1使用MIDAS Civil做斜拉桥分析时的一些注意事项

1使用MIDAS Civil做斜拉桥分析时的一些注意事项
1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项

斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。

确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。

MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。

1.未闭合力功能

通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。

第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。

第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。

但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。

MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。

重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。

其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

模型,只需直接建立正装分析的模型,考虑未闭合力进行分析,就可以得到与倒拆分析相同的分析结果。这样可以避免建立倒拆施工阶段模型的繁琐操作,同时也避免了建立倒拆分析模型时设计人员很容易犯错的问题。

将考虑未闭合力进行正装分析得到的各阶段的索内力,按初拉力重新输入后,不考虑未闭合力进行正装分析,即反映的是实际的施工过程的模拟。根据该分析的结果,设计人员需要进行判断是否需要进一步调索或者调整施工步骤或施工工法,以满足各项设计要求。

2.未闭合力功能使用时的注意事项

将成桥状态分析得到的索力输入为初拉力;

拉索采用只受拉索单元模拟;

在施工阶段分析对话框的分析选项选择“考虑时间依存效果(累加模型)”;

在施工阶段分析对话框的索初拉力选项中选择“体内力”;

在施工阶段分析对话框中选择“赋予各施工阶段中新激活构件初始切向位移”;

勾选“未闭合配合力控制”,并选择相应结构组;

考虑未闭合力结构组的原则首先是拉索。另外结构体系在施工过程中发生变化的结构如合拢段等也需指定;

安装拉索和输入张力的阶段,不能激活和钝化除索单元和索张力以外的单元和其它荷载;

不适用于主梁为钢混叠合梁的结构(因为主梁的刚度发生变化)。对于主梁为钢混叠合梁的斜拉桥,一般需要设计人员依据丰富的经验,将成桥状态的索力按一定比

率分成两部分,即一次张拉和二次调索;

对于混凝土梁,可以考虑收缩徐变引起的切向位移的影响来计算未闭合力。

(具体说明见MIDAS技术资料《考虑未闭合力做斜拉桥正装分析》)

3.未知荷载系数功能

分为针对成桥状态的未知荷载系数功能和针对施工阶段的未知荷载系数功能。

针对成桥状态的未知荷载系数功能MIDAS/Civil用户手册第三册中的例题以及其它相关资料中已有说明,这里不再赘述。

考虑施工阶段的未知荷载系数功能是求在满足某施工阶段的控制条件时,计算特定阶段的未知荷载系数的方法。(具体说明见MIDAS技术资料《使用未知荷载系数功能进行斜拉桥正装分析》)

计算初始索力时,一般以“1)约束主塔水平位移,使主塔弯矩趋于最小。2)使加劲梁的弯矩尽可能的均匀,且趋于最小”作为控制条件,再对施工性和经济性进行研究。除了这种通常的要求外,还需根据结构的特性,设计者要施加更多的控制条件来进行更周密的设计。

一般来说,施工阶段过程中加劲梁的桥型可通过施工和制作预拱度进行调整,所以施工过程中加劲梁的竖向位移不会产生较大的内力。因此控制成桥阶段加劲梁的弯矩和索塔顶端的位移比控制施工阶段过程中加劲梁的竖向位移更有实际意义。

未知荷载系数是按阶段及阶段内各子步骤输出的,建立施工阶段和子步骤时一定要注意单元及边界的激活和钝化顺序。如下图所示,要得到CS2阶段满足控制条件的索力,设计人员应注意在CS2中,内力包括张拉索力引起的内力和拆除临时支座引起的内力两部分。如果将张拉索和拆除临时支座定义在相同阶段的同一子步骤内,则无法得到单独张拉索力时的未知荷载系数。因此需要在CS2中将张拉索和拆除临时支座定义为两个子步骤。

如果需要考虑收缩徐变的影响来计算满足最终施工阶段控制条件的索张力时,由于收缩徐变的效应与作用力的大小相关,即单位荷载的徐变作用效应与反映真实索力后的徐变作用效应不同,因此需要进行反复迭代来求未知荷载系数。

