电感线圈和电容器的并联谐振电路

电感线圈和电容器的并联谐振电路
电感线圈和电容器的并联谐振电路

电阻电容电感的串联与并联

电阻电容电感的串联与 并联 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电阻、电容和电感的串联与并联 两电阻R 1和R 2串联及并联时的关系: 两电容C 1和C 2串联与并联时的关系: 无互感的线圈的串联与并联: 两线圈串联:L=L 1+L 2 两线圈并联:L=L 1L 2/(L 1+L 2) 有互感的线圈的串联与并联: 有互感两线圈顺串(异名端相接):L (顺)=L 1+L 2+2M 有互感两线圈反串(同名端相接):L (反)=L 1+L 2-2M L (顺)-L (反)=4M ,M=[L (顺)-L (反)]/4 有互感两线圈并联:L (并)=(L 1 L 2-M 2)/(L 1+L 22M ) (2M 项前的符号:同名端接在同一侧时取-,异名端接在同一侧时取+。) (L 1 L 2-M 2)≧0, M ≤ L L 2 1 串联 并联 1、等效电阻R=R 1+R 2 等效电阻R=R 1R 2/(R 1+R 2) (更多电阻并联的等效电阻: 1/R=1/R 1+1/R 2+1/R 3+···;N 个相同的电阻R 0并联的等效电阻R=R 0/N) 2、电流相等 电压相等 3、电压关系U=U 1+U 2 电流关系I=I 1+I 2 4、分压公式U 1=UR 1/(R 1+R 2) U 2=UR 2/(R 1+R 2) 分流公式I 1=IR 2/(R 1+R 2) I 2=IR 1/(R 1+R 2) 串联 并联 1、 等效电容C=C 1C 2/(C 1+C 2) (更多电容串联的等效电容: 1/C=1/C 1+1/C 2+1/C 3+···; N 个相同的电容C 0串联的等效电容C=C 0/N) 等效电容C=C 1+C 2 (更多电容并联的等效电容: C=C 1+C 2+C 3+···;N 个相同的电容C 0串联的等效电容C=NC 0) 2、电流相等 电压相等 3、电压关系U=U 1+U 2 电流关系I=I 1+I 2(对交流电而言) 4、分压公式U 1=UC 2/(C 1+C 2) U 2=UC 1/(C 1+C 2) 分流公式 I 1=IC 1/(C 1+C 2)(对交流电而言) I 2=IC 2/(C 1+C 2)(对交流电而言)

RLC并联谐振电路

R L C并联谐振电路公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

电路课程设计举例:?以 R L C 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足L C ωω001= ,则RLC 并联谐振角频率ω0和谐振频率 f 0分别是 RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小G B G Y =+=2 2. (2)若外施电流I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等,I I S R =. (4)谐振时0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振:

(1)利用电流表测量总电流I s 和流经R 的电流I R ,两者相等时即为并 联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为0.02H,电容C 为50uf,电阻R 为200Ω。 由LC f π210=计算得,Hz f 1.1570= 按上图进行EWB 的仿真,得到下图。 流经电阻R 的电流和总电流I 相等为10mA,流进电感L 和电容C 的总电流为5.550uF ,几乎为零,所以电路达到谐振状态。 总电源与流经R 的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB 仿真RLC 并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R 的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

LC 串并联谐振回路特性实验

LC 串并联谐振回路特性实验--(转自高频电子线路实验指导书) 2009-01-09 19:34:22| 分类:电子电路| 标签:|字号大中小订阅 LC 串并联谐振回路特性实验 一、实验目的 1、掌握LC 振荡回路的谐振原理。 2、掌握LC 串并联谐振回路的谐振特性。 3、掌握LC 串并联谐振回路的选频特性。 二、实验内容 测量LC 串并联谐振回路的电压增益和通频带,判断选择性优劣。 三、实验仪器 1、扫频仪一台 2、20MHz 模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 (一)基本原理 在高频电子线路中,用选频网络选出我们所需的频率和滤除不需要的频率成分。通 常,在高频电子线路中应用的选频网络分为两类。第一类是由电感和电容元件组成的振 荡回路(也称谐振回路),它又可以分为单振荡回路以及耦合振荡回路;第二类是各种

