计算机图形学课程设计-有效边表填充算法的实现

计算机图形学课程设计-有效边表填充算法的实现
计算机图形学课程设计-有效边表填充算法的实现

计算机图形学课程设计设计题目改进的有效边表算法对多边形的填充学院名称信息科学与技术学院

专业名称计算机科学与技术

学生姓名刘柯

学生学号201213030112

任课教师梅占勇

设计(论文)成绩

教务处制

2015年9 月28 日

目录

一、设计内容与要求 (3)

1.1设计题目 (3)

1.2 设计内容 (3)

1.3 设计目标 (3)

二、总体设计 (3)

2.1 多边形的表示 (3)

2.2 x-扫描线算法 (4)

2.3 改进的有效边表算法 (4)

2.3.1 改进的有效边表算法 (4)

2.3.2 有效边表 (5)

2.3.3 边表 (6)

三、详细设计 (8)

3.1 改进的有效边表算法的实现 (8)

3.2 有效边表算法程序流程图 (9)

四、测试结果 (9)

五、总结 (15)

六、源代码 (15)

参考文献 (26)

一、设计内容与要求

1.1设计题目

用改进的有效边表算法实现多边形的填充

1.2 设计内容

使用OpenGL实现用改进的有效边表算法填充多边形

1.3 设计目标

参照课本上改进的有效边表算法的思想,实现该算法的C语言代码,并用该算法搭配OpenGL以像素点的方式绘制出给定顶点坐标的多边形。

二、总体设计

2.1 多边形的表示

在计算机图形学中,多边形有2种重要的表示方法:顶点表示和点阵表示。

顶点表示用多边形的顶点序列来刻画多边形,这种方法直观、几何意义强,占用内存少,应用普遍,但它没有明确指出哪些像素在多边形内,故不能直接用于面着色。

点阵表示用位于多边形内的像素的集合来刻画多边形。这种表示法虽然失去了许多重要的几何信息,但便于运用帧缓存表示图形,是面着色所需要的图形表示形式。

大多数图形应用系统采用顶点序列表示多边形,而顶点表示又不能直接用于显示,那么就必须有从多边形的顶点表示到点阵表示的转换,这种转换称为多边形的扫描转

换或多边形的填充。即从多边形的顶点信息出发,求出位于其内部的各个像素,并将其颜色值写入帧缓存的相应单元中。

2.2 x-扫描线算法

x-扫描线算法的基本思想是,按照扫描线的顺序,计算扫描线与多边形的相交区间,再用要求的颜色显示这些区间的像素,即完成填充工作。区间的端点可以通过计算扫描线与多边形边界线的交点获得。根据此原理,x-扫描线算法可以填充凸的、凹的或带有孔的多边形区域。

x-扫描线的算法步骤如下:

(1)确定多边形顶点的最小和最大y值(y min和y max),得到多边形所占有的最大扫描

线数。

(2)从y=y min到y=y max,每次用一条扫描线填充。每一条扫描线填充的过程分为4

个步骤:

①求交。计算扫描线与多边形所有边的交点。

②排序。把所有交点按x坐标递增的顺序进行排序。

③交点配对。配对第一与第二、第三与第四个交点等,每对交点代表一个填充

区间。

④区间填色。把这些相交区间内的像素置成不同于背景色的填充色。

x-扫描线算法在处理每条扫描线时,需要与多边形的所有边求交,这样处理效率非常低。因为一条扫描线往往只与少数几条边相交,甚至与整个多边形都不相交。因此,有必要对算法进行改进。

2.3 改进的有效边表算法

2.3.1 改进的有效边表算法

将x-扫描线算法加以改进可以得到改进的有效边表算法,也称y连贯算法。改进可以从三个方面进行:首先,在处理一条扫描线时,仅对与它相交的多边形的边(有效边)求交;其次,利用扫描线的连贯性,考虑到当前扫描线与各边的交点顺序与下一条扫描线与各边的交点顺序很可能相同或非常相似,因此在当前扫描线处理完毕之

后,不必为下一条扫描线从头开始构造交点信息;最后,利用多边形的连贯性,认为若某条边与当前扫描线相交,则它很可能也与下一条扫描线相交且其交点与上一次的

交点相关。如下图所示,设直线的斜率为k,若y=y

i 时,x=x

i

;则当y=y

i+1

时,有x

i+1

=x

i

+1/k。

2.3.2 有效边表

有效边(Active Edge)是指与当前扫描线相交的多边形的边,也称活性边。把有效边按与扫描线交点x坐标递增的顺序存放在一个链表中,此链表称为有效边表(Active Edge Table,AET)。有效边表的每个结点存放对应边的如下信息:

其中,x为当前扫描线与有效边交点的x坐标;y max是有效边所在的最大扫描线值,通过它可以知道何时才能“抛弃”该边;1/k是边斜率的倒数;next是下一个结点的指针。

如下图所示的多边形P0P1P2P3P4P5P6,其顶点表示为:

P0(7,8),P1(3,12),P2(1,7),P3(3,1),P4(6,5),P5(8,1),P6(12,9)。

当y=8时的有效边表如下图所示:

2.3.3 边表

有效边表给出了扫描线和有效边交点坐标的计算方法,但是没有给出新边出现的位置坐标。为了方便有效边表的建立与更新,就需要构造一个边表(Edge Table,ET),用以存放扫描线上多边形各条边的信息。由于水平边的1/k为∞,并且水平边本身就是扫描线,所以在建立边表时不予考虑。

边表的构造分为4个步骤:

①首先构造一个纵向链表,链表的长度为多边形占有的最大扫描线数,链表的每

个结点,称为一个桶,对应多边形覆盖的每一条扫描线。

②将每条边的信息装入与该边最小y坐标(y

min

)相对应的桶中。也就是说,若某

边的较低端点为y

min ,则该边就放在相应的y=y

min

的扫描线桶中。

③每条边的数据形成一个结点,内容包括该扫描线与该边的初始交点x(即较低

端点的x坐标值),该边最大y坐标值y

max

,以及斜率的倒数1/k和下一个边结点的指针next:

④同一桶中若干条边按x|y min由小到大排列,若x|y min相等,则按1/k由小到大排

序。

从上面可以看出,边表是有效边表的特例,有效边表和边表可以使用同一个数据结构来表示。

对于多边形P0P1P2P3P4P5P6,它的边表结构如下图所示:

三、详细设计

3.1 改进的有效边表算法的实现

改进的有效边表算法具体实现过程如下:

①初始化边表ET。

为了方便边表的建立,可以定义sort()函数对多边形的边进行排序,保证边表中每个桶中的边是有序的。同时定义一个creat_edge_table()函数,该函数需要多边形的顶点信息作为参数传入,并返回一个边表指针。