设计人员可根据需要选择考虑未闭合力进行斜拉桥正装分析还是使用未知荷载系数功能进行斜拉桥正装分析。

设计人员可以先考虑未闭合力进行斜拉桥正装分析得到施工索力后,进行不考虑未闭合力的正装分析。

其最终结果与初始平衡状态分析结果相比,拉索张力以及加劲梁的内力会有些变化。如果内力值和位移的变化没有对结构的稳定性造成很大影响,则可以不再进行索力调整。如果判断需要调整,也可使用施工阶段未知荷载系数功能对一些结果进行微调。

不过,如果考虑未闭合力进行斜拉桥正装分析后得到的施工索力不是十分合理,通常索力的微调很难满足要求,需要对施工步骤或者工法本身进行调整。

4. 斜拉桥分析对于拉索单元的模拟(桁架单元、只受拉桁架单元、只受拉索单元、恩

斯特公式修正、大变形的悬索单元等的不同)

经常遇到的几种桥梁专业用语与有限元单元概念的混淆:

悬索桥的主缆和吊杆:建议使用考虑大变形的索单元

大跨斜拉桥的斜拉索:对于近千米或者超过千米的斜拉桥建议使用考虑大变形

的索单元

中小跨斜拉桥的斜拉索:建议使用考虑恩斯特公式修正的等效桁架单元

拱桥的吊杆:建议使用桁架单元

系杆拱桥的系杆:建议使用桁架单元

体内预应力或体外预应力的钢索(钢束):与索单元无关,使用预应力荷载功

能按荷载来模拟即可。进行细部分析时对于钢束可以按桁架单元来模拟

以上建议是基于一般状况的考虑,特殊结构形式需要根据受力特点具体问题具

体分析

5. 斜拉桥施工阶段分析类型的说明

考虑时间依存性的累加模型:对于索单元根据恩斯特公式进行修正来考虑索的

非线性,属于小变形分析,适用于大部分中小跨径的斜拉桥;

考虑非线性的独立模型:不适用于做斜拉桥分析

(a) CS 1: 恒荷载,固定支座,临时支座 (b) CS 2: 添加索力,拆除临时支座

考虑非线性的累加模型:对于索单元按悬索单元进行大变形分析,适用于近千米或以上跨径的斜拉桥。

6.斜拉桥稳定分析方法

MIDAS/Civil目前提供线性屈曲分析功能和几何非线性屈曲分析功能。

主菜单“分析/屈曲分析控制数据”控制的是线性屈曲分析的数据。

屈曲分析控制数据中可以选择荷载工况的“可变”与“不变”。通常的概念是对于所有荷载同时作用的状况下计算稳定系数,但实际情况是自重等一些恒载是不变化的,有可能变化的是一些后期荷载或者其它外荷载,因此有必要将不同的荷载作用类型进行区分来计算稳定系数。举例来说,如果想计算在自重作用状态下,只针对二期恒载的稳定系数时,可选择自重荷载工况为“不变”,二期恒载的荷载工况为“可变”。

而对于施工阶段分析,因为其实际上是个非线性的过程,所以其作用效应也不能按所有荷载同时作用来看待。对于进行施工阶段分析的结构考虑屈曲分析时,首先需要确定要计算哪些荷载工况的稳定系数。对于之前已经作用的荷载作用效应的几何刚度,可以使用程序提供的“荷载/初始荷载/小位移/初始单元内力”的功能来考虑。

比如,如果想计算对于最后铺装的二期恒载的稳定系数的话,可以先进行施工阶段分析,将二期恒载铺装前的阶段的所有单元的内力通过表格复制出来,再将给施工阶段另存为一个静力分析的模型,将复制出来的内力按初始单元内力表格的形式在Excel编辑之后复制、粘贴进去。在屈曲分析控制数据中添加“二期恒载”的荷载工况后进行屈曲分析。

