充分条件和必要条件含区分和例题

充分条件和必要条件含区分和例题
充分条件和必要条件含区分和例题

充分条件和必要条件

解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。(A可以推导出B,且B也可以推导出A)

例如: 1. A=“三角形等边”;B=“三角形等角”。 2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。 3. A=“付了足够的钱”;B=“能买到商店里的东西”。例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论

由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)

由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件

由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件

由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件

简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件

如果能由结论推出条件,但由条件推不出结论。此条件为必要条件

如果既能由结论推出条件,又能有条件推出结论。此条件为充要条件

例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,

天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件

1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。充分条件是事物运行发展的必然性条件,体现必然性的哲学涵。如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。事物的运行发展有其规律性,必要性条件是指一些外在或在的条件符合该

事物的运行规律的要求,但不能推动事物规律的最终运行。如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

集合表示:设A、B是两个集合,

A是B的充分条件,即满足A的必然满足B,表示为A包含于B;

A是B的必要条件,即满足B的必然满足A,表示为A包含B,或B包含于A;

A是B的充分不必要条件,即A是B的真子集,表示为A真包含于B;

A是B的必要不充分条件,即B是A的真子集,表示为A真包含B,或者B真包含于A;

A是B的充分必要条件,即A、B等价,表示为A=B。

其中包含与真包含的符号打不出,自己写吧。不过这种表示方法非常的不严格,实际中A、B两集合的元素未必是同一各类,而只是有一定的逻辑关系,所以这种表示法也只能在特别的情况下适用。

例题:例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]

A.充分但不必要条件B.必要但不充分条件

C.充要条件D.既不充分也不必要条件

分析利用韦达定理转换.

解∵x1,x2是方程x2+5x-6=0的两根,

∴x1,x2的值分别为1,-6,

∴x1+x2=1-6=-5.

因此选A.

说明:判断命题为假命题可以通过举反例.

例2 p是q的充要条件的是

[ ]

A.p:3x+2>5,q:-2x-3>-5

B.p:a>2,b<2,q:a>b

C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形

D.p:a≠0,q:关于x的方程ax=1有惟一解

分析逐个验证命题是否等价.

解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;

对B.p q但q p,p是q的充分非必要条件;

对C.p q且q p,p是q的必要非充分条件;

说明:当a=0时,ax=0有无数个解.

例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A 成立的

[ ]

A.充分条件B.必要条件

C.充要条件D.既不充分也不必要条件

分析通过B、C作为桥梁联系A、D.

解∵A是B的充分条件,∴A B①

∵D是C成立的必要条件,∴C D②

由①③得A C④

由②④得A D.

∴D是A成立的必要条件.选B.

说明:要注意利用推出符号的传递性.

例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的

[ ]

A.充分不必要条件 B.必要不充分条件

C.充要条件D.既不充分也不必要条件

分析先解不等式再判定.

解解不等式|x-2|<3得-1<x<5.

∵0<x<5 -1<x<5,但-1<x<5 0<x<5

∴甲是乙的充分不必要条件,选A.

说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.

当且仅当A=B时,甲为乙的充要条件.

例5 设A、B、C三个集合,为使A (B∪C),条件A B是

[ ]

A.充分条件B.必要条件

C.充要条件D.既不充分也不必要条件

分析可以结合图形分析.请同学们自己画图.

∴A (B∪C).

但是,当B=N,C=R,A=Z时,

显然A (B∪C),但A B不成立,

综上所述:“A B” “A (B∪C)”,而

“A (B∪C)” “A B”.

即“A B”是“A (B∪C)”的充分条件(不必要).选A.

说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:

(1)p:ab=0,q:a2+b2=0;

(2)p:xy≥0,q:|x|+|y|=|x+y|;

(3)p:m>0,q:方程x2-x-m=0有实根;

(4)p:|x-1|>2,q:x<-1.

其中p是q的充要条件的有

[ ]

A.1组 B.2组

C.3组 D.4组

分析使用方程理论和不等式性质.

解 (1)p是q的必要条件

(2)p是q充要条件

(3)p是q的充分条件

(4)p是q的必要条件.选A.

说明:ab=0指其中至少有一个为零,而a2+b2=0指两个都为零.

分析将前后两个不等式组分别作等价变形,观察两者之间的关系.

例8 已知真命题“a≥b c>d”和“a<b e≤f”,则“c≤d”是“e≤f”的________条件.分析∵a≥b c>d(原命题),

∴c≤d a<b(逆否命题).