②初始化有效边表AET。从ET表中取出第一个不为空的桶与AET表合并。

为了初始化AET表,可以定义一个init_active_table()函数,该函数传入边表指针作为形参,返回一个有效边表指针。

③从AET表中取出交点进行填充。

填充时设置一个布尔值b(初值为假),令指针从有效边表的第一个结点(也就是扫描线与有效边的交点)开始遍历。每访问一个结点,把b取反一次。若b

为真,则把从当前结点的x值开始(设为x

1)到下一结点的x值结束(设为x

2

)的

区间[x

1, x

2

]用多边形色填充。填充时为了避免多边形区域扩大化,需要对区间边

界进行如下处理:

若x是整数,则按“左闭右开”的原则处理,即左边界上的x(x

1

)不变,右

边界上的x(x

2)减1;若x不是整数,左边界上的x(x

1

)向右取整,右边界上的

x(x

2

)向左取整。

④更新AET表。

设当前AET表中扫描线为y,首先更新扫描线为y=y+1,然后删除AET表中所

有y

max =y的边结点;再根据x

i+1

=x

i

+1/k计算并修改AET表中各边结点的x坐标,同

时合并ET表对应于扫描线y的桶中的边,按次序插入到AET表中,形成新AET表。此步骤满足多边形的“下闭上开”原则。

此过程用到自定义的函数delete_edge()、add_edge()、update_active_table()。

⑤判断AET表是否为空。若为空,则结束;否则转到③

3.2 有效边表算法程序流程图

四、测试结果

为了便于观察多边形的填充,本程序将像素点进行放大处理,400 x 300的分辨率投影到20 x 15,并绘制出网格,使用OpenGL画出多边形的边框。使用了Sleep()函数来延时生成像素点,并且每填充一个像素点刷新一次,给人动态直观的感受。

①在不处理边界的情况下,如下图所示,多边形的区域可能会扩大化。

②对边界进行处理后,结果如下:

③为了验证改进的有效边表填充算法,现将本程序的像素大小恢复为1:1,按

比例扩大多边形的顶点坐标,测试结果如下:

从上图可以看出填充过后的多边形与原多边形P0P1P2P3P4P5P6的形状一致,该算法验证通过。

④测试其他多边形

长方形:

三角形:

五角星:

从以上结果来看,该算法基本得到完美实现。而程序的执行时间来看,生成边表的时间(包括分配内存、对桶中的结点进行排序等)远比填充像素点的时间要长。因此,该算法的效率虽然很高,但对于表的维护和排序开销太大,它适合软件实现而不适合硬件实现。

五、总结

通过本次课程设计,我掌握了多边形的填充算法,了解了OpenGL的运行结构,熟悉了很多OpenGL的函数,对OpenGL编程也产生的浓厚的兴趣。同时也巩固了对计算机图形学知识的掌握,锻炼了我对手实验的能力,看清了自己的水平,认识到了自己的不足。

在本次课程设计中,存在一些不足之处。比如对边界的处理,课本上的说法模糊不清,在网上也没有找到相应的解答,我只能根据自己的理解来试着解决;这方面也存在没有及时和老师沟通的原因。从这一点上,我认识到理论和实践的差别,我们应该多实践才能真正掌握理论。

还有就是完全填充后的多边形,边缘有“锯齿”现象,不知道是我程序的原因还是算法的问题。或许对于多边形的填充算法还应该处理“锯齿”。

六、源代码

//源代码仅包含文件PolygonFilling.cpp

#include

#include

#include

#include

#define EPSILON 0.000001 //最小浮点数

//点结构体

struct Point

{

int x; //x坐标

int y; //y坐标

};

//线结构体

struct Line

{

Point high_point; //高端点

Point low_point; //低端点

int is_active; //是否为有效边,水平边(0),非水平边(1)

double inverse_k; //斜率k的倒数

};

//边结点

struct EdgeNode

{

double x; //扫描线与边交点的x坐标(边的低端点的x坐标)

int y_max; //边的高端点的y坐标ymax

double inverse_k; //斜率k的倒数

EdgeNode *next; //下一个边结点的指针

};

//有效边表

struct ActiveEdgeTable

{

int y; //扫描线y

EdgeNode *head; //边链表的头指针

};

//桶结点

typedef struct Bucket

{

int y; //扫描线y

EdgeNode *head; //边链表的头指针

Bucket *next; //下一个桶的指针

} EdgeTable;

int compare(Point p1, Point p2);

Line* create_lines(Point points[], int n);

Point get_lowest_point(Line lines[], int n);

Point get_highest_point(Line lines[], int n);

void swap(Line &l1, Line &l2);

void sort(Line lines[], int n);

EdgeTable* create_edge_table(Line lines[], int n);

ActiveEdgeTable* init_active_table(EdgeTable *edge_table);

void delete_edge(ActiveEdgeTable *active_table, int y_max);

void add_edge(ActiveEdgeTable *active_table, EdgeNode edge);

ActiveEdgeTable* update_active_table(ActiveEdgeTable *active_table, EdgeTable *edge_table);

void DrawPolygon(Point points, int n);

void DrawGrid(int x, int y);

void Fill(Point points[], int n);

void Initial();

void Display();

int main(int argc, char* argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(400, 300);

glutInitWindowPosition(100, 120);

glutCreateWindow("Polygon Filling");

glutDisplayFunc(Display);

Initial();

glutMainLoop();

return 0;

}

//比较2个点的高度

int compare(Point p1, Point p2)

{

if (p1.y > p2.y)

return 1;

else if (p1.y == p2.y)

return 0;

return -1;

}

//由点数组生成线段数组

Line* create_lines(Point points[], int n)

{

Line *lines = (Line*)malloc(n * sizeof(Line));

for (int i = 0; i < n; ++i)

{

Point p1 = points[i];

Point p2 = points[(i + 1) % n];

int result = compare(p1, p2);

if (result == 0)

lines[i].is_active = 0;

else

lines[i].is_active = 1;

lines[i].high_point = result > 0 ? p1 : p2;

lines[i].low_point = result < 0 ? p1 : p2;

lines[i].inverse_k = (double)(p2.x - p1.x) / (double)(p2.y - p1.y);

}

return lines;

}

//获取线数组中最低的端点

Point get_lowest_point(Line lines[], int n)

{

Point lowest_point = lines[0].low_point;

for (int i = 1; i < n; ++i)

{

Point low_point = lines[i].low_point;

if (compare(lowest_point, low_point) > 0)

lowest_point = low_point;

}

return lowest_point;

}

//获取线数组中最高的端点

Point get_highest_point(Line lines[], int n)

{

Point highest_point = lines[0].high_point;

for (int i = 1; i < n; ++i)

{

Point high_point = lines[i].high_point;

if (compare(highest_point, high_point) < 0)

highest_point = high_point;

}

return highest_point;

}

//交换2个Line对象

void swap(Line &l1, Line &l2)