滤波器,如LC 滤波器,石英晶体滤波器、陶瓷滤波器和声表面滤波器等。本实验主要 介绍第一类振荡回路。 1、串联谐振回路 信号源与电容和电感串联,就构成串联振荡回路。电感的感抗值( wL )随信号频 率的升高而增大,电容的容抗值( wC 1 )则随信号频率的升高而减小。与感抗或容抗的 变化规律不同,串联振荡回路的阻抗在某一特定频率上具有最小值,而偏离特定频率时 的阻抗将迅速增大,单振荡回路的这种特性为谐振特性,这特定的频率称为谐振频率。 图2-1 所示为电感L、电容C 和外加电压Vs 组成的串联谐振回路。图中R 通常是 电感线圈损耗的等效电阻,电容损耗很小,一般可以忽略。 图2-1 串联振荡回路 保持电路参数R、L、C 值不变,改变外加电压Vs 的频率,或保持Vs 的频率不变, 而改变L 或C 的数值,都能使电路发生谐振(回路中的电流的幅度达到最大值)。

RLC并联谐振电路

电路课程设计举例: 以RLC 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 )1(111L C j R L j C j R Y ωωωω-+=++= 发生谐振时满足L C ω ω0 1 = ,则RLC 并联谐振角频率 ω 和谐振频率 f 分别是 LC LC f πω21, 10 0= = RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小 G B G Y =+= 2 2 . (2)若外施电流 I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等, I I S R = .

(4)谐振时 0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流 I s 和流经R 的电流 I R ,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为,电容C 为50uf,电阻R 为200Ω。 由LC f π210 = 计算得, Hz f 1.1570 = 按上图进行EWB 的仿真,得到下图。

流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为,几乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

串联谐振电路和并联谐振电路的特性

串联谐振电路和并联谐振电路的特性 一..并;联谐振电路:当外来频率加于一并联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频 电路. 2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容. 3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈. 所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移.(即相位失真) 二.串联谐振电路:当外来频率加于一串联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波 器. 2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈. 3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容. 并联谐振与串联谐振 2010-03-03 15:49:30| 分类:电子电路| 标签:|字号大中小订阅 1、对于理想的L、C元件,串联谐振发生时,L、C元件上的电压大小相等、方向相反,总电压等于0(谐振阻抗为零)。而并联谐振发生时,L、C元件中的电流大小相等、方向相反,总电流等于0(谐振阻抗为 无穷大)。故有如题的称呼。 2、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。即释放的磁能完全转 换成电场能储存进电容;而在另一时刻电容放电,又转换成磁能由电感储存。 3、在串联谐振电路中,由于串联——L、C流过同一个电流,因此能量的交换以电压极性的变化进行;在 并联电路中,L、C两端是同一个电压,故能量的转换表现为两个元件电流相位相反。 4、谐振时电感和电容还是两个元件,否则不能进行能量交换;但从等效阻抗的角度,是变成了一个元件: 数值为零或无穷大的电阻。 5、串联谐振是电流谐振,一般起电流放大作用。如老式收音机通过串联谐振将微弱电流信号放大。并联谐 振是起电压放大作作。

(串联谐振电路分析)

《电子设计与制作》 课 程 设 计 报 告

目录 一:题目………………………………………………………..二:原理………………………………………………………….三:电路图……………………………………………………….四:实验内容…………………………………………………….五:实验分析……………………………………………………六:心得体会…………………………………………………….

一、题目:串联谐振电路分析 二、原理 1.串联谐振的定义和条件 在电阻、电感、电容串联电路中,当电路端电 压和电流同相时,电路呈电阻性,电路的这种状态叫做串联谐振。 可以先做一个简单的实验,如图所示,将:三个元件R 、L 和C 与一个小灯泡串联,接在频率可调的正弦交流电源上,并保持电源电压不变。 实验时,将电源频率逐渐由小调大,发现小灯泡也慢慢由 暗变亮。当达到某一频率时,小灯泡最亮,当频率继续增加时, 又会发现小灯泡又慢慢由亮变暗。小灯泡亮度随频率改变而变 化,意味着电路中的电流随频率而变化。怎么解释这个现象呢? 在电路两端加上正弦电压U ,根据欧姆定律有 || U I Z = 式中 2 2 2 2 1 ||()()L C Z R X X R L C ωω= +-= +- L ω和 1 C ω部是频率的函数。但当频率较低时,容抗大而感抗小, 阻抗|Z|较大,电流较小;当频率较高时,感抗大而容抗小,阻抗|Z|也较大,电流也较小。在这两个频率之间,总会有某一频率,在这个