屈曲分析的结果可通过“结果/屈曲模态”来查看。

几何非线性的屈曲分析方法与其它通用有限元分析软件的方法相同。即在“分析/非线性分析控制数据”中将要考虑的荷载工况适当地分为多个加载步骤,之后进行几何非线性分析。在“结果/阶段与步骤图形”中设置变形和荷载加载步骤的曲线,通过分析曲线的突变点来判断稳定系数。

7.斜拉桥风荷载的考虑

对于风荷载,目前可根据受风面积计算风荷载大小,将其按静力荷载形式作用于结构上来考虑。

需要注意的是,在MIDAS/Civil中,节点荷载作用于截面的偏心位置(如果设置偏心了的话),而梁单元荷载无论截面是否设置偏心,都作用于梁的形心位置。

8.斜拉桥的动力分析

MIDAS/Civil提供反应谱分析、线性/非线性时程分析、静力弹塑性分析、动力弹塑性分析等与结构抗震分析/设计相关的功能,具体说明请参考其它相关资料。

对于斜拉桥成桥状态时结构的几何刚度,同样可以使用初始单元内力的功能来考虑。

9.斜拉桥的细部分析方法

对于斜拉桥整体的受力状态可以使用杆系单元进行分析来把握,但斜拉桥的塔梁连接部、索梁锚固端、索塔锚固端、钢梁和混凝土梁连接部等区域一般受力状态比较复杂,因此根据状况对一些局部需要进行细部分析。

采用子结构法进行细部分析的方法,在MIDAS/Civil培训资料的第三个例题中有一些介绍,这里不再进行说明。

由于上述区域结构形状非常复杂,所以技术人员的大部分时间会耗费在使用板单元或者

实体单元的建模上。MIDAS/FX+提供了高级有限元建模的功能,技术人员可以使用其建模后,导入到MIDAS/Civil中进行细部分析。

10.成桥状态荷载工况的分析注意事项(移动荷载、支座沉降、风荷载、温度荷载、动力荷载等)

定义了施工阶段,另外还定义了移动荷载、温度荷载等成桥状态的荷载时,程序会先进行施工阶段分析,之后对于最终阶段的模型进行成桥状态荷载的分析。

此时,结构是否考虑施工阶段分析后的内力所产生的几何刚度,取决于用户在施工阶段分析控制对话框中是否勾选“转换最终施工阶段构件内力为PostCS阶段的构件的几何刚度初始荷载”。

如果用户不选择“转换”,对于温度荷载等一般静力荷载工况,由于只是对单一工况考虑恩斯特公式进行修正进行反复迭代计算,因此其分析结果实际上是与实际状况不符的。

选择“转换”时,对于移动荷载等其计算结果的差异取决于几何刚度的大小。对于主梁和主塔的轴向压力很大的斜拉桥,几何刚度的作用效果比较大,根据结构受力状况与按桁架单元考虑比较时,可产生10%~20%的差异。

对于不同的荷载效应,以及是否勾选“转换…”,程序的考虑方式如下。

对于成桥状态荷载工况分析时索单元(或桁架单元以及梁单元)的考虑方式

成桥状态荷载工况不勾选“转换…”勾选“转换…”备注移动荷载按桁架单元考虑(线性叠加)考虑成桥状态的索单元和梁

单元的几何刚度

支座沉降同上同上

同上同上

动力分析

(特征值分析等)

同上

温度荷载按等效桁架单元考虑,基于

恩斯特公式进行反复迭代计

同上

其它静力荷载按等效桁架单元考虑,基于

恩斯特公式进行反复迭代计

11.其它事项

如何考虑预拱度:位移的说明请参考主页技术资料《桥梁的制作预拱度和施工预拱度》;

前支点挂篮的模拟:需使用弹性连接的激活和钝化功能来实现;