{

Line temp = l1;

l1=l2;

l2= temp;

}

//对线数组进行排序

void sort(Line lines[], int n)

{

//先按低端点的y坐标进行升序排序

for (int i = 0; i < n; ++i)

{

int min_index = i;

for (int j = i + 1; j < n; ++j)

{

if (lines[j].low_point.y < lines[min_index].low_point.y)

min_index = j;

}

swap(lines[i], lines[min_index]);

}

//再将有序数组按低端点的x坐标升序排列,若x坐标相等,按inverse_k升序

for (int i = 0; i < n; ++i)

{

int min_index = i;

for (int j = i + 1; lines[j].low_point.y == lines[i].low_point.y; ++j) {

if (lines[j].low_point.x < lines[min_index].low_point.x)

min_index = j;

}

swap(lines[i], lines[min_index]);

if (i > 0 && lines[i].low_point.x == lines[i - 1].low_point.x)

{

if (lines[i].is_active == 1 && lines[i - 1].is_active == 1)

{

if (lines[i].inverse_k < lines[i - 1].inverse_k)

swap(lines[i], lines[i - 1]);

}

}

}

}

//创建一个边表

EdgeTable* create_edge_table(Line lines[], int n)

{

EdgeTable *edge_table = (EdgeTable*)malloc(sizeof(EdgeTable));

edge_table->head = NULL;

edge_table->next = NULL;

sort(lines, n);

Point lowest_point = get_lowest_point(lines, n);

Point highest_point = get_highest_point(lines, n);

EdgeTable *s = edge_table;

for (int i = lowest_point.y; i <= highest_point.y; ++i)

{

Bucket *bucket = (Bucket*)malloc(sizeof(Bucket));

bucket->y = i;

bucket->next = NULL;

bucket->head = (EdgeNode*)malloc(sizeof(EdgeNode));

bucket->head->next = NULL;

EdgeNode *p = bucket->head;

for (int j = 0; j < n; ++j)

{

if (lines[j].is_active == 0)

continue;

if (lines[j].low_point.y == i)

{

EdgeNode *q = (EdgeNode*)malloc(sizeof(EdgeNode));

q->x = lines[j].low_point.x;

q->y_max = lines[j].high_point.y;

q->inverse_k = lines[j].inverse_k;

q->next = NULL;

p->next = q;

p = q;

}

}

s->next = bucket;

s = bucket;

}

计算机图形学总结

第一章绪论 计算机图形学的基本概念 计算机图形学:是研究怎样用数字计算机生成、处理和显示图形的一门学科。 图形:计算机图形学的研究对象。 构成图形的要素:几何要素——几何属性(点、线、面、体) 非几何要素——视觉属性(明暗、灰度、色彩、纹理、透明性、线型、线宽) 表示图形的方法:点阵表示;参数表示 研究内容 计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法,构成了计算机图形学的主要研究内容。 图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。 计算机图形学的应用 图形用户界面;计算机辅助设计与制造(CAD/CAM);4 科学计算的可视化:CT; 真实感图形实时绘制与自然景物仿真;地理信息系统(GIS);Virtual Reality(虚拟现实、灵境);事务和商务数据的图形显示;地形地貌和自然资源的图形显示 过程控制及系统环境模拟;电子出版及办公自动化;计算机动画及广

告 计算机艺术;科学计算的可视化;工业模拟;计算机辅助教学 当前研究热点: 1.真实感图形实时绘制 2.野外自然景物的模拟3 与计算机网络技术的紧密结合 4 计算机动画 5 用户接口 6 计算机艺术 7 并行图形处理 所熟悉的图形软件包 图形软件的标准 GKS (Graphics Kernel System) (第一个官方标准,1977) PHIGS(Programmer’s Herarchical Iuteractive Graphics system) 一些非官方图形软件,广泛应用于工业界,成为事实上的标准 DirectX (MS) Xlib(X-Window系统) OpenGL(SGI) Adobe公司Postscript CAGD(Computer Aided Geometric Design) 图形系统的功能1.计算功能2.存储功能3.对话功能4.输入功能5.输出功能 图形输入设备 1 键盘和鼠标 2 跟踪球和空间球 3 光笔 4 数字化仪 5 触摸板 6 扫描仪

计算机图形学 有效边表填充算法实验报告

实验题目:实验二有效边表填充算法 1.实验目的: 设计有效边表结点和边表结点数据结构 设计有效边表填充算法 编程实现有效边表填充算法 2.实验描述: 下图1 所示多边形覆盖了12 条扫描线,共有7 个顶点和7 条边。7 个顶点分别为:P0(7,8),P1(3,12),P2(1,7),P3(3,1), P4(6,5), P5(8,1), P6(12,9)。在1024×768 的显示分辩率下,将多边形顶点放大为P0(500,400),P1(350,600),P2(250,350),P3(350,50), P4(500,250), P5(600,50), P6(800,450)。请使用有效边表算法填充该多边形。 图1示例多边形

图2 屏幕显示多边形 3.算法设计: (1)建立AET和BUCKET类; (2)初始化桶,并在建立桶结点时为其表示的扫描线初始化为带头结点的链表; (3)对每个桶结点进行循环,将桶内每个结点的边表合并为有效边表,并进行有效边表循环; (4)按照扫描线从小到大的移动顺序,计算当前扫描线与多边形各边的交点,然后把这些交点按X值递增的顺序进行排序,配对,以确定填充区间; (5)用指定颜色点亮填充区间内的所有像素,即完成填充工作。 4.源程序: 1)//AET.h class AET { public: AET(); virtual ~AET(); double x; int yMax; double k;//代替1/k AET *next; }; //AET..cpp AET::AET() {

} AET::~AET() { } 2) //Bucket.h #include "AET.h" class Bucket { public: Bucket(); virtual ~Bucket(); int ScanLine; AET *p;//桶上的边表指针 Bucket *next; }; // Bucket.cpp Bucket::Bucket() { } Bucket::~Bucket() { } 3)//TestView.h #include "AET.h"//包含有效边表类 #include "Bucket.h"//包含桶类 #define Number 7//N为闭合多边形顶点数,顶点存放在整型二维数组Point[N]中class CTestView : public CView { 。。。。。。。。。 public: void PolygonFill();//上闭下开填充多边形 void CreatBucket();//建立桶结点桶 void Et();//构造边表 void AddEdge(AET *);//将边插入AET表 void EdgeOrder();//对AET表进行排序

哈希表的设计与实现 课程设计报告

一: 需求分析 (2) 三: 详细设计(含代码分析) (4) 1.程序描述: (4) 2具体步骤 (4) 四调试分析和测试结果 (7) 五,总结 (9) 六.参考文献; (10) 七.致谢 (10) 八.附录 (11)