而a<b e≤f,

∴c≤d e≤f即c≤d是e≤f的充分条件.

答填写“充分”.

说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.

例9 ax2+2x+1=0至少有一个负实根的充要条件是

[ ]

A.0<a≤1 B.a<1

C.a≤1 D.0<a≤1或a<0

分析此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a=1时,方程有负根x=-1,当a=0时,x=

当a≠0时

综上所述a≤1.

即ax2+2x+1=0至少有一个负实根的充要条件是a≤1.

说明:特殊值法、排除法都是解选择题的好方法.

例10 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p 分别是q的什么条件?

分析画出关系图1-21,观察求解.

解 s是q的充要条件;(s r q,q s)

r是q的充要条件;(r q,q s r)

p是q的必要条件;(q s r p)

说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.

例11 关于x的不等式

分析化简A和B,结合数轴,构造不等式(组),求出a.

解 A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0}

B={x|2≤x≤3a+1}.

B={x|3a+1≤x≤2}

说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.

要条件?

分析将充要条件和不等式同解变形相联系.

说明:分类讨论要做到不重不漏.

例13 设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α,β均大于1的什么条件?

分析把充要条件和方程中根与系数的关系问题相联系,解题时需

∴q p.

上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.

说明:本题中的讨论容在二次方程的根的分布理论中常被使用.

例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么

[ ]

A.丙是甲的充分条件,但不是甲的必要条件

B.丙是甲的必要条件,但不是甲的充分条件

C.丙是甲的充要条件

D.丙不是甲的充分条件,也不是甲的必要条件

分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.

分析2:画图观察之.

答:选A.

说明:抽象命题之间的逻辑关系通常靠画图观察比较方便

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为 },,{21 p p .又事件A 有0)( A P ,这时 ,2,1,) () }({)|(| i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 A i i i p x | 则称 A i i i p x A X E |]|[ . 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)( A P ,且X 在条件A 之

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

数学期望在生活中地应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

§条件数学期望和条件方差

§2.6条件分布与条件数学期望 一、条件分布 我们知道随机变量的分布列全面地描述了随机变量的统计规律,如果要同 时研究两个随机变量,就需要他们的联合分布列,设二维随机变量()的可 能取值为()i.j=1.2…,为了计算联合分布列,利用乘法公式: 其中是表示在“”的条件下””的条件概率,常常记作 j=1.2…容易验证这时有 1) i=1.2… 2) 这说明具有分布列的两个性质, 事实上因而确是一个分布列,它描述了在””的条件 下,随机变量的统计规律,当然一般来说这个分布列与原来的分布列 不同,称为条件分布列。 如果()的联合分布列已知,则边际分布列为: 从而 由对称性,同时还有 反过来,如果已知,(或,)也可求得联合分布列 。 设与相互独立 显然当与相互独立时,。 二、条件数学期望 既然是一个分布列,当然可以对这个分布列求数学期望; 1、定义 定义:设随机变量在“”条件下的条件分布列为,

又,则称为在“”条件下的条件数学期望,简称条件期望,记作。 例1:某射手进行射击,每次击中目标的概率为p(0

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

数学期望理论及其应用

目录 1.摘要 (2) 2.数学期望理论简述 (3) 3.数学期望理论的应用 (5) 3.1在证明等式和不等式中的应用 (5) 3.2在投资理财问题中的应用 (7) 3.3在天气预测问题中的应用 (8) 3.4在求职决策问题中的应用 (8) 3.5在委托代理问题中的应用 (9) 3.6在法律纠纷问题中的应用 (10) 4.结语 (11) 5.参考文献 (12)

数学期望理论及其应用 吴庆安,合肥师范学院 摘要:数学期望是数学概率统计中一个重要的数字特征,在研究理论和解决实际问题方面有着广泛的应用。本文通过列举一些理论上和现今实际生活中相关的问题,同时利用数学期望的相关理论进行解决,从而达到理论联系实际的目的。 关键词:概率统计;数学期望;决策 The Mathematic Expectation Theory and its Application Wu Qing An,He Fei Teacher’s College Abstract:The mathematic expectation is an important digital characteristic in the probability statistics, which has the widespread application in the fundamental research and the actual problem solution aspect. This article through enumerates some theoretically the question which is related with the nowadays practical life, simultaneously carries on the solution using mathematic expectation's correlation theories, thus achieves the apply theory to reality the goal. Key words:Probability statistics;Mathematic expectation;Decision-making