频率时,容抗与感抗恰好相等。这时阻抗最小且为纯电阻,所以,电流最大,且与端电压同相,这就发生了串联谐振。 根据上述分析,串联谐振的条件为 L C X X = 即 001 L C ωω= 或 01LC ω= 01 2f LC π= 0f 称为谐振频率。可见,当电路的参数 L 和C 一定时,谐振频率 也就确定了。如果电源的频率一定,可以通过调节L 或C 的参数大小来实现谐振。 2、串联谐振的特点 (1)因为串联谐振时,L C X X =,故谐振时电路阻抗为 0||Z R = (2)串联谐振时,阻抗最小,在电压U 一定时,电流最大,其值 为 00|| U U I Z R = = 由于电路呈纯电阻,故电流与电源电压同相,0? = (3)电阻两端电压等于总电压。电感和电容的电压相等,其大小

谐振电路工作原理

https://www.360docs.net/doc/1d10062543.html, 谐振电路工作原理,华天电力是串联谐振装置的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找串联谐振,就选华天电力。 谐振就是电路中既有感性原件又有容性原件,感性原件是通直流阻交流,容性原件是通交流阻直流,物理上用相位来描述,感性原件和容性原件的相位正好相反,而感性原件和容性原件在电路中呈现的阻性在某个频率下会相等,及大小相等,方向相反,这样的电路称为谐振电路,该频率称为谐振频率。 在RLC串联电路中,若接入一个输出电压幅值一定,输出频率f连续可调的正弦交流信号源,则电路中的许多参数将随着信号源的频率的变化而变化,即电路阻抗Z,回路电流I,电流与信号源电压之间的相位差φ分别为 Z=[R2+(ZL-ZC)2]1/2=[R2+(ωL-1/ωC)2]1/2 I=U/Z=U/[R2+(ωL-1/ωC)2]1/2 φ=arctan[(ωL-1/ωC)/r] 上述三个式子中,信号源角频率ω=2пf,容抗Zc=1/ωC,感抗ZL = ωL,各参数随ω的变化而变化。ω很小时,电路总阻抗Z=[R2+(1/ωC)2]1/2,φ→π/2电流的相位超前与信号源电压相位,整个电路呈容性;ω很大时,Z=[R2+(ωL)2]1/2,φ→-π/2,电流相位滞后与信号源电压相位,整个电路呈感性;当容抗等于感抗,相互抵消时,电路总阻抗Z=R,为最小值,此时回路电流为最大值Imax=U/R,相位差φ=0,整个电路呈阻性,这个现象即为谐振现象。发生谐振时的频率fo称为谐振频率,角频率ωo称为谐振角频率,它们之间的关系为 ω=ω0=(1/LC) 1/2 或fo=ω0/2π=1/[2π(LC) 1/2]

RLC并联谐振电路

RLC 并联谐振电路

电路课程设计举例:?以R L C并联谐振电路 1.电路课程设计目的 (1)验证屉C并联电路谐振条件及谐振电路的待点; (2)学习使用EWB仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的屉C串联电路图如下图所示。 图1屉C并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足0()C =」一,则RLC并联谐振角频率0°和谐振频率/[分别是RLC并联谐振电路的待点如下。 (1)谐振时Y二G,电路呈电阻性,导纳的模最小|丫卜J G'+ J B'G? (2)若外施电流人一定,谐振时,电压为最大,[J丄,且与外施电流同相。 G (3)电阻中的电流也达到最大,且与外施电流相等,W (4)谐振时// +/c = 0,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有儿种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流人和流经R的电流人,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R的电流波形,两者同相即为并联谐振。

例题:已知电感L为0. 02H,电容C为50uf,电阻R为2000。 由f =一计算得,f = 157.1Hz J 02兀亦」° 按上图进行EWB的仿真,得到下图。 流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为5. 550uF,儿乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

串并联谐振的特点

串联谐振的特点 1.谐振时回路的阻抗最小,且 2.谐振时的回路电流最大,且与激励源同相。 3.谐振时电阻上的电压,与激励源大小相等,相位相同。 4.电路在谐振时,电容上的电压与电感L上的电压相位相反、大小相等,都等于电 源电压的倍。 注意:由于值通常很大,谐振时(或)上的端电压将很高,往往会造成元件的损坏。但谐振时和两端的总等效阻抗为零。 频率特性 图示电路中的电流为: 谐振时的电流为: 可以推导得:,其中,称为相对失谐。 幅频特性 定义:信号幅度随频率变化的关系,则 可以证明:回路值越高,曲线越尖锐,回路选择信号的能力越强,选择性越好。

并联谐振的特点 以下讨论都是在品质因数很高的条件下进行 特点 1.谐振时回路的阻抗最大,且 2.谐振时的回路端电压最大,且与激励源同相 3.电路在谐振时,电容支路和电感支路的电流几乎大小相等、相位相反。二者的大小 近似等于激励电流源的倍。 频率特性 图示电路的端电压为: 在()的情况下,有 可以推导得:,其中 幅频特性