一: 需求分析 问题描述:设计哈希表实现电话号码查询系统。 基本要求 1、设每个记录有下列数据项:电话号码、用户名、地址 2、从键盘输入各记录,分别以电话号码和用户名为关键字建立哈希表; 3、采用再哈希法解决冲突; 4、查找并显示给定电话号码的记录; 5、查找并显示给定用户名的记录。 6、在哈希函数确定的前提下,尝试各种不同类型处理冲突的方法(至少 两种),考察平均查找长度的变化。 二: 概要设计 进入主函数,用户输入1或者2,进入分支选择结构:选1:以链式方法建立哈希表,选2:以再哈希的方法建立哈希表,然后用户输入用户信息,分别以上述确定的方法分别以用户名为检索以及以以电话号码为检索将用户信息添加到哈希表,.当添加一定量的用户信息后,用户接着输入用户名或者电话号码分别以用户名或者电话号码的方式从以用户名或电话号码为检索的哈希表查找用户信息.程序用链表的方式存储信息以及构造哈希表。 具体流程图如下所示:

三: 详细设计(含代码分析) 1.程序描述: 本程序以要求使用哈希表为工具快速快速查询学生信息,学生信息包括电话号码、用户名、地址;用结构体存储 struct node { string phone; //电话号码 string name; //姓名 string address;//地址 node *next; //链接下一个地址的指针 }; 2具体步骤 1. 要求主要用在哈希法解决冲突,并且至少尝试用两种方法解决冲突,定义两个指针数组存储信息node *infor_phone[MAX]; node *infor_name[MAX];前者以电话号码为关键字检索哈希表中的信息,后者以姓名为关键字检索哈希表中的信息 用链式法和再哈希法解决冲突: int hash(string key) //以姓名或者电话号码的前四位运算结果作为哈{ //希码 int result=1,cur=0,i; if(key.size()<=4) i=key.size()-1; else i=4; for(;i>=0;i--) { cur=key[i]-'0'; result=result*9+cur; } result%=(MOD); return result;

《计算机图形学》试卷及答案

一、填空题(每空0.5分,共 1 0 分) 1、 计算机图形学中的图形是指由点、线、面、体等 和明暗、灰度(亮度)、色 彩等 构成的,从现实世界中抽象出来的带有灰度、色彩及形状的图或形。 2、 一个计算机图形系统至少应具有 、 、输入、输出、 等 基本功能。 3、 常用的字符描述方法有:点阵式、 和 。 4、 字符串剪裁的策略包括 、 和笔划/像素精确度 。 5、 所谓齐次坐标就是用 维向量表示一个n 维向量。 6、 投影变换的要素有:投影对象、 、 、投影线和投影。 7、 输入设备在逻辑上分成定位设备、描画设备、定值设备、 、拾取设备 和 。 8、 人机交互是指用户与计算机系统之间的通信,它是人与计算机之间各种符号和动作 的 。 9、 按照光的方向不同,光源分类为: , , 。 10、从视觉的角度看,颜色包含3个要素:即 、 和亮度。 二、单项选择题(每题 2分,共 30 分。请将正确答案的序号填在 题后的括号内) 1、在CRT 显示器系统中,( )是控制电子束在屏幕上的运动轨迹。 A. 阴极 B. 加速系统 C. 聚焦系统 D. 偏转系统 2、分辨率为1024×1024的显示器需要多少字节位平面数为16的帧缓存?( ) A. 512KB B. 1MB C. 2MB D. 3MB 3、计算机图形显示器一般使用什么颜色模型?( ) A. RGB B. CMY C. HSV D. HLS 4、下面哪个不属于图形输入设备?( ) A. 键盘 B. 绘图仪 C. 光笔 D. 数据手套 5、多边形填充算法中,错误的描述是( )。 A. 扫描线算法对每个象素只访问一次,主要缺点是对各种表的维持和排序的耗费较大 B. 边填充算法基本思想是对于每一条扫描线与多边形的交点,将其右方象素取补 C. 边填充算法较适合于帧缓冲存储器的图形系统

计算机图形学课程设计报告

一、设计内容与要求 1.1、设计题目 算法实现时钟运动 1.2、总体目标和要求 (1)目标:以图形学算法为目标,深入研究。继而策划、设计并实现一个能够表现计算机图形学算法原理的或完整过程的演示系统,并能从某些方面作出评价和改进意见。通过完成一个完整程序,经历策划、设计、开发、测试、总结和验收各阶段,达到巩固和实践计算机图形学课程中的理论和算法;学习表现计算机图形学算法的技巧;培养认真学习、积极探索的精神。 (2)总体要求:策划、设计并实现一个能够充分表现图形学算法的演示系统,界面要求美观大方,能清楚地演示算法执行的每一个步骤。(3)开发环境:Viusal C++ 6.0 1.3、设计要求 内容: (1)掌握动画基本原理; (2)实现平面几何变换; 功能要求: (1)显示时钟三个时针,实现三根时针间的相互关系;

(2)通过右键菜单切换时钟背景与时针颜色; 1.4设计方案 通过使用OpenGL提供的标准库函数,综合图形学Bresenham画线和画圆的算法,OpenGL颜色模型中颜色表示模式等实现指针式时钟运动,并通过点击右键菜单实习时钟背景与时针颜色的转换。根据Bresenham画线和画圆的算法,画出时钟的指针和表盘。再根据OpenGL颜色模型定义当前颜色。设置当时钟运行时交换的菜单,运行程序时可变换时钟背景与时针的颜色。最后再设置一个恢复菜单恢复开始时表盘与指针的颜色。

二、总体设计 2.1、过程流程图

2.2、椭圆的中点生成算法 1、椭圆对称性质原理: (1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置; 通过上面分析可以得到实际上我们计算椭圆生成时候,只需要计算1/4个椭圆就可以实现对于所有点的生成了。 2、中点椭圆算法内容: (1)输入椭圆的两个半径r1和r2,并且输入椭圆的圆心。设置初始点(x0,y0)的位置为(0,r2); (2)计算区域1中央决策参数的初始值 p = ry*ry - rx*rx*ry + 1/4*(rx*rx); (3)在区域1中的每个Xn为止,从n = 0 开始,直到|K|(斜率)小于-1时后结束; <1>如果p < 0 ,绘制下一个点(x+1,y),并且计算 p = p + r2*r2*(3+2*x); <2>如果P >=0 ,绘制下一个点(x+1,y-1),并且计算 p = p + r2*r2*(3+2*point.x) - 2*r1*r1*(y-1) (4)设置新的参数初始值; p = ry*ry(X0+1/2)*(X0+1/2) + rx*rx*(Y0-1) - rx*rx*ry*ry; (5)在区域2中的每个Yn为止,从n = 0开始,直到y = 0时结束。 <1>如果P>0的情况下,下一个目标点为(x,y-1),并且计算 p = p - 2rx*rx*(Yn+1) + rx*rx;

