平面解析几何初步(知识点 例题)

平面解析几何初步(知识点 例题)
平面解析几何初步(知识点 例题)

个性化简案

个性化教案(真题演练)

个性化教案

平面解析几何初步

知识点一:直线与方程

1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在.

2. 直线的斜率:αtan ),(211

21

2=≠--=

k x x x x y y k .(111(,)P x y 、222(,)P x y ).

3.直线方程的五种形式

【典型例题】

例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2

3.④ 当m = 时,直线与x

轴平行.⑤当m = 时,直线过原点.

【举一反三】

1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150°

2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3

3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )

A .7

B .-

77 C .77

D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 .

例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上.

练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.

例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2

3

++x y 的最大值与最小值.

变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么x

y

的最大值为( )

A.2

1

B.

3

3 C.

2

3 D.3

例4.:已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.

练习:直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA ?取最小值时,求直线l 的方程.

知识点二:直线与直线的位置关系

一:两条直线的平行和垂直:

(1)若111:l y k x b =+,222:l y k x b =+

① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有

① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 二:点到直线的距离、直线与直线的距离

1. 点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2

2

00B

A C

By Ax d +++=

2. 两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2

2

21B

A C C d +-=.

三:两条直线的交角公式

若直线l 1的斜率为k 1,l 2的斜率为k 2,则 1.直线l 1到l 2的角θ满足21121tan k k k k +-=

θ.2.直线l 1与l 2所成的角(简称夹角)θ满足2

11

21tan k k k k +-=θ.

四:两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.

五:五种常用的直线系方程.

① 过两直线l 1和l 2交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含l 2). ② 与直线y =kx +b 平行的直线系方程为y =kx +m (m≠b). ③ 过定点(x 0, y 0)的直线系方程为y -y 0=k(x -x 0)及x =x 0.

④与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).

⑤与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).

【典型例题】

例1:已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,

(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.

练习:若直线l1:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分别相交?平行?垂直?重合?

例2:已知直线l经过两条直线l1:x+2y=0与l2:3x-4y-10=0的交点,且与直线l3:5x-2y+3=0的夹角

π,求直线l的方程.

4

练习:某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220

1.(米),OA=200(米),图中所示的山坡可视为直线l,且点P在直线l上,l与水平地面的夹角为α,tanα=

2试问,此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高)?

例3:直线y=2x是△ABC中∠C的平分线所在的直线,若A、B坐标分别为A(-4,2)、B(3,1),求点C的坐标并判断△ABC的形状.

练习:三条直线l1:x+y+a=0,l2:x+ay+1=0,l3:ax+y+1=0能构成三角形,求实数a的取值范围。

例4:设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA +为最小,并求出这个最小值.

练习:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.

知识点三:圆与方程

1. 圆心为C(a 、b),半径为r 的圆的标准方程为2

2

2

)()(r b y a x =-+-(0>r ). 2.圆的一般方程x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F>0),圆心为)2

,2(E

D --

,半径r =F E D r 42

1

22-+=

. 3.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的方程的充要条件是① 0≠=C A ; ② 0=B ;③ 042

2

>-+AF E D .

4. 过两圆的公共点的圆系方程:设⊙C 1:x 2+y 2+D 1x +E 1y +F 1=0,⊙C 2:x 2+y 2+D 2x +E 2y +F 2=0,则经过两圆公共点的圆系方程为(x 2+y 2+D 1x+E 1y+F 1)+λ(x 2+y 2+D 2x+E 2y+F 2)=0(1≠λ). 例1. 根据下列条件,求圆的方程.

(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x +10y +9=0上. (2) 经过P(-2,4),Q(3,-1)两点,并且在x 轴上截得的弦长为6.

练习:求过点A (2,-3),B (-2,-5),且圆心在直线x -2y -3=0上的圆的方程.

例2:已知圆x 2+y 2+x-6y+m=0和直线x+2y-3=0交于P ,Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径.