定义:信号幅度随频率变化的关系,则 可以证明与串联谐振电路相同,回路值越高,曲线越尖锐,回路选择信号能力越强, 选择性越好。 谐振回路的能量关系(功率) 1.不论是串联谐振回路还是并联谐振回路都是由电阻、电容和电感组成。2.电阻是耗能元件,它将消耗能量;电容是储能元件,它将储存电场能量;电感 也是储能元件,它将储存磁场能量。、均不会消耗能量。 3.由于谐振时回路为纯阻性,则激励源提供的能量将全部消耗掉。 4.谐振回路的能量关系:电容储存的电能和电感储存的磁能将以振荡的形式(因为电容端电压和流过电感的电流为正弦信号)互相转换,总的储存能量保持不变。而激 励源供给电路的能量,全部消耗在电阻上转化为热能。 谐振回路的通频带 通频带的意义:定义通频带是为了衡量回路选择一定范围内频率的能力。 谐振回路的选择性: 1.回路的值越高,选择信号的能力越强,偏离谐振频率的信号越容易被抑制。 2.实际信号是由若干频率分量所组成的多频率信号。 3.人们希望谐振电路能够把实际信号中的各有用频率分量都能选择出来;对不需要的频率分量(也称为干扰)能够得到最大限度的抑制。

谐振电路的原理和作用

谐振电路的原理和作用 含有电感线圈和电容器的无源(指不含独立电源)线性时不变电路在某个特定频率的外加电源作用下,对外呈纯电阻性质的现象。这一特定频率即为该电路的谐振频率。以谐振为主要工作状态的电路称谐振电路。无线电设备都用揩振电路完成调谐、滤波等功能。电力系统则需防止谐振以免引起过电流、过电压。 电路中的谐振有线性谐振、非线性谐振和参量谐振。前者是发生在线性时不变无源电路中的谐振,以串联谐振电路中的谐振为典型。非线性谐振发生在含有非线性元件电路内。由铁心线圈和线性电容器串联(或并联)而成的电路(习称铁磁谐振电路)就能发生非线性谐振。在正弦激励作用下,电路内会出现基波谐振、高次谐波谐振、分谐波谐振以及电流(或电压)的振幅和相位跳变的现象。这些现象统称铁磁谐振。参量谐振是发生在含时变元件电路内的谐振。一个凸极同步发电机带有容性负载的电路内就可能发生参量谐振。 串联谐振电路:用线性时不变的电感线圈和电容器串联成的谐振电路。这种电路产生的谐振称串联谐振,又称电压谐振。当外加电压的频率ω等于电路的谐振频率ω0时,除改变ω可使电路谐振外,调整L、C的值也能使电路谐振。谐振时电路内的能量过程是在电感和电容之间出现周期性的等量能量交换。以品质因数Q值表示电路的性能,Q值越大,谐振曲线越尖窄,则电路的选择性越好。考虑信号源的内阻时,Q值要下降,因此,串联谐振电路不宜与高内阻信号源一起作用。 并联谐振电路:用线性时不变电感线圈和电容器并联组成的谐振电路。其中的谐振称并联谐振,又称电流谐振。以Q表示电路的性能,电路内的能量过程与串联谐振电路类似。信号源内阻会降低Q 值,且内阻越小,品质因数值越小,所以并联谐振电路不宜与低内阻信号源一起使用。 式中R为电阻,L为电感,C为电容,ω为非谐振频率,ω0为谐振频率。电路内的能量过程与串联谐振电路类似。信号源内阻会降低Q 值,且内阻越小,品质因数值越小,所以并联谐振电路不宜与低内阻信号源一起用。 原理: 主要是指电感、电容并联谐振组成的LC振荡器。 因为LC回路有选频特性。理由:回路的等效阻抗Z=(-J/ωC)//(R+JωL),可知,阻抗Z与信号频率有关。不同频率的信号电流(同等大小的电流)在通过回路时,产生的电压是不同的。只有一个频率的信号电流产生的电压最大,就是当信号角频率ω=ω0=1/√LC时。此时回路阻抗最大,叫做并联谐振。 作用: RCL串联电路中的感抗与容抗有相互抵消的作用,即ωL-1/ωC=0,此时串联电路中的电抗为0,电流和电压同相位,称谓串联谐振。