计算机图形学实验二

太原工业学院

实验拓展:绘制颜色渐变的三角形和四边形。 void CTriangle::Draw(CDC* pDC)//画出来一个三角形 { pDC->MoveTo(point0.x,point0.y); pDC->LineTo(point1.x,point1.y); pDC->LineTo(point2.x,point2.y); pDC->LineTo(point0.x,point0.y); } void CTriangle::GouraudShader(CDC* pDC) { SortVertex();//point0点为y坐标最小的点,point1点为y坐标最大的点,point2点的y坐标位于二者之间。如果y值相同,取x最小的点//定义三角形覆盖的扫描线条数 int nTotalScanLine = point1.y - point0.y + 1; //定义span的起点与终点数组 SpanLeft = new CPoint2[nTotalScanLine];//跨度左边数组 SpanRight = new CPoint2[nTotalScanLine];//跨度右边数组 //判断三角形与P0P1边的位置关系,0-1-2为右手系 int nDeltz = (point1.x - point0.x) * (point2.y - point1.y) - (point1.y - point0.y) * (point2.x - point1.x);//点矢量叉积的z坐标 if(nDeltz > 0)//三角形位于P0P1边的左侧 { nIndex = 0; DDA(point0, point2, TRUE); DDA(point2, point1, TRUE); nIndex = 0; DDA(point0, point1, FALSE); }

数据结构课程设计哈希表设计问题复习过程

数据结构课程设计哈希表设计问题

目录 1 前言 (1) 2 需求分析 (1) 2.1 任务和要求 (1) 2.2 运行环境 (1) 2.3 开发工具 (1) 3 分析和设计 (2) 3.1 系统分析及设计思路 (2) 3.2 主要数据结构及算法 (2) 3.3 函数流程图 (2) (1)哈希表的创建及初始化流程图 (2) 5 课程设计总结 (13) 5.1 程序运行结果或预期运行结果 (13) 说明:输入的数为30个姓的拼音,查找的为“pan”,输出的如上图所示。 (14) 5.2 设计结论 (15) 参考文献 (15) 致谢 (15)

1 前言 从C语言产生到现在,它已经成为最重要和最流行的编程语言之一。在各种流行编程语言中,都能看到C语言的影子,如Java的语法与C语言基本相同。学习、掌握C语言是每一个计算机技术人员的基本功之一。 根据本次课程设计的要求,我设计小组将编写一个C语言程序来处理哈希表问题,通过这个程序,将针对自己的班集体中的“人名”设计一个哈希表,使得平均查找长度不超过R,完成相应的建表和查表程序。 2 需求分析 2.1 任务和要求 针对自己的班集体中的“人名”设计一个哈希表,使得平均查找长度不超过R,完成相应的建表和查表程序。 要求:假设人名为中国姓名的汉语拼音形式。待填入哈希表的人名共有30个,取平均查找长度的上限为2。哈希函数用除留余数法构造,用链表法处理冲突。 2.2 运行环境 (1)WINDOWS2000/XP系统 (2)Visual C++ 6.0编译环境或TC编译环境 2.3 开发工具 C语言

3 分析和设计 3.1 系统分析及设计思路 (1)创建哈希表 (2)姓名(结构体数组)初始化 (1)用除留余数法构建哈希函数 (2)用链表法处理冲突 (3)查找哈希表 在哈希表中进行查找,输出查找的结果和关键字,并计算和输出查找成功的平均查找长度 (4) 显示哈希表 显示哈希表的的格式: 3.2 主要数据结构及算法 定义结构体typedef struct hashtable创建哈希表 定义函数Hash_Init(HashTable ht)来对哈希表初始化 定义函数Hash_Insert(HashTable ht, Node *node)来为哈希表分配地址 定义函数Hash_Init(ht)输入30个名字 定义函数Hash_Create(HashTable ht)来求哈希表长度 定义函数hash_output(HashTable h)来输出哈希表 定义函数Hash_Link()构造链表函数 定义函数int hash_search(int h[],int key)查找输入的名字 3.3 函数流程图 (1)哈希表的创建及初始化流程图

计算机图形学复习课总结

绪论 1点阵法和参数法的概念。图形、图像的概念。 点阵法是用具有颜色信息的点阵来表示图形的一种方法,它强调图形由哪些点组成,并具有什么灰度或色彩。 参数法是以计算机中所记录图形的形状参数与属性参数来表示图形的一种方法。 通常把参数法描述的图形叫做图形(Graphics) 把点阵法描述的图形叫做图象(Image) 2 计算机图形学的概念? 计算机图形学是研究怎样用计算机表示、生成、处理和显示图形的一门学科。 3图形包括哪两方面的要素,试举例说明。 图形包括两方面的要素,其中有几何要素和非几何要素 1. 几何要素:点,线,面,体等; 2. 非几何要素:明暗,灰度,色彩等 4一个交互性的图形系统具有哪些功能? 5个功能:输入功能、存储功能、计算功能、输出功能和交互功能 5图形输出设备包括什么?常用的图形绘制设备有哪两种? 图形输出设备包括图形显示设备和图形绘制设备,常用的图形绘制设备有打印机和绘图仪。 6与计算机图形学相关的学科有哪些?各自研究的内容是什么?

计算机视觉:研究用计算机来模拟生物外显或宏观视觉功能的科学和技术图像处理:对图象进行各种加工以改善图象的视觉效果 C语言程序基础(课件中p17, p55-59,常用画图函数) 1已知画“王”的C语言程序(如下),要求改编一个画“田”字的程序,该字的字高和字宽均为50,字的左上角点坐标为(60, 80)。 #include "graphics.h" #include "conio.h" main() { int gdriver=DETECT,gmode; int x,y; initgraph(&gdriver,&gmode,“”); /*初始化图形系统*/ cleardevice(); /*清除图形屏幕*/ moveto(100,40); /*绝对移动光标*/ linerel(40,0); /*从当前位置按增量方式画线*/ x=getx(); y=gety(); moveto(x,y+20); linerel(-40,0); moverel(0,20); /* 以增量方式移动当前光标*/ linerel(40,0); moverel(-20,0); linerel(0,-40); getch(); closegraph(); /*关闭图形系统,返回文本模式*/ } 2画一个填充颜色的圆(画一个填充颜色的矩形,已知矩形的左下角(0,20),右上角坐标为(100,120)),圆心坐标(60,60),半径100,要求背景色为1号色(blue),圆的边界色为红色,填充色为Green,(函数:circle floodfill) #include "graphics.h"

计算机图形学课程设计-有效边表填充算法的实现

计算机图形学课程设计设计题目改进的有效边表算法对多边形的填充学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名刘柯 学生学号201213030112 任课教师梅占勇 设计(论文)成绩 教务处制 2015年9 月28 日