练习:已知圆C :(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆C 恒相交;

(2)求直线l 被圆C 截得的弦长的最短长度及此时的直线方程.

例3:知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.

(1)求P 点到直线3x+4y+12=0的距离的最大值和最小值;(2)求x-2y 的最大值和最小值; (3)求

1

2

--x y 的最大值和最小值.

练习:已知实数x 、y 满足方程x 2+y 2-4x+1=0.

(1)求y-x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.

例4:设圆满足:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。

练习:如图,图O 1和圆O 2的半径都等于1,O 1O 2=4,过动点P 分别作圆O 1和圆O 2的切线PM 、PN(M 、N 为切点),使得PM =2PN ,试建立平面直角坐标系,并求动点P 的轨迹方程.

知识点四:线与圆、圆与圆的位置关系

1.直线与圆的位置关系

将直线方程代入圆的方程得到一元二次方程,设它的判别式为△,圆心C 到直线l 的距离为d ,则直线与圆的位置关系满足以下关系:

相切?d =r ?△=0;相交? ? ;相离? ? 2.圆与圆的位置关系

设两圆的半径分别为R 和r(R≥r),圆心距为d ,则两圆的位置关系满足以下条件:

外离?d > R +r ;外切? ;相交? ;内切? ;内含? 。

O 1

O 2

N M

P

3. 圆的切线方程

(1)过圆2

22r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.

(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- . (3)过圆2

2

0x y Dx Ey F ++++=上的点),(00y x P 的切线方程为:

0000()()

022

D x x

E y y x x y y

F ++++++=. (4) 若P(0x ,0y )是圆222

x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200xx yy r +=

(5) 若P(0x ,0y )是圆222

()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB

的方程为2

00()()()()x a x a y b y b r --+--=

(6)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径, 即r d =,求出k ;或利用0=?,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =. 例1:过⊙:x 2+y 2=2外一点P(4,2)向圆引切线.

(1)求过点P 的圆的切线方程.(2)若切点为P 1、P 2求过切点P 1、P 2的直线方程.

【举一反三】

1. 已知点P(1,2)和圆C :022

2

2

=++++k y kx y x ,过P 作C 的切线有两条,则k 的取值范围是( )

A.k ∈R B.k <

3

32 C.23

03

k -

<< D.2323

33

k -

<<

2. 设集合A={(x,y)|x 2+y 2≤4},B={(x,y)|(x -1)2+(y -1)2≤r 2(r >0)},当A∩B=B 时,r 的取值范围是 ( ) A .(0, 2 -1) B .(0,1] C .(0,2- 2 ] D .(0, 2 ]

3. 若实数x 、y 满足等式(x-2)2

+y2

=3,那么

x

y

的最大值为( ) A.

2

1 B.

33 C.2

3 D.3

4. 过点M )2

3,3(--且被圆252

2

=+y x 截得弦长为8的直线的方程为 .

5. 圆心在直线x-y-4=0上,且经过两圆0342

2

=--+x y x 和0342

2

=--+y y x 的交点的圆的方程是 .

例2:求经过点A(4,-1),且与圆:x 2+y 2+2x -6y +5=0相切于点B(1,2)的圆的方程.

练习:求圆心在直线5x-3y=8上,且与坐标轴相切圆的标准方程.

错题汇编

1. 在棱长为a的正方体ABCD-A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()

A.

6

3a B.

6

6a C.

2

2a D.