8.9 电感线圈和电容器的并联谐振电路

8.9 电感线圈和电容器的并联谐振电路 考纲要求:掌握并联谐振的条件、特点及其应用。 教学目的要求:掌握电感线圈和电容器并联谐振的条件、特点和应用。 教学重点:电感线圈和电容器并联谐振的条件、特点和应用。 教学难点:电感线圈和电容器并联谐振的条件、特点和应用。 课时安排:2节课型:复习 教学过程: 【知识点回顾】 一、并联谐振的条件: 推导过程: ∴条件: 二、并联谐振的频率 ω0= R= 。 三、谐振时电路的特点 (1)阻抗特点:。 推导过程: |Z0|= (2)电流特点:。 I0= 。 电感和电容上的电流接近相等,并为总电流的Q倍。 电路的品质因数Q = 。 并联谐振和串联谐振的谐振曲线形状相同,选择性和通频带也一样。 四、并联谐振的应用

要使L、C回路两端得到f0的信号电压,则必须调节回路中的电容C,使L、C回路在频率f0处谐振,这样L、C回路对f0信号呈现阻抗最大,并为纯电阻性,所以各电路上的电压是与电阻大小成正比,故f0信号的电压将在L、C回路两端有最大值,而其他频率信号的电压由于L、C回路失谐后的阻抗小于谐振时的阻抗,故在它两端所分配的电压将小于f0信号的电压。 【课前练习】 一、判断题 1、电感线圈与电容器的并联电路与RLC串联电路的谐振条件相同,都是X L=X C. ( ) 2、RLC串联谐振电路适用于信号源内阻较小的情况,而电感线圈与电容器构成的并联谐振电路适用于信号源内阻较大的情况。 ( ) 3、电感线圈与电容器构成的并联谐振电路用作选频电路时,品质因数越高,通频带就越宽,选择性就越好。 ( ) 二、选择题 1、电感线圈与电容器并联的正弦交流电路的谐振频率为f0,若交流电源的频率升高,则电路呈 ( ) A.阻性 B感性 C.容性 D.条件不足,无法确定 三、填空题 1、如图所示,在电感线圈与电容器并联的电路中,已知 u=2202sin 314t V,R=8Ω, X L=6Ω,Xc=22Ω,则各仪 表读数为A1 ,A2 ,A 。 四、分析计算题 1、在图示正弦交流电路中,已知u =2202sin 314t V,i1=22sin(314t-45O)A,i2=11 2sin(314t+90 O)A,试求各仪表读数及参数R、L、C。 2、在电感线圈和电容器组成的并联谐振电路中,若已知谐振时阻抗是10kΩ,电感是0.02 mH,电容是200 pF,求电阻和电路的品质因数。 【巩固练习】 1、在下图所示的两个电路中,若要在输入信号源中选出频率为f1的信号电压加得到负载RL 上,则A、B两点间应接入怎样的谐振电路,其应满足什么条件?

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

谐振电路的设计及分析

谐振电路的设计及分析 谐振电路 1.实验目的: 1. 掌握谐振电路、相量法的相关知识 2. 掌握利用Mulstim软件分析验证相关的原理 3. 加深对谐振的理解。 2.实验原理: 在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流位相一般是不同的。如果我们调节电路元件(L或C)的参数或电源频率,可以使它们位相相同,整个电路呈现为纯电阻性。电路达到这种状态称之为谐振。 串联: 1)条件:ω=ω0=1/√LC f=f0=1/2π√LC 2)当在谐振时的感抗和容抗在量值上相等,其值称为谐振电路的特性阻抗,其值为ω0L= 3)品质因数:Q== 并联: 1)条件:ω=ω0=1/√LC f=fo=1/2π√LC 2)品质因数:Q==R 3.实验步骤: 1)画出电路 2)算出理论值 3)利用Mulstim软件分析验证 4)得出结论

理论值: 串联 ?Im =C j L j R Usm ωω1 ++?=A A j j ?∠=-+∠0110010010010 i(t)=1cos105t A V j C j Ucm V V j L j Ulm V V R Urm ?-∠=?∠?-==?∠=?∠?==?∠=?∠?==? ?????9010001100Im 9010001100Im 0100110Im ωω u R (t)=10cos105t V u L (t)=100cos(105t+90°) V u C (t)=100cos(105t-90°) V Q==R =10=0.1 0= 并联

?Im =C j L j R Usm ωω1 1 ++?=A A j j ?∠=-+∠01.01001 i(t)=0.1cos103t A ?Irm =R ?Usm =A A ?∠=∠01.01001Ω i(t)=0.1cos103t A ?Ilm =L j Usm ω?=A A j ?-∠=∠90101 i(t)= 1cos (103t-90°) A ?Icm =C j Usm ω1 ?=A A j ?∠=-∠90101 i(t)=1cos (103t+90°) A Q==R =10=10 0= I I R I L I C