目录 一、设计内容与要求 (3) 1.1设计题目 (3) 1.2 设计内容 (3) 1.3 设计目标 (3) 二、总体设计 (3) 2.1 多边形的表示 (3) 2.2 x-扫描线算法 (4) 2.3 改进的有效边表算法 (4) 2.3.1 改进的有效边表算法 (4) 2.3.2 有效边表 (5) 2.3.3 边表 (6) 三、详细设计 (8) 3.1 改进的有效边表算法的实现 (8) 3.2 有效边表算法程序流程图 (9) 四、测试结果 (9) 五、总结 (15) 六、源代码 (15) 参考文献 (26)

一、设计内容与要求 1.1设计题目 用改进的有效边表算法实现多边形的填充 1.2 设计内容 使用OpenGL实现用改进的有效边表算法填充多边形 1.3 设计目标 参照课本上改进的有效边表算法的思想,实现该算法的C语言代码,并用该算法搭配OpenGL以像素点的方式绘制出给定顶点坐标的多边形。 二、总体设计 2.1 多边形的表示 在计算机图形学中,多边形有2种重要的表示方法:顶点表示和点阵表示。 顶点表示用多边形的顶点序列来刻画多边形,这种方法直观、几何意义强,占用内存少,应用普遍,但它没有明确指出哪些像素在多边形内,故不能直接用于面着色。 点阵表示用位于多边形内的像素的集合来刻画多边形。这种表示法虽然失去了许多重要的几何信息,但便于运用帧缓存表示图形,是面着色所需要的图形表示形式。 大多数图形应用系统采用顶点序列表示多边形,而顶点表示又不能直接用于显示,那么就必须有从多边形的顶点表示到点阵表示的转换,这种转换称为多边形的扫描转

哈希表设计-数据结构课程设计

实习6、哈希表设计 一、需求分析 1. 问题描述 针对某个集体(比如你所在的班级)中的“人名”设计一个哈希表,使得平均查找长度均不超过R,完成相应的建表和查表顺序。 2. 基本要求 假设人名为中国人姓名的汉语拼音形式。待填入哈希表的人名共有30个,取平均查找长度的上限为2。哈希函数用除留余数法构造,用伪随机探测再散列法处理冲突。 3. 测试数据 取读者周围较熟悉的30个人的姓名。 4. 实现提示 如果随机数自行构造,则应首先调整好随机函数,使其分布均匀。人名的长度均不超过19个字符(最长的人名如:庄双双(Zhuang Shuangshuang))。字符的取码方法可直接利用C 语言中的toascii函数,并可先对过长的人名先作折叠处理。 二、概要设计 ADT Hash { 数据对象D:D是具有相同特征的数据元素的集合。各数据元素均含有类型相同,可唯一标识数据元素的关键字。 数据关系R:数据元素同属一个集合。 InitNameTable() 操作结果:初始化姓名表。 CreateHashTable() 操作结果:建立哈希表。 DisplayNameTable() 操作结果:显示姓名表。 DisplayHashTable() 操作结果:显示哈希表。 FindName() 操作结果:查找姓名。 }ADT Hash 三、详细设计(源代码) (使用C语言) #include #include//time用到的头文件 #include//随机数用到的头文件 #include//toascii()用到的头文件 #include//查找姓名时比较用的头文件 #define HASH_LEN 50//哈希表的长度 #define P 47//小于哈希表长度的P #define NAME_LEN 30//姓名表的长度 typedef struct {//姓名表 char *py; //名字的拼音 int m; //拼音所对应的 }NAME; NAME NameTable[HASH_LEN]; //全局定义姓名表 typedef struct {//哈希表 char *py; //名字的拼音

计算机图形学课程总结教材

计算机图形学报告 前言 计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。 其从狭义上是来说是一种研究基于物理定律、经验方法以及认知原理,使用各种数学算法处理二维或三维图形数据,生成可视数据表现的科学。广义上来看,计算机图形学不仅包含了从三维图形建模、绘制到动画的过程,同时也包括了对二维矢量图形以及图像视频融合处理的研究。由于计算机图形学在许多领域的成功运用,特别是在迅猛发展的动漫产业中,带来了可观的经济效益。另一方面,由于这些领域应用的推动,也给计算机图形学的发展提供了新的发展机遇与挑战。 计算机图形学的发展趋势包括以下几个方面: 1、与图形硬件的发展紧密结合,突破实时高真实感、高分辨率渲染的技术难点; 2、研究和谐自然的三维模型建模方法; 3、利用日益增长的计算性能,实现具有高度物理真实的动态仿真; 4、研究多种高精度数据获取与处理技术,增强图形技术的表现; 5、计算机图形学与图像视频处理技术的结合; 6、从追求绝对的真实感向追求与强调图形的表意性转变。 1、三维物体的表示 计算机图形学的核心技术之一就是三维造型三维物体种类繁多、千变万化,如树、花、云、石、水、砖、木板、橡胶、纸、大理石、钢、玻璃、塑料和布等等。因此,不存在描述具有上述各种不同物质所有特征的统一方法。为了用计算机生成景物的真实感图形,就需要研究能精确描述物体特征的表示方法。根据三维物体的特征,可将三维物体分为规则物体和非规则物体两类。 三维实体表示方法通常分为两大类:边界表示和空间分割表示,尽管并非所有的表示都能完全属于这两类范畴中的某一类。边界表示(B-reps)用一组曲面来描述三维物体,这些曲面将物体分为内部和外部。边界表示的典型例子是多边形平面片和样条曲面。空间分割表示(Space-Partitioning)用来描述物体内部性质,将包含一物体的空间区域分割为一组小的、非重叠的、连续实体(通常是立方体)。三维物体的一般空间分割描述是八叉树表示。本章主要介绍三维物体的各种表示方法及其特点。

计算机图形学实验有效边表填充算法

实验二2-2 一、实验题目 给定四个点绘制图4-44所示的不同转角的两个正方形,使用有效边表算法进行填充,填充效果如图4-45所示,注意采用“左闭右开”和“上闭下开”的原则,使得每个正方形的右边界和下边界没有填充。 二、实验思想 有效边表填充算法通过维护边表和有效边表,避开了扫描线与多边形所有边求交的复杂运算。填充原理是按照扫描线从小到大的移动顺序,计算当前扫描线与有效边的交点,然后把这些交点按x值递增的顺序进行排序、配对,以确定填充区间,最后用指定颜色填充区间内的所有像素,即完成填充工作。 三、实验代码 void CTestView::GetMaxX()//获得屏幕宽度 { CRect Rect; GetClientRect(&Rect); MaxX=Rect.right; } void CTestView::GetMaxY()//获得屏幕高度 { CRect Rect; GetClientRect(&Rect); MaxY=Rect.bottom; } void CTestView::ReadPoint()//读入点表函数 { //设置第一个正方形的4个顶点 int a=160; P1[0]=CP2(MaxX/4-a,MaxY/2+a);//P0 P1[1]=CP2(MaxX/4+a,MaxY/2+a);//P1 P1[2]=CP2(MaxX/4+a,MaxY/2-a);//P2 P1[3]=CP2(MaxX/4-a,MaxY/2-a);//P3 //设置第二个正方形的4个顶点

