大,此时若采用弹簧铰支座,就可 以减小支座水平刚度,从而减小网架对下部支承构 件的水平推力。这种情况下可以选用的支座类型是 橡胶支座或带弹簧的球形钢支座。支座弹簧刚度取 网架和下部结构整体模型计算最优值,一般在2~ 15kN/mm之间。 4. 耐久性 网架支座耐久性不应小于主体结构设计年限, 若网架支座耐久性小于主体结构设计年限,应考虑 在使用阶段进行定期检查并及时进行更换。各种支 座耐久性如下:平板支座(≥50年)=球形钢支座 (≥50年)﹥橡胶支座(10~20年)。对于室外工 程,一般有操作面,支座更换困难不大,但是对于 一般的民用建筑,要考虑更换的可行性和更换的代 价。对于个别更换支座可能引起建筑功能中断的情 况,应慎重选择,比如对于医院、供水、供电等生 命线工程,不宜选用耐久性差的橡胶支座。 5. 造价 不同的支座类型造价不同,一般来讲,球形钢 支座>橡胶支座>平板支座,在安全适用、确保质 量、技术先进的前提下,应选择经济合理的支座类 型。 三、 网架支座刚度取值 目前网架设计师一般习惯把网架支座水平约束 简化为弹性约束,国家规范对网架支座弹簧刚度的 取值没有严格的规定,不同的设计师对弹簧刚度的 理解千差万别,本文从力学基本概念入手,系统梳 理各种支座形式下支座弹簧刚度取值的方法。 1. 当网架支座采用固定铰支座时。 此种情况下支座水平弹簧刚度即为下部支承结 构对网架的水平约束刚度,下部结构对网架的水平 约束刚度应从整体模型中得到。用通用有限元软件 (比如3d3s)建立网架和下部支承结构的整体模型, 将网架和下部结构模型调试至整体指标、构件配筋、 挠度、裂缝、强度、稳定、长细比等均满足规范要 求时,查看单工况下网架支座反力,然后删除下部 结构,将网架支座处加上弹性约束,弹簧刚度从 (下转第085页) 083

注射模具设计强度和刚度计算例_.

注射模具设计的习题 10、有一壳形塑件,如图7-37所示,所用模具结构如图7-38所示,选用HDPE 塑料成型,型腔压力取40MPa,模具材料选45钢,其许用应力[σ]=160MPa,其余尺寸见图7-38。计算定模型腔侧壁厚度S和型芯垫板厚度H。 1

1、定模型腔侧壁厚度的计算: 分析:该零件为矩形零件,凹模置于定模侧,且采用了底部镶拼组合式结构,模板形状为矩形,所以采用组合式凹模的侧壁厚度的计算公式。 刚度计算公式为P156中(6.20) p?H1?l4 S= 32?E?H?[δ] 参数取值 p=40MPa;H1=80mm,l=120mm E=2.06*105Mpa,H=120mm [δ]=? 其中:许用变形量[δ]的确定,满足以下三个原则 型腔不发生溢料 HDPE的许用变形量为0.025~0.04mm,HDPE的粘度相对较高,取为0.03mm 保证塑件精度 塑件的外轮廓尺寸中长度尺寸为120mm,没有标公差等级,按MT7取公差,即

δ=?i/[5(1+?i)]=2.4/[5(1+2.4)],所以保证塑件精度的许用变形量为0.14mm 保证塑件顺利脱模 [δ]≤2?2%+4% 2=0.06mm 所以许用变形量[δ]=0.03mm 6.20)可得到 S=40?80?1204 32?2.06?105?120?0.03=30.35mm 4 由刚度计算公式( 强度计算公式:(公式6.22) S=p?H1?l2 2?H?[σ] 参数取值[σ]=160MPa,p=40MPa;H1=80mm,l=120mm =40?80?1202 S2?120?160=34.64mm 但考虑应力中第二项的影响,S稍放大,取为40mm 比较强度和刚度计算的结果,将定模型腔的侧壁厚度暂取为40mm 因此凹模周界尺寸为:B0=65+2*40=145mm L=120+2*40=200mm 查看中小型标准模架,将本模具与模架模型对比: 6