从谐振条件和电路特点看串联谐振和并联谐振

https://www.360docs.net/doc/1d10062543.html, 从谐振条件和电路特点看串联谐振和并联谐振 一、串联谐振和并联谐振特点概述 变频串联谐振试验装置又叫串联谐振,是由变频电源、励磁变压器、电抗器和 电容分压器组成。被试品的电容与电抗器构成串联谐振连接方式;分压器并联 在被试品上,用于测量被试品上的谐振电压,并作过压保护信号;调频功率输 出经激励变压器耦合给串联谐振回路,提供串联谐振的激励功率。 在电感和电容并联的电路中,当电容的大小恰恰使电路中的电压与电流同相位,即电源电能全部为电阻消耗,成为电阻电路时,叫作并联谐振,并联谐振是一 种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率。 谐振时,电路的总电流最小,而支路的电流往往大于电路的总电流,因此,并 联谐振也成为电流谐振,发生并联谐振时,在电感和电容元件中流过很大的电 流,因此会造成电路的熔断器熔断或烧毁电气设备的事故;但在无线电工程中 往往用来选择信号和消除干扰。 二、串联谐振和并联谐振的谐振条件 串联谐振的谐振条件

https://www.360docs.net/doc/1d10062543.html, 并联谐振的谐振条件 串联谐振的电路特点 1.总阻抗值最小:Z=R+j(wl-1/wc)=R; 2.电源电压一定时,电流最大;I=I0=U/|Z|=U /R; 3.电路成电阻性,电容或电感的电压可能高于电源电压。 并联谐振的电路特点 1.电压一定时,谐振时电流最小; 2.总阻抗最大;

https://www.360docs.net/doc/1d10062543.html, 3.电路成电阻性,支路电流可能会大于总电流。 通过对电路谐振的分析,掌握谐振电路的特点,再生产实践中,应该 用其所长,避其所短。 四、串联谐振和并联谐振的产品特点 串联谐振产品的主要特点 1.所需电源容量大大减小 串联谐振试验装置是利用谐振电抗器和被试品电容产生谐振,从而得 到所需高电压和大电流的,在整个系统中,电源只需要提供系统中有 功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q 为品质因素)。 2. 设备的重量和体积大大减小 串联谐振电源中,不但省去了笨重的大功率调压装置和普通的大功率 工频试验变压器,而且,谐振激磁电源只需试验容量的1/Q,使得系统 重量和体积大大减小,一般为普通试验装置的1/5~1/10。 3. 改善输出电压波形 谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好 的正弦波,有效地防止了谐波峰值引起的对被试品的误击穿。 4. 防止大的短路电流烧伤故障点 在谐振状态,当被试品的绝缘弱点被击穿时,电路立即脱谐(电容量 变化,不满足谐振条件),回路电流迅速下降为正常试验电流的1/Q。而采用并联谐振或者传统试验变压器的方式进行交流耐压试验时,击 穿电流立即上升几十倍,两者相比,短路电流与击穿电流相差数百倍。所以,串联谐振能有效地找到绝缘弱点,又不存在大的短路电流烧伤 故障点的忧患。 5. 不会出现任何恢复过电压

电容、电感产生的相位差理解

电容、电感产生的相位差理解 对于正弦信号,流过一个元器件的电流和其两端的电压,它们的相位不一定是相同的。这种相位差是如何产生的呢?这种知识非常重要,因为不仅放大器、自激振荡器的反馈信号要考虑相位,而且在构造一个电路时也需要充分了解、利用或避免这种相位差。下面探讨这个问题。 首先,要了解一下一些元件是如何构建出来的;其次,要了解电路元器件的基本工作原理;第三,据此找到理解相位差产生的原因;第四,利用元件的相位差特性构造一些基本电路。 一、电阻、电感、电容的诞生过程 科学家经过长期的观察、试验,弄清楚了一些道理,也经常出现了一些预料之外的偶然发现,如伦琴发现X射线、居里夫人发现镭的辐射现象,这些偶然的发现居然成了伟大的科学成就。电子学领域也是如此。 科学家让电流流过导线的时候,偶然发现了导线发热、电磁感应现象,进而发明了电阻、电感。科学家还从摩擦起电现象得到灵感,发明了电容。发现整流现象而创造出二极管也是偶然。 二、元器件的基本工作原理 电阻——电能→热能 电感——电能→磁场能,&磁场能→电能 电容——电势能→电场能,&电场能→电流 由此可见,电阻、电感、电容就是能源转换的元件。电阻、电感实现不同种类能量间的转换,电容则实现电势能与电场能的转换。 1、电阻 电阻的原理是:电势能→电流→热能。 电源正负两端贮藏有电势能(正负电荷),当电势加在电阻两端,电荷在电势差作用下流动——形成了电流,其流动速度远比无电势差时的乱序自由运动快,在电阻或导体内碰撞产生的热量也就更多。 正电荷从电势高的一端进入电阻,负电荷从电势低的一端进入电阻,二者在电阻内部进行中和作用。中和作用使得正电荷数量在电阻内部呈现从高电势端到低电势端的梯度分布,负电荷数量在电阻内部呈现从低电势端到高电势端的梯度分布,从而在电阻两端产生了电势差,这就是电阻的电压降。同样电流下,电阻对中和作用的阻力越大,其两端电压降也越大。 因此,用R=V/I来衡量线性电阻(电压降与通过的电流成正比)的阻力大小。 对交流信号则表达为R=v(t)/i(t)。 注意,也有非线性电阻的概念,其非线性有电压影响型、电流影响型等。