1

2a

个性化作业

二次根式知识点总结

二次根式知识点总结 王亚平 1. 二次根式的概念 二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时, a 才有意义. 2. 二次根式的性质 1. 非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2 ≥=a a a 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:)0()(2 ≥=a a a 3. ? ? ?<-≥==)0() 0(2 a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方 根代替. 3. 最简二次根式和同类二次根式 1、最简二次根式: (1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或 2、同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式 4. 二次根式计算——分母有理化 1.分母有理化 定义:把分母中的根号化去,叫做分母有理化。 2.有理化因式:

两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下: ①单项二次根式:利用a a a =?来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。 ②两项二次根式:利用平方差公式来确定。如b a +与b a - ,b a + 与 b a - ,y b x a +与y b x a -分别互为有理化因式。 3.分母有理化的方法与步骤: ①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式; 5. 二次根式计算——二次根式的乘除 1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。 )0,0(≥≥? = b a b a ab 2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。 )0,0(≥≥= ? b a ab b a 3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。 )0,0(≥≥= b a b a b a 4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。 )0,0(≥≥= b a b a b a 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还 要考虑字母的取值范围,最后把运算结果化成最简二次根式. 6. 二次根式计算——二次根式的加减 二次根式的被开方数相同时是可以直接合并的,如若不同,需要先把二次根式化成最简二次根式,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。 1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。 2、二次根式的加减分三个步骤: ①化成最简二次根式; ②找出同类二次根式; ③合并同类二次根式,不是同类二次根式的不能合并

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全 1.二次根式:式子(≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)()2= (≥0);(2) 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. =·(a≥0,b≥0);(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 (2)、平方法 当时,①如果,则;②如果,则。 例1、比较与的大小。 例2、比较与的大小。 (3)、分母有理化法 通过分母有理化,利用分子的大小来比较。 例3、比较与的大小。

(4)、分子有理化法 通过分子有理化,利用分母的大小来比较。 例4、比较与的大小。 (5)、倒数法 例5、比较与的大小。 (6)、媒介传递法 适当选择介于两个数之间的媒介值,利用传递性进行比较。 例6、比较与的大小。 (7)、作差比较法 在对两数比较大小时,经常运用如下性质: ①;② 例7、比较与的大小。 (8)、求商比较法 它运用如下性质:当a>0,b>0时,则: ①;② 例8、比较与的大小。 二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”) (1)()2=- ();(2)=- () (3)(-)2=- ();(4)(2)2=2×=1 () 2.下面的计算中,错误 ..的是() A.=±0.03 B.±=±0.07 C.=0.15 D.-=-0.13 3.下列各式中一定成立的是() A.=+=3+4=7 B.=- C.(-)2= D.=1-= 4.()2-=________; 5.+(-)2=________.6.[-]·-6;

二次根式知识点总结及其应用

二次根式知识总结 一、基本知识点 1.二次根式的有关概念: (1)形如 的 式子叫做二次根式. (即一个 的算术平方根叫做二次根式 二次根式有意义的条件:被开方数大于或等于零 (2)满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; (3)几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。 2.二次根式的性质: (1) 非负性 3.二次根式的运算: 二次根式乘法法则 二次根式除法法则 二次根式的加减: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; ( 3)合并同类二次根式。 Ps:类似于合并同类项,关键是把同类二次根式合并。 二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用 0()a ≥0 2(2)(0 )a = ≥ = (0,0)a b = ≥ ≥ (0 0)a b = ≥> (0,0)a b = ≥≥ (0,0)a b = ≥>

二、二次根式的应用 1、非负性的运用 例:1.已知:0+=,求x-y 的值. 2、根据二次根式有意义的条件确定未知数的值 例1 有意义的x 的取值范围 例2.若2)(11y x x x +=-+-,则y x -=_____________。 3、运用数形结合,进行二次根式化简 例:.已知x,y 都是实数,且满足5.011+-+-

二次根式知识点总结复习整理

二次根式知识点总结 1. 二次根式的概念 二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义. 2. 二次根式的性质 1. 非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2≥=a a a 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a 3. ? ??<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替. 3. 最简二次根式和同类二次根式 1、最简二次根式: (1)最简二次根式的定义:①被开方数是整数,因式是整式; ②被开方数中不含能开得尽方的数或因式;分母中不含根号. 2、同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式 4. 二次根式计算——分母有理化 1.分母有理化 定义:把分母中的根号化去,叫做分母有理化。 2.有理化因式: 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两