对于成桥状态的结构,因为拥有初始单元内力信息,程序是考虑P-delta效果来计算各种成桥状态后的荷载工况效应的。因此实际的弯矩值会比剪力×距离的结果大

一些。

另外由于同时拥有索单元,因此还会考虑恩斯特公式,针对不同荷载工况的效应对

索的刚度进行修正来计算。

对于移动荷载工况,由于影响线计算结果的线性叠加必须成立,因此程序是使用成桥状态的不变的刚度来计算的。

不过如果利用移动荷载追踪器导出为静力荷载工况计算时,则是按考虑P-delta效

应和索单元的恩斯特公式修正来计算的,因此会与移动荷载分析结构有些差别; 移动荷载工况下的弯矩值不等于剪力×距离的原因是计算剪力时,对于其中的Pk 考虑了1.2倍。

根据公路通用规范条文说明,对于Pk的取值是为了补充qk的效应而设置的。对于剪力需要取的值要比弯矩的大才能满足要求,所以规定对于剪力效应取1.2倍的Pk。如果只是一个简支梁倒好说,但对于空间复杂结构,不好一概而论地判断。

因此MIDAS/Civil中目前是对于所有构件的剪力都按1.2Pk来考虑的。

如果用户必须要对于某些构件的轴力考虑1.2倍的Pk的话,可能需要利用移动荷载追踪器导出为静力荷载工况后对于集中力做人为调整。

midas斜拉桥建模

目录 概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料和截面特性值 4 成桥阶段分析 6 建立模型 7 建立加劲梁模型 8 建立主塔 9 建立拉索 11 建立主塔支座 12 输入边界条件 13 索初拉力计算 14 定义荷载工况 18 输入荷载 19 运行结构分析 24 建立荷载组合 24 计算未知荷载系数 25 查看成桥阶段分析结果 29查看变形形状 29 正装施工阶段分析 30

正装施工阶段分析 34 正装施工阶段分析 34 正装分析模型 36 定义施工阶段 38 定义结构组 41 定义边界组 48 定义荷载组 53 定义施工阶段 59 施工阶段分析控制数据 64 运行结构分析 65 查看施工阶段分析结果 66 查看变形形状 66 查看弯矩 67 查看轴力 68 查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70

概要 斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环 境融合,是符合环境设计理念的桥梁形式之一。 为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。 一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分 析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例 题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。 图 1. 斜拉桥分析模型

midas拱桥专题

midas Civil 培训例题集拱桥专题

目录 一.拱桥概述 ................................................................................................................................................................................................. - 1 - 1.1 按照静力图式拱桥分类 ....................................................................................................................................................................... - 1 - 1.2 按照桥面所处空间位置拱桥分类......................................................................................................................................................... - 1 - 1.3 主拱圈的截面形式分类 ....................................................................................................................................................................... - 2 - 二.midas Civil中的吊杆拱桥分析功能 .......................................................................................................................................................... - 2 - 2.1 拉索单元模拟...................................................................................................................................................................................... - 2 - 2.2 未知荷载系数法功能........................................................................................................................................................................... - 3 - 2.3 索力调整功能...................................................................................................................................................................................... - 4 - 三.拱桥实例分析.......................................................................................................................................................................................... - 5 - 3.1 系杆拱桥模型概况............................................................................................................................................................................... - 5 - 3.2 系杆拱桥成桥分析............................................................................................................................................................................... - 5 - 3.3 系杆拱桥施工阶段仿真模拟.............................................................................................................................................................. - 11 - 3.4 拱桥的稳定分析 ................................................................................................................................................................................ - 14 - 3.5 混凝土拱桥模型模拟与设计关键点................................................................................................................................................... - 14 -