串联谐振与并联谐振的电路特点及产生条件详解

串联谐振与并联谐振的电路特点及产生条件详解 一、串联电路和并联电路的定义 1、路中的各元件是逐个顺次连接来的,则电路为串联电路。 特点是:流过一个元件的电流同时也流过另一个。在串联电路中,由于电流的路径只有一条,所以,从电源正极流出的电流将依次逐个流过各个用电器,后回到电源负极。因此在串联电路中,如果有一个用电器损坏或某一处断开,整个电路将变成断路,电路就会无电流,所有用电器都将停止工作,所以在串联电路中,各个用电器互相牵连,要么全工作,要么全部停止工作。 2、元件“首首相接,尾尾相连”并列地连在电源之间,则电路就是并联电路。 特点是:干路的电流在分支处分成几部分,分别流过几个支路中的各个元件。在并联电路中,从电源正极流出的电流在分支处要分为几路,每一路都有电流流过,因此即使某一支路断开,但另一支路仍会与干路构成通路。由此可见,在并联电路中,各个支路之间互不牵连。 二、实例分析串联电路和并联电路的特点 1、串联电路用电器各元件逐个顺次连接起来,接入电路就组成了串联电路。我们常见的装饰用的“满天星”小彩灯,常常就是串联的。串联电路有以下一些特点:A、电路连接特点:串联的整个电路是一个回路,各用电器依次相连,没有“分支点”。B、用电器工作特点:各用电器相互影响,电路中一个用电器不工作,其余的用电器就无法工作。C、开关控制特点:串联电路中的开关控制整个电路,开关位置变了,对电路的控制作用没有影响。即串联电路中开关的控制作用与其在电路中的位置无关。

2、并联电路用电器各元件并列连接在电路的两点间,就组成了并联电路。家庭中的电灯、电风扇、电冰箱、电视机等用电器都是并联在电路中的。并联电路有以下特点:A、电路连接特点:并联电路由干路和若干条支路组成,有“分支点”。每条支路各自和干路形成回路,有几条支路,就有几个回路。B、用电器工作特点:并联电路中,一条支路中的用电器若不工作,其他支路的用电器仍能工作。C、开关控制特点:并联电路中,干路开关的作用与支路开关的作用不同。干路开关起着总开关的作用,控制整个电路。而支路开关只控制它所在的那条支路。 三、串联电路和并联电路产生谐振的条件 1、串联谐振电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象,叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于0,阻抗Z等于电阻R,此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。串联谐振就是电源和LC回路串联,当满足XL=XC时,LC等值阻抗几乎为零,电源输出电流极大,所以又称为“电流谐振”。 2、并联谐振压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。 并联谐振就是电源和LC回路并联,当满足XL=XC时,电源输出电流几乎为零,LC上的电压极高,所以又称为“电压谐振”。