个代数式互为有理化因式。有理化因式确定方法如下: ①单项二次根式:利用a a a =?来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。 ②两项二次根式:利用平方差公式来确定。如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。 3.分母有理化的方法与步骤: ①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式; 5. 二次根式计算——二次根式的乘除 1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。 )0,0(≥≥?=b a b a ab 2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。 )0,0(≥≥=?b a ab b a 3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。 )0,0(≥≥=b a b a b a 4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。 )0,0(≥≥=b a b a b a 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还 要考虑字母的取值范围,最后把运算结果化成最简二次根式.

二次根式知识点总结材料和习题

二次根式的知识点汇总 知识点一:二次根式的概念 形如()的式子叫做二次根式。 注: 在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。 知识点二:取值围 1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根 式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。 2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。知识点三:二次根式()的非负性 ()表示a的算术平方根,也就是说,()是一个非负数,即0()。 注: 因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。 知识点四:二次根式()的性质 () 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。 注:

二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 知识点五:二次根式的性质 文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。 注: 1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本 身,即;若a是负数,则等于a的相反数-a,即; 2、中的a的取值围可以是任意实数,即不论a取何值,一定有意义; 3、化简时,先将它化成,再根据绝对值的意义来进行化简。 知识点六:与的异同点 1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实 数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,,而 2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:二次根式的运算 (1)因式的外移和移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.

二次根式知识点总结大全

二次根式 【知识回顾】 1.二次根式:式子 a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. a (a >0) a -(a <0) 0 (a =0);

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 1、概念与性质 例1、下列各式 1)222 11,2)5,3)2,4)4,5)(),6)1,7)2153 x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1) x x -- +31 5;(2) 2 2)-(x

二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类 一、知识框图 二、知识要点梳理 知识点一、二次根式的主要性质: 1.; 2.; 3.; 4.积的算术平方根的性质:; 5.商的算术平方根的性质:. 6.若,则. 知识点二、二次根式的运算 1.二次根式的乘除运算 (1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;

(3) 乘法公式的推广: 2.二次根式的加减运算 先化简,再运算, 3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里; (2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。) 1.下列各式中一定是二次根式的是( )。 A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。 (1) (2)121+-x (3)45++x x (6). (7)若1)1(-=-x x x x , 则x 的取值范围是 (8)若1 313++=++x x x x ,则x 的取值范围是 。 3.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。 5. 若20042005a a a -+-=,则2 2004a -=_____________;若433+-+-=x x y ,则=+y x 6.设m 、n 满足3 29922-+-+-=m m m n ,则mn = 。 8. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是 10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<)0() 0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2..已知a

二次根式知识点总结大全

二次根式 【知识回顾】 1.二次根式:式子a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2 =a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 a (a >0) a -(a <0) 0 (a =0);

1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153 x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1)x x --+31 5;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。 求代数式22,211881-+-+++-+-=x y y x x y y x x x y 例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( ) A. a>b B. a

二次根式知识点归纳及题型知识讲解

一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。) 题型一:判断二次根式 (1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y +、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2 x x y y x x x x y +=--++f p 中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个 (3)下列各式一定是二次根式的是( )A. 7- B. 32m C. 21a + D. a b 题型二:判断二次根式有没有意义 1、写出下列各式有意义的条件: (1)43-x (2)a 83 1- (3)42+m (4)x 1- 2、21 x x --有意义,则 ;3、若x x x x --=--32 32成立,则x 满足_____________。 练习:1.下列各式中一定是二次根式的是( )。 A 、3-; B 、 x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。 (1) (2)121+-x (3) . (5)若1)1(-=-x x x x , 则x 的取值范围是 (6)若1 313++=++x x x x ,则x 的取值范围是 。 3.若13-m 有意义,则m 能取的最小整数值是 ;20m 是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。 5. 若20042005a a a --=,则2 2004a -=_____________;若433+-+-=x x y ,则=+y x 6.设m 、n 满足3 29922-+-+-=m m m n ,则mn = 。 8. 若三角形的三边a 、b 、c 满足3442 -++-b a a =0,则第三边c 的取值范围是