简述数学期望的性质及其应用

编号:08005110111 南阳师范学院2012届毕业生 毕业论文(设计) 题目:简述数学期望的性质及其应用 完成人:xxx 班级:2008-01 学制:4年 专业:数学与应用数学 指导教师:xxx 完成日期:2012-03-31

目录 摘要 (1) 关键词 (1) 0引言 (1) 1 数学期望的定义 (1) 2 数学期望的性质 (1) 2.1一维随机变量数学期望的性质 (1) 2.2多维随机变量数学期望的性质 (3) 3数学期望的应用 (5) 3.1数学期望在农业中的应用 (5) 3.2数学期望在生活中的应用 (7) 3.3数学期望在经济中的应用 (9) 3.4数学期望在数学中的应用 (11) 参考文献 (12) Abst ract (12)

简述数学期望的性质及其应用 作者:xxx 指导老师:xxx 摘要:在概率论及数理统计中,数学期望是随机变量最重要的数字特征之一,许多随机变量的分布都与他的期望有关,文章解析了数学期望在日常生活中的应用,如求职决策问题,投资问题,彩票问题等, 从而不断激发学生学习数学的积极性和主动性,让学生在兴趣中学习探索,并应用于生活,让数学改变生活. 关键词:随机变量;风险概率;数学期望 0引言 概率论同其他数学分支一样,是在一定的社会条件下,通过人类 的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广 泛应用于各个领域,已成为一棵参天大树,枝繁叶茂,硕果累累.人 类认识到随即现象的存在是很早的,从太古时代起,估计各种可能性 就一直是人类的一件要事.早在古希腊,哲学家就已经注意到必然性 和偶然性问题;我国春秋时代也已有可考词语(辞海);即使提到数 学家记事日程上的可考记载,也至少可推到中世纪.数学期望是概率 论早期发展中就已产生的一个概念,当时研究的概率问题大多于赌博 有关.通过对数学期望定义和性质的深刻理解和领悟,明白了数学期 望在当今乃至未来的重要作用。列举一些生产和生活实际中具有重要 指导意义的问题,加深对数学期望的性质及其应用的理解,对于学生 学习数学期望具有启发意义,结合生活实际和当今金融社会动荡不安 的情形,运用数学期望的性质综合分析,解决问题. 1数学期望的定义 数学期望是最基本的数学特征之一,它反映随即变量平均取值的 大小,又称期望或均值,随即变量可分为连续型随即变量和离散型随 即变量,其定义如下: 广义定义:一次随机抽样中所期望的某随机变量的取值.

数学期望在实际生活中的应用

摘要 在现代快速发展的社会中,数学期望作为一门重要的数学学科,它是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述数学期望在实际生活中的应用包括经济决策、彩票抽奖、求职决策、医疗、体育比赛等方面的一些实例,体现出数学期望在实际生活中颇有价值的应用。通过探讨数学期望在实际生活中的应用,以起到让大家了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。所谓的求数学期望其实就是去求随机变量的以概率为权数的加权平均值,而平均值这一概念又是我们在实际应用中最常用的一个指标,在预测中使用是很具有科学性的。 关键词:数学期望随机变量性质实际应用

Abstract In the rapid development of modern society, the mathematical expectation as an important mathematical subject, it is one of the important digital features of random variables, is also one of the basic characteristics of random variables. Through several examples, in this paper, the mathematical expectation in the practical application of life including economic decision-making, lottery tickets, job, health, sports, etc. In some instances, manifests the mathematical expectation valuable application in real life. Through discuss the application of mathematical expectation in real life to play let everybody understand the knowledge and practice closely linked human rich background, personal experience "mathematics really useful". So-called mathematical expectation is to actually ask for random variables of the probability weighted average of the weight, and mean value in actual application of this concept is our one of the most commonly used indicators, used in the forecast, it is very scientific. Key words: Mathematical Expectation; Stochastic Variable; quality; Practical Application