int b=ROUND(sqrt(2)*a); P2[0]=CP2(3*MaxX/4,MaxY/2+b);//P0 P2[1]=CP2(3*MaxX/4+b,MaxY/2);//P1 P2[2]=CP2(3*MaxX/4,MaxY/2-b);//P2 P2[3]=CP2(3*MaxX/4-b,MaxY/2);//P3 } void CTestView::DrawRect(CDC *pDC,CP2 *P)//绘制正方形函数{ CP2 T; CLine line; for(int i=0;i<4;i++)//边循环 { if(i==0) { line.MoveTo(pDC,P[i]); T=P[0]; } else { line.LineTo(pDC,P[i]);; } } line.LineTo(pDC,T);//闭合 } void CTestView::OnMENUIFill() { // TODO: Add your command handler code here COLORREF FColor; CColorDialog ccd(RGB(255,0,0)); if(ccd.DoModal()==IDOK)//调用调色板选取色 { FColor=ccd.GetColor(); m_Red=GetRValue(FColor);//获得颜色的红色分量

数据结构课程设计哈希表

数据结构课程设计报告

课题四哈希表查找的设计 1. 任务和功能要求 设哈希表长为20,用除留余数法构造一个哈希函数,以开放定址法中的线性探测再散列法作为解决冲突的方法,编程实现哈希表查找、插入和建立算法。 2. 需求分析 用户输入20个以内的数字存储在哈希表中,并可以在表中查找关键字。3.概要设计 typedef struct { int *key; //关键字 int count; //表长 }HashTable; int creat(HashTable *T) //初始化哈希表 程序调用关系如下: 主函数模块 哈希表初始化模块查询模块 插入模块 4. 详细设计 #include #include

#include #include typedef struct { int *key; //关键字 int count; //表长 }HashTable; int search(HashTable *T,int k) //初始化哈希表 { int a; a=k%13; while(a<20) { if(T->key[a]==k) break; a++; } if(a<20) return a; else return 0; } void insert(HashTable *T,int k) { int i,j; i=search(T,k); if(i!=0) printf(" 关键字已存在于位置%d",i); else { j=k%13; while(j<20) { if(T->key[j]==0) { T->key[j]=k;break; } else j++; } } }

计算机图形学课程设计报告

计算机图形学 课程设计报告 设计课题: 专业班级: 学号: 学生姓名: 指导教师: 设计时间:2018.12.06

中南林业科技大学涉外学院理工系计算机图形学课程设计任务书

指导教师:廖宁教研室主任: 2018年12月06 日注:本表下发学生一份,指导教师一份,栏目不够时请另附页。 课程设计任务书装订于设计计算说明书(或论文)封面之后,目录页之前。 目录 一.设计目的……………………………………………………………二.设计要求…………………………………………………………… 1.构建基础类…………………………………………………… 2.构建直线类…………………………………………………… 3.构建变换类…………………………………………………… 4.构建填充类…………………………………………………… 5.构建光照类……………………………………………………三.开发环境…………………………………………………………四.详细设计 五.源程序 六.程序运行效果图 七.总结

设计目的 ?培养对图形建模、变换、投影、消隐、光照原理的理解和应用。 ?培养图形类的编程能力。 ?培养计算机图形学应用软件开发的能力。 设计要求 深入研究计算机图形学的生成原理,设计算法实现具体的类。 1.构建基础类 实现CP2类绘制二维点;实现CP3类绘制三维点;实现CRGB 类处理RGB颜色;实现CVector类处理矢量。 2.构建直线类 实现CLine类绘制任意斜率的直线、实现CALine类绘制任意斜率的反走样直线、实现CCLine类绘制任意斜率的颜色渐变直线、实现

CACLine类绘制任意斜率的反走样颜色渐变直线。 3.构建变换类 实现CTransForm完成二维和三维图形变换。 4.构建填充类 实现CFill类使用有效边表算法填充多边形、实现CZBuffer类进行深度缓冲消隐,并使用Gouraud和Phong明暗处理填充图形面片。 5.构建光照类 实现CLight类设置点光源、实现CMaterial类设置物体材质、实现CLighting类对物体实施光照。 开发环境 Viusal C++ 6.0的MFC框架。 详细设计 1.利用函数Ellipse画出人物的脸,并用给脸填充颜色。再利 用Ara画出人物的嘴巴。CRect确定人物的眼睛,给眼睛填 充颜色。利用画笔画出人物的鼻子。 2.添加ddaline()成员函数,编写自定义的成员函数ddaline ()程序,编写OnDraw()函数,画出人物的脚和脚趾。 3.添加星星star()成员函数,编写自定义的成员函数star() 程序,确定五角星的位置、大小和颜色。

计算机图形学总结论文

计算机图形学总结 首先,感谢老师一个学期以来的教导,您的授课真的让我受益匪浅。您不仅教会了我们很多新颖的知识,还让我们对一些事情有了新的正确认识。 其次,通过一个学期的学习,经过老师细心的讲解,我对图形学这门课有了基础的认识,从您的课上我学到了不少知识,基本上对图形学有了一个大体的认识。上课的时候,您的PPT做的栩栩如生,创意新颖的FLASH就吸引了我的眼球,再加上您那详细生动的讲解,就让我对这门课产生了浓厚的兴趣,随着一节一节课的教学,您的讲课更加深深地吸引了我,并且随着对这门课越来越深入的了解更促使我产生了学好这门的欲望。您教会了我们怎们做基本知识,还教了我们不少的算法。听您的课可以说是听得津津有味。以下就是我对计算机图形学这门课的认识。 计算机图形学Computer Graphics简称CG是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法!计算机图形学主要研究两个问题:一个是如何在计算机中构造一个客观世界---几何(模型)的描述,创建和处理,一‘几何’一词统一表述之,二是如何将计算机中的虚拟世界用最形象的方式静态或动态的展示出来,几何的视觉再现,一‘绘制’一词统一表述之。由此可以说: 计算机图形学=几何+绘制 本课程让我了解了和掌握必要的图形学概念、方法和工具。智能CAD计算机美术与设计计算机动画艺术科学计算可视化。 一、图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。从处理技术上来看图形主要分为两类一类是基于线条信息表示的如工程图、等高线地图、曲面的线框图等另一类是明暗图也就是通常所说的真实感图形。计算机图形学一个主要的目的就是要利用计算机产生令人赏心悦目的真实感图形。为此必须建立图形所描述的场景的几何表示再用某种光照模型计算在假想的光源、纹理、材质属性下的光照明效果。所以计算机图形学与另一门学科计算机辅助几何设计有着密切的关系。事实上图形学也把可以表示几何场景