二次根式知识点及典型例题练习

第十六章 二次根式 知识点: 1、二次根式的概念:形如(a ≥0)的式子叫做二次根式。“”= “”,叫做二次根号,简称根号。根号下面的整体“a ”叫做被开方数。 2、二次根式有意义的条件:a ≥0; 二次根式没有意义的条件:a 小于0; 例1、 a +1表示二次根式的条件是______。 例2、已知y=2x -+2x -+5,求x y 的值。 例3、若1a ++1b -=0,求a 2004+b 2004的值。 例4、 当x ______时,12--x 有意义,当x ______时,3 1+x 有意义。 例5、若无意义2+x ,则x 的取值范围是______。 例6、(1)当x 是多少时,31x -在实数范围内有意义? (2)当x 是多少时, 2x 在实数范围内有意义?3x 呢? 3、二次根式的双重非负性: ≥0;a ≥0 。 例1、 已知+ =0,求x,y的值. 例2、 若实数a、b满足 +=0,则2b-a+1=___. 例3、 已知实a满足,求a-2010的值. 例4、 在实数范围内,求代数式 的值. 例5、 设等式=在实数范围内成立,其中a、x、y是两两不同的实数,求的值. 例6、已知9966 x x x x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 4、二次根式的性质: (3)

例1、(1) ()25.1=________ (2) ()252 =________ (3) ()2 2.0-=________ (4) 272??? ? ??=________ 例2、化简 (1)9=_____ (2)2(4)-=_____ (3)25=_____ (4)2 52??? ??--=_____ (4)2(3)- =_____ 例3.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 是什么数? (3)2a >a ,则a 是什么数? 例4.当x>2,化简2(2)x --2(12)x -. 5、积的算术平方根的性质 (a ≥0,b ≥0)即两个非负数的积的算术平方根,等于积中各因式的 算术平方根的积。 , 6、商的算术平方根的性质 (a ≥0,b >0) 商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。 。 例1、计算 (1)57 (2139(3927 (412 6 例2、化简 (1916?(21681?(3229x y (4)54

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型 资料编号:20190802 一、二次根式的定义 形如a (a ≥0)的式子叫做二次根式.其中“ ”叫做二次根号,a 叫做被开方数. (1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”; ②被开方数是否为非负数. 若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式. (3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是: a m a m ?=(a ≥0); (4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质: (1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性: () a a =2 (a ≥0);(主要用于二次根式的计算) (3)转化性:? ??≤-≥==)0() 0(2a a a a a a .(主要用于二次根式的化简) 重要结论: (1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A , A ≥0,2 B ≥0, C ≥0 ∴0,0,0===C B A . 该性质常与配方法结合求字母的值.

(2) ()() ()? ??≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简. (3)()() ??????=002 2A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)() B A B A ?=22 ,其中B ≥0. 该结论主要用于二次根式的计算. 例1. 式子 1 1-x 在实数范围内有意义,则x 的取值范围是_________. 分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2 1 11+ -+-=x x y ,化简:11--y y . 分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴12 1 2100<=++=y ∴ 11 11 1-=--= --y y y y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数x x y 21-= ,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.