条件期望的性质与应用

条件期望的性质和应用 摘要:条件数学期望(以下简称条件期望)是随机分析理论中十分重要的概念,在理论实际上都有很重要的应用。本文首先分析了条件期望的几种定义和性质,进而研究了条件期望的求法,最后举例分析条件期望在实际问题中的应用。 关键词:条件期望;定义;性质;应用 条件期望是现代概率体系中的一个重要概念。近年来,随着人们对随机现象的不断观察和研究,条件期望已经被广泛的利用到日常生活中,尤其值得注意的是条件期望在最优预测中的应用。现代概率论总是从讲述条件期望开始的。鉴于此,在分析条件期望的几种定义时,通过比较它们的优缺点,使初学者在充分认识条件期望的基础上,由非条件期望的性质学习顺利过渡到条件期望性质的学习,实现知识的迁移。通过研究条件期望的求法,从而提高计算能力与解题技巧。条件期望不仅在数学上有重要的价值与意义,还在生物、统计、运筹和经济管理等方面有着重要的作用与贡献。总之,研究条件期望的性质和应用不仅有助于学生对数学的学习,而且还有利于进一步探索科学的其它领域。 1 条件期望的几种定义 1.1 条件分布角度出发的条件期望定义 从条件分布的角度出发,条件分布的数学期望称为条件期望。 由离散随机变量和连续随机变量条件分布的定义,引出条件期望的定义。 定义1 离散随机变量的条件期望 设二维离散随机变量(X,Y)的联合分布列为(),ij j i p P X x Y y ===, 1,2,,1,2,.i j =???=???,对一切使()10j j ij i P Y y p p +∞ ?====>∑的j y ,称 ()() |,(),1,2,j ij i i j i j j j P X x Y y p p P X x Y y i p P Y y ?====== = =???= 为给定j Y y =条件下X 的条件分布列。

条件数学期望的定义归纳及其应用

第22卷第4期2019年7月 高等数学研究 STUDIES IN COLLEGE MATHEMATICS Vol.22,No.4 July,2019 doi:10.3969/j.issn.1008-1399.2019.04.024 条件数学期望的定义归纳及其应用 冯明勇 (天津财经大学珠江学院,天津301811) 摘要给出条件数学期望的一般定义、经典定义6及随机变量关于一般5代数的条件数学期望的几何定义,并举例说明条件数学期望在均值回归中的应用. 关键词条件数学期望&最佳预测;最佳均方逼近 中图分类号O211文献标识码A文章编号1008-1399(2019)04-0091-02 Definition and Application of Conditional Expectation FENG Mingyong (Pearl River College,Tianjin University of Finance and Economics,Tianjin301811) Abstract This paper discusses the general definition,classic definition,and geometric definition of the conditional expectation.Two examples are given for the application of the conditional expectation in the mean reversion. Keywords conditional expectation,optimum prediction,square approximation 1条件数学期望的定义 定义1设X是一随机变量,事件A有P(A) >0,称E)A*-#4,P(X=(; )6(,-1,2,…为一维离散型随机变量X在条件(下的条件数学期望? 称E[X A*-j—4f4|A)dz为一维连续型随机变量X在条件(下的条件数学期望?其中f4\A)为随机变量X在条件(之下的条件分布概率密度? 当这里的随机事件(变成另一随机变量Y时,条件数学期望就变成以下便于计算的定义方式?定义2称E(X|Y=y)=#4i P(.X-4i Y=7为一维离散型随机变量x'y==条件下的条件数学期望?称ELX\Y==*- 收稿日期:2018-12-15修改日期:2019-01-08 作者简介:冯明勇0981—),女,山东聊城人,硕士,讲师,研究方向:应用数学,Email:tjfengmingyong@https://www.360docs.net/doc/1d1305680.html, £4*x\y4|=)dz连续型随机变量X'Y==条件 下的条件数学期望.其中f x\Y4|=)为随机变量X 在条件Y==之下的条件分布密度函数? 下面给出随机变量关于一般.代数的条件数学期望的几何定义: 定义3设随机变量(fx|Y(4=)可测函数)Y "L2(0,F,P),F1是F的一子.代数,用E f—(?)表示L z(n,F,P)到闭子空间L z(n,F,P|f t)上的正交投影算子,称E f$(?)为Y关于子.代数F t的条件数学期. 定义3中,LJ(O,F,P|f t)与L⑵0,F,P)都是Hilbert空间,前者为后者的闭子空间,Hilbert空间上的正交投影定理保证E f:(?)的存在唯一性[1]. 2条件数学期望在回归分析中的应用 条件数学期望主要应用在回归分析的最优估计或者预测中,应用比较广泛的结论为“均方误差最小”定理,其表述形式及如何应用解决估计或者预测问题,本文以下面两种形式展开讨论? 命题1设有随机变量X与Y,g(,4)是Borel函

相关文档
最新文档