谐振的原理

https://www.360docs.net/doc/1d10062543.html, 谐振的原理,华天电力是串联谐振装置的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找串联谐振,就选华天电力。 谐振就是电路中既有感性原件又有容性原件,感性原件是通直流阻交流,容性原件是通交流阻直流,物理上用相位来描述,感性原件和容性原件的相位正好相反,而感性原件和容性原件在电路中呈现的阻性在某个频率下会相等,及大小相等,方向相反,这样的电路称为谐振电路,该频率称为谐振频率。 电路谐振的原理 Uc=I/ωC,UL=I*ωL,UR=I*R,U=Uc+UL+UR,当LRC串联回路中的感抗与试品容抗相等时,电感中的磁场能量与试品电容中的电场能量相互补偿,试品所需的无功功率全部由电抗器供给,电源只提供回路的有功损耗。电源电压与谐振回路电流同相位,电感上的电压降与电容上的压降大小相等,相位相反。由图1可知,当ωL=1/ωc,回路的谐振频率f=1/2π√LC,也就是说,电路发生串联谐振,电源提供很小的励磁电压,试品上就能得到很高的电压,电源频率为谐振频率。 当电源频率(f)、电感(L)及被试设备电容(C)满足下式时回路处于串联谐振状态此时:f=1/2π√LC,回路中电流为I=Ulx/R,被试设备电压为Ucx=I/ωCx输出电压与励磁电压之比为试验回路的品质因数:Q=Ucx/Ulx=(ωL)/R,由于试验回路中电阻R很小,故试验回路品质因数很大。 一般正常时可达50以上,既输出电压是励磁电压50倍,因此用较低容量的试验变压器就能得到较高的试验电压。这样就解决了在一般的交流耐压试验中试验变压器容量不能满足试验要求的问题。而此时电容量与电感的关系为ωL=1/ωc,因为对某个试品而言,电容

RLC并联谐振电路

R L C并联谐振电路标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电路课程设计举例:以RLC 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足L C ωω001= ,则RLC 并联谐振角频率ω0和谐振频率f 0分别是 RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小G B G Y =+=2 2. (2)若外施电流I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等,I I S R =. (4)谐振时0=+I I C L ,即电感电流和电容电流大小相等,方向相反。

3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流I s 和流经R 的电流I R ,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为,电容C 为50uf,电阻R 为200Ω。 由LC f π210=计算得,Hz f 1.1570= 按上图进行EWB 的仿真,得到下图。 流经电阻R 的电流和总电流I 相等为10mA,流进电感L 和电容C 的总电流为,几乎为零,所以电路达到谐振状态。 总电源与流经R 的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB 仿真RLC 并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R 的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

数字电桥中串联和并联的选择使用

数字电桥中串联和并联的选择使用 日期:2011年2月17日 17:05 数字电桥操作面板都有“串联”和“并联”按键供用户选择,这串联和并联不是物理连结,而是内在计算模式的改变,改变计算模式得到理想的精度。 理论上电感正弦波激励响应电压超前电流90度,电容电压落后电流90度。实际测量中由于铜阻和各种损耗的存在,超前或落后都小于90度,这种损耗在测量中以副参数出现,电感损失角的正切值的倒数称品质因素Q值。同样电容损失角的正切值称损耗因子DF。 数字电桥进行高精度量化,要建立适当的数学模型,经过一些数学运算,得到各种参数值。在整个过程中,把损耗的影响用电阻等效和电感或电容串并联。见图1所示: 对于电阻根据实际应用,可以等效为电阻和小电感的串联或电阻和小电容的并联。 每种等效都可以通过数学运算得到主副参数值,运算过程中,如果中间数据保持的位数很多,上述等效运算的主副参数值是一样的。实际上计算机或单片机受资源的限制,只能在有限位数下运算,一种等效得到一定的计算精度。 大阻抗器件用并联模式计算精度高,小阻抗器件用串联模式计算精度高,被测件的阻抗决定数字电桥串并联的选择。 阻抗小于1K用串联,1K到几十K串并联都可以,还是建议用串联。阻抗大于几百K 或M的量级就用并联模式。 被测件是大电感(比如现在LCD背光电源变压器),或小电容用并联。 被测件是小电感或大电容用串联。 特别注意的是阻抗决定串并联模式,阻抗和测试頻率有关,电感是ωL 电容是,小电感小电容适当提高测试頻率可以提高测量精度。 实际运用中串联模式使用比较多。

电阻电容电感测量方法参考: 电阻低于1KΩ,选择串联120Hz(100Hz)通常称为直流电阻测量,选择低频减小交流影响,选串联模式减小被测件等效串联电感的影响. 电阻大于等于1KΩ,选择并联120Hz(100Hz),选择低频减少交流影响,选择“并联”,是因为测量过程中出现电抗部份,等效为被测件并联一个电容呈现的高电抗,用并联模式减小这种影响,如果Q<0.1,已存在小电容影响. 电容小于2nF,选择,选择串联1KHz,选用高的测试信号可提高测试精度,同样能测量大于1000μF以上电容. 电感小于2mH,用串联1KHz,选择高测试频率可提高测试精度.

相关文档
最新文档