初中数学二次根式知识点总结附解析

一、选择题 1. 5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤5 2. ,a ==b a 、 b 可以表示为 ( ) A . 10 a b + B .10 -b a C . 10 ab D . b a 3.下列各式成立的是( ) A 3= B 3= C .22(3 =- D .2-= 4.下列计算结果正确的是( ) A B .3= C =D =5.下列各式中,运算正确的是( ) A .= -= .2=D 2=- 6.m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2 D .m = 3 7. 已知 4 4 2 2 0,24,180x y x y >+=++=、.则xy=( ) A .8 B .9 C .10 D .11 8.当4x = - 的值为( ) A . 1 B C .2 D .3 9 .有意义,则字母x 的取值范围是( ) A .x≥1 B .x≠2 C .x≥1且x =2 D ..x≥-1且x ≠2 10 .若a ,b = ,则a b 的值为( ) A . 1 2 B . 14 C . 3 21 + D 二、填空题 11.已知实数, x y 满足(2008x y =,则

2232332007x y x y -+--的值为______. 12.能力拓展: 1:2121A -= +;2:3232A -=+;3:4343 A -=+; 4:54A -=________. …n A :________. ()1请观察1A ,2A ,3A 的规律,按照规律完成填空. ()2比较大小1A 和2A ∵32+ ________21+ ∴32+________21 + ∴32-________21- ()3同理,我们可以比较出以下代数式的大小: 43-________32-; 76-________54-;1n n +-________1n n -- 13.(1)已知实数a 、b 在数轴上的位置如图所示,化简 () 2 22144a a ab b +--+=_____________; (2)已知正整数p ,q 32016p q =()p q , 的个数是_______________; (3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.计算(π-3)02-2 11(223)-4-22 --() 的结果为_____. 15.() 2 117932x x x y ---=-,则2x ﹣18y 2=_____. 16.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________. 17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平 方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.

二次根式知识点总结及其应用

二次根式知识点总结及应用 一、基本知识点 1.二次根式的有关概念: (1)形如 的 式子叫做二次根式. 二次根式有意义的条件:被开方数大于或等于零 (2)满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; (3)几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。 2.二次根式的性质: (1) 非负性 3.二次根式的运算: 二次根式乘法法则 二次根式除法法则 二次根式的加减: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3 )合并同类二次根式。 Ps:类似于合并同类项,关键是把同类二次根式合并。 二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用 0()a ≥0 2(2)(0 )a = ≥ = (0,0)a b = ≥ ≥ (0 0) a b = ≥> (0,0) a b = ≥≥ (0,0)a b = ≥>

二、二次根式的应用 1、非负性的运用 例:1.已知: 0+ =,求x-y 的值. 2、根据二次根式有意义的条件确定未知数的值 例1 有意义的x 的取值范围 例2.若2)(11y x x x +=-+-,则y x -=_____________。 3、运用数形结合,进行二次根式化简 例:.已知x,y 都是实数,且满足5.011+-+-

中考数学二次根式知识点及练习题含答案

一、选择题 1.若3 x+在实数范围内有意义,则x的取值范围是() A.x>3 B.x>-3 C.x≥-3 D.x≤-3 2.下列运算正确的是() A.3223 ÷=B.235 += C.233363 ?=D.18126 -= 3.下列说法错误的个数是() ①所有无限小数都是无理数;②()23-的平方根是3 ±;③2a a =;④数轴上的点都表示有理数 A.1个B.2个C.3个D.4个 4.对于已知三角形的三条边长分别为a,b,c,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式: ()()() S p p a p b p c =---,其中 2 a b c p ++ =,若一个三角形的三边长分别为 2,3,4,则其面积() A. 3 15 4 B. 3 15 2 C. 3 5 2 D. 3 5 4 5.当4 x=时, 22 2323 43124312 x x x x x x -+ - -+++ 的值为() A.1 B.3C.2 D.3 6.若 1 x+ 有意义,则字母x的取值范围是( ) A.x≥1B.x≠2C.x≥1且x=2 D..x≥-1且x≠2 7.已知a满足2018a -+2019 a-=a,则a-2 0182=( ) A.0 B.1 C.2 018 D.2 019 8.若a ab +有意义,那么直角坐标系中点A(a,b)在() A.第一象限B.第二象限C.第三象限D.第四象限 9.实数a,b在数轴上的位置如图所示,则化简﹣+b的结果是 () A.1B.b+1C.2a D.1﹣2a 10.如果实数x,y23 x y xy y =-(),x y在()