2019年GPZ(KZ)公路桥梁抗震盆式橡胶支座系列规格表

GPZ(KZ)型系列 公路桥梁抗震盆式橡胶支座(DX单向,SX双向,GD固定) 主要尺寸表

GPZ(KZ)公路桥梁抗震盆式橡胶支座 GPZ(KZ)系列抗震盆式橡胶支座是依据中华人民共和国交通行业标准《》(标准号JT391-1999)及公路工程抗震设计规范(JTJ004-89),在盆式橡胶支座的基础上增加了消能和阻尼措施。 包括固定支座和单向活动支座两种型式,和与之配套使用的还有双向活动支座。支座规格按JT391-1999要求分为31级。支座竖向设计承载力、支座转角、支座摩擦系数及位移均按标准要求设计。仅固定支座各方向和单向活动支座非滑移方向的水平力由原支座设计承载力的10%提高至20%。 现在.国内外采取的是刚性抗震法和柔性减震法两种抗震方法,刚性抗震需增大结构(包括基础结构和抗震支座结构)尺寸,柔性减震的特点是:减震性能好而刚度较小,在较大地震波的情况下有被破坏的可能。该系列支座采取了刚、柔结合等有效抗震措施,增大了支座的耗能能力,极大的改善了支座的抗震性能,因此地震发生时可提高桥梁的抗震能力,最大限度的限制了桥梁上下部结构之间的相对位移,减小了地震力的放大系数。非地震时等同一般盆式橡胶支座使用。 由于GPZ(KZ)系列抗震盆式橡胶支座设计有固定支座和单向活动支座,两种型式支座配合使用比仅在桥梁固定墩上设置抗震支座对提高全桥结构的抗震能力是不言而喻的。 GPZ(KZ)盆式橡胶支座结构形式

GPZ(KZ)GD(固定抗震盆式橡胶支座),主要由上座板、消能板、密封圈、橡胶板、底盆和阻尼胶圈等组成。GPZ(KZ)DX(单向活动抗震盆式橡胶支座)还有中间钢板、四氟滑板、不锈钢滑板及侧向滑移装置等。减震原理主要是当支座水平力大于支座设计竖向承载力的20%后,消能板开始滑移,起到第一道隔震效果;然后阻尼圈发挥第二道阻尼效果,支座起到抗震作用;当地震冲击波超过一定极限时,该系列的刚性抗震起到了第三道抗震效果。 GPZ(KZ)盆式橡胶支座性能 1、此种支座按竖向设计承载力:可分31级,即、1、、、 2、、 3、、 4、 5、 6、 7、 8、 9、10、、15、、20、、25、、30、、35、、40、45、50、55、60MN。支座设计承载力允许超载10%。 2、支座水平承载力:固定橡胶支座各方向和单向活动支座非滑移方向的水平承载力可承受支座设计承载力的20%。 3、支座摩擦系数:单向活动抗震支座,在硅脂润滑下,常温型支座(-25℃ ~+60℃ )设计摩擦系数最小取值μ=,耐寒型支座(-40℃ ~+60℃ )设计摩擦系数最小取值μ=。 4、转角:本系列的橡胶支座转动角度为。 5、位移:单向活动抗震橡胶支座位移量,横桥向为± 3mm GPZ(KZ)盆式橡胶支座设计注意事项 1、建议墩台顶面设置支承垫石。支承垫石的高度应考虑支座养护、检查的方便及更换支座时顶梁的可能性,支座底板以外垫石边缘部分最好设置一定坡度以利排水。 因规格相同类型不同的支座高度不同,应注意调整垫石顶面的标高。 2、橡胶支座顶、底板所承载的混凝土应按公路桥涵设计规范中局部承压的有关要求配置钢筋网。 3、橡胶支座规格可根据上部结构计算的恒载、活载及偏载影响等之和在规格系列表中就近选取。因支座具有一定的安全系数,选型时不必人为加大支座规格。在选择常温型支座还是

墩柱模板计算

墩柱模板计算 一、计算依据 1、《铁路桥涵设计基本规范》 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) < 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、? 四、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效

压头。新浇混凝土对模板侧向压力分布见图1。 [ 图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=γt 0K 1K 2V 1/2 Pmax =γh 式中: … Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取;50~ 90mm max 72722 40kPa 1.62 1.6P υυ?===++

相关文档
最新文档