多边形填充

计算机图形学实验报告 班级: 学号:

姓名:

实验三多边形填充 一实验目的 1)掌握多边形的有效边表填充算法; 2)掌握边界像素处理原则; 3)掌握菱形图形的填充方法。 二实验要求 1)设计实现多边形填充类,可以设置顶点序列,调用填充函 数。 2)多边形填充采用有效边表填充算法进行实现,通过建立多 边形的桶表和边表数据,按照算法步骤依次扫描填充;3)调用设计实现的多边形填充类,对菱形线框进行颜色填充。三实验步骤 第1步:创建MFC应用程序框架 参照第一章的步骤建立空的MFC应用程序框架。 第2步:设计实现直线绘制类 设计实现多边形填充类 1)有效边表填充算法原理 在多边形填充过程中,常采用:“下闭上开”和“左闭右开”的原则对边界像素进行处理。有效边表填充算法通过维护“桶表和边表”数据,节省了有效数据存储空间,避免了扫描线与多

边形所有边求交的运算耗时。 图1 边表结点数据结构 有效边表填充算法实现步骤为: a)根据多边形的顶点序列,建立其“桶表和边表”数据。b)按照扫描线从小到大的移动顺序,取出当前扫描线对应桶的边表数据。 c)如果“桶表”数据已经取完,则填充结束;否则,继续后续填充操作。 d)将当前桶里的边表数据加入到有效边表,根据“下闭上开”的原则,删除已经到y max的无效边。 e)对当前扫描线的有效边表按x值递增的顺序进行排序、配对,以确定填充区间;根据“左闭右开”的原则,对两两配对的填充空间进行像素填充。 f)继续回到步骤b。 1)新建多边形填充类CFillPoly头文件

首先声明二维点类“CP2”、边表类“CAET”和桶表类“CBucket”,用于存储和传递多边形“桶表和边表”数据。多边形填充类中主要包括存放多边形顶点数据、有效边表结点指针和桶表结点指针的成员变量,以及创建桶表、边表、有效边表排序和填充多边形等成员函数。“FillPoly.h”头文件中具体类型声明代码如下: #pragma once class CP2 { public: CP2 (); virtual~CP2 (); CP2 (double,int);

哈希表设计数据结构课程设计

哈希表设计数据结构课程设计

实习6、哈希表设计 一、需求分析 1. 问题描述 针对某个集体(比如你所在的班级)中的“人名”设计一个哈希表,使得平均查找长度均不超过R,完成相应的建表和查表顺序。 2. 基本要求 假设人名为中国人姓名的汉语拼音形式。待填入哈希表的人名共有30个,取平均查找长度的上限为2。哈希函数用除留余数法构造,用伪随机探测再散列法处理冲突。 3. 测试数据 取读者周围较熟悉的30个人的姓名。 4. 实现提示 如果随机数自行构造,则应首先调整好随机函数,使其分布均匀。人名的长度均不超过19个字符(最长的人名如:庄双双(Zhuang Shuangshuang))。字符的取码方法可直接利用C语言中的toascii函数,并可先对过长的人名先作折叠处理。 二、概要设计 ADT Hash { 数据对象D:D是具有相同特征的数据元素的集合。各数据元素均含有类型相同,可唯一标识数据元素的关键

字。 数据关系R:数据元素同属一个集合。 InitNameTable() 操作结果:初始化姓名表。 CreateHashTable() 操作结果:建立哈希表。 DisplayNameTable() 操作结果:显示姓名表。 DisplayHashTable() 操作结果:显示哈希表。 FindName() 操作结果:查找姓名。 }ADT Hash 三、详细设计(源代码) (使用C语言) #include #include//time用到的头文件 #include//随机数用到的头文件 #include//toascii()用到的头文件 #include//查找姓名时比较用的头文件#define HASH_LEN 50//哈希表的长度

《计算机图形学》有序边表填充算法

实验报告 一、实验目的 1、掌握有序边表算法填充多边形区域; 2、理解多边形填充算法的意义; 3、增强C语言编程能力。 二、算法原理介绍 根据多边形内部点的连续性知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。所以,对所有的扫描线填充入点到出点之间所有的点就可填充多边形。 判断扫描线上的点是否在多边形之内,对于一条扫描线,多边形的扫描转换过程可以分为四个步骤: (1)求交:计算扫描线与多边形各边的交点; (2)排序:把所有交点按x值递增顺序排序; (3)配对:第一个与第二个,第三个与第四个等等;每对交点代表扫描线与多边形的一个相交区间; (4)着色:把相交区间内的象素置成多边形颜色,把相交区间外的象素置成背景色。 p1,p3,p4,p5属于局部极值点,要把他们两次存入交点表中。如扫描线y=7上的交点中,有交点(2,7,13),按常规方法填充不正确,而要把顶点(7,7)两次存入交点表中(2,7,7,13)。p2,p6为非极值点,则不用如上处理。

为了提高效率,在处理一条扫描线时,仅对与它相交的多边形的边进行求交运算。把与当前扫描线相交的边称为活性边,并把它们按与扫描线交点x坐标递增的顺序存放在一个链表中,称此链表为活性边表(AET)。 对每一条扫描线都建立一个与它相交的多边形的活性边表(AET)。每个AET的一个节点代表一条活性边,它包含三项内容 1.x -当前扫描线与这条边交点的x坐标; 2.Δx -该边与当前扫描线交点到下一条扫描线交点的x增量; 3.ymax -该边最高顶点相交的扫描线号。 每条扫描线的活性边表中的活性边节点按照各活性边与扫描线交点的x值递增排序连接在一起。 当扫描线y移动到下一条扫描线y = y+1时,活性边表需要更新,即删去不与新扫描线相交的多边形边,同时增加与新扫描线相交的多边形边,并根据增量法重新计算扫描线与各边的交点x。 当多边形新边表ET构成后,按下列步骤进行: ①对每一条扫描线i,初始化ET表的表头指针ET[i]; ②将ymax = i的边放入ET[i]中; ③使y =多边形最低的扫描线号; ④初始化活性边表AET为空; ⑤循环,直到AET和ET为空。 ●将新边表ET中对应y值的新边节点插入到AET表。 ●遍历AET表,将两两配对的交点之间填充给定颜色值。 ●遍历AET表,将 ymax= y的边节点从AET表中删除,并将ymax> y的各边节点 的x值递增Δx;并重新排序。 ●y增加1。 三、程序源代码 #include "graphics.h" #define WINDOW_HEIGHT 480 #define NULL 0 #include "alloc.h" #include "stdio.h" #include "dos.h" #include "conio.h" typedef struct tEdge /*typedef是将结构定义成数据类型*/ { int ymax; /* 边所交的最高扫描线号 */

相关文档
最新文档