二次根式 知识点总结

知识点一:二次根式的概念 【知识要点】 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个 非负数时, 才有意义. 【例2】若式子 3 x -有意义,则x 的取值范围是 . 举一反三: 1、使代数式2 21x x - +-有意义的x 的取值范围是 2、如果代数式mn m 1+ -有意义,那么,直角坐标系中点P (m ,n )的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 【例3】若y=5-x +x -5+2009,则x+y= 解题思路:式子a (a ≥0),50 ,50 x x -≥?? -≥? 5x =,y=2009,则x+y=2014 举一反三: 111x x --2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3 3、当a 211a +取值最小,并求出这个最小值。 已知a 5b 是 51 2 a b + +的值。 若17的整数部分为x ,小数部分为y ,求y x 1 2 + 的值.

知识点二:二次根式的性质 【知识要点】 1. 非负性:是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式: 3. a a a a a a 200==≥-

新人教版八年级数学下册二次根式的知识点汇总

二次根式的知识点汇总 知识点一: 二次根式的概念 形如()的式子叫做二次根式。 注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。 例1、1x x>0)、、1x y +、 x ≥0,y?≥0) . ”;第二,被开方数是正数或0. 知识点二:取值范围 1、 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时, 有意义,是二次根式,所以要使二次 根式有意义,只要使被开方数大于或等于零即可。 2、 二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0时,没有意义。 例2.当x 例3.当x 11x +在实数范围内有意义? 知识点三:二次根式()的非负性 ()表示a 的算术平方根,也就是说,()是一个非负数,即0()。 注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负 数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若 ,则a=0,b=0;若,则a=0,b=0;若 ,则a=0,b=0。 例4(1)已知,求x y 的值.(2)=0,求a 2004+b 2004的值

知识点四:二次根式()的性质 () 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。 注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若, 则,如:,. 例1 计算 )2 1.)2 2.(2 3.2 4.( 2 例2在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 知识点五:二次根式的性质 文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。 注: 1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身, 即;若a是负数,则等于a的相反数-a,即; 2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义; 3、化简时,先将它化成,再根据绝对值的意义来进行化简。 例1 化简 (1(2(3(4 例2 填空:当a≥0;当a<0,?并根据这一性质回答下列问题. (1,则a可以是什么数?(2,则a是什么数?(3,则a是什么数?

二次根式知识点及习题

二次根式 知识点一:二次根式的概念 形如()的式子叫做二次根式。 注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为 负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而, 等都不是二次根式。 知识点二:取值范围 1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。 2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。 知识点三:二次根式()的非负性 ()表示a的算术平方根,也就是说,()是一个非负数,即0()。 注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、 偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则 a=0,b=0;若,则a=0,b=0。 知识点四:二次根式()的性质 () 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。 注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应 用:若,则,如:,. 知识点五:二次根式的性质 文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。 注: 1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即 ;若a是负数,则等于a的相反数-a,即; 2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义; 3、化简时,先将它化成,再根据绝对值的意义来进行化简。 知识点六:与的异同点 1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即 ,。因而它的运算的结果是有差别的,,而 2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:二次根式的性质和最简二次根式

二次根式知识点总结大全(我)

二次根式 1.二次根式:式子a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2=a (a ≥0); (2) 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153 x a a a --+---+, a (a >0) ==a a 2 a -(a <0) 0 (a =0);

其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1)x x -- +315;(2)22)-(x 例3、 在根式1) 222;2);3);4)275 x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。求代数式22,211881-+-+++-+-=x y y x x y y x x x y 例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( ) A. a>b B. a

相关文档
最新文档