斜拉桥常见建模问题

建立悬索桥模型时,如何定义索单元的几何初始几何刚度? 相关命令 模型〉单元〉建立... 荷载〉初始荷载〉大位移〉几何刚度初始荷载… 相关知识 (1)静力线性分析时,几何刚度初始荷载不起作用。此时必须输入“小位移〉初始单元内力”,不然运行分析时程序会提示发生奇异; (2)静力非线性分析时,程序根据几何刚度初始荷载考虑结构的初始状态。且根据不同的荷载工况,结构的几何刚度会发生变化。另外,不同荷载工况作用效应的算术迭加不成立; (3)施工阶段非线性分析(独立模型,不考虑平衡单元节点内力)时,几何刚度根据不同施工阶段荷载的作用发生变化,且考虑索单元节点坐标变化引起的影响(索单元); (4)施工阶段非线性分析(独立模型,考虑平衡单元节点内力)时,几何刚度初始荷载不起作用,此时发生作用的是“大位移〉平衡单元节点内力”发生作用; (5)施工阶段非线性分析(独立模型,考虑平衡单元节点内力,但未输入平衡单元节点内力,只输入了几何刚度初始荷载)时,几何刚度初始荷载不起作用,对施加的荷载工况进行静力非线性分析。下一个阶段中也一样,但前一阶段的荷载和本阶段的荷载相当于一同作用并对之进行分析; (6)移动荷载分析时,程序会自动将索单元转换为等效桁架单元进行线性分析,其几何刚度将利用“小位移〉初始单元内力”来确定。 索单元输入的初拉力是i端或j端的切向拉力吗? 相关命令 模型〉单元〉建立... 问题解答 索单元输入的初拉力不是i端或j端的切向拉力。建立索单元时输入的初拉力是为了生成索单元的初始几何刚度而输入的。索单元进行非线性分析时,是以新生成的初始几何刚度为初始状态,随荷载的变化不停更新结构的几何刚度。最后根据最终的几何刚度以及索的自重重新计算出索单元两端i端和j端的切向拉力。 初拉力荷载可分为体外力和体内力(“施工阶段分析控制”对话框)。体内力荷载分析是在索单元上作用等效于初拉力荷载的变形量,再与其它结构相连接后进行整体结构分析的过程。根据索单元两端结构的刚度,索单元两端节点会发生新的位移量,此位移量将决定索单元的内力。而且同时作用在索单元上的其它荷载,也会使索单元的内力发生变化。假如索单元两端是固定边界条件,则索单元将发生与初拉力相同大小的内力。 采用程序中的“组合截面(钢管形-砼)”建立的模型,如何考虑钢管内混凝土部分的收缩徐变特性? 相关命令 模型〉材料和截面特性〉时间依存性材料(徐变/ 收缩) 荷载〉施工阶段分析数据〉施工阶段联合截面… 问题解答 程序中的“组合截面(钢管形-砼)”定义的截面是利用使用等效截面特性值来进行分析和计算的。如果需要考虑混凝土部分的收缩徐变特性,就需要模拟出钢管与混凝土分阶段施工的过程。可采用程序中的“施工阶段联合截面”功能来模拟组合截面的分阶段施工过程,然后按通常的方法定义混凝土的收缩徐变特性即可。 钢管混凝土截面的两种材料的时间依存特性是不同的,而且混凝土的膨胀的系数也比钢材大的多,所以在实际工程中两种材料之间的互相作用是无法正确模拟的。目前还没有出现能够完全正确地模拟两种材料之间的互相作用的软件。本程序也是假定钢材和混凝土紧密地连接在一起,且没有考虑钢管对混凝土的套箍作用。 定义收缩徐变对话框中有一个定义材龄的地方,定义施工阶段对话框中也有一个定义材龄的地方,两个材龄有什么区别?对哪些结果产生影响? 相关命令

midasCivil斜拉桥专题培训例题集

midas Civil 培训例题集斜拉桥专题

目录 一.斜拉桥概述.............................................................................................................................................................................................. - 1 - 1.1 斜拉桥跨径布置 .................................................................................................................................................................................. - 1 - 1.2 斜拉桥拉索布置 .................................................................................................................................................................................. - 1 - 1.3 斜拉桥索塔布置 .................................................................................................................................................................................. - 2 - 1.4 斜拉桥主梁布置 .................................................................................................................................................................................. - 2 - 二.斜拉桥调索理论 ...................................................................................................................................................................................... - 3 - 三.midas Civil中的斜拉桥功能..................................................................................................................................................................... - 3 - 3.1 拉索单元模拟...................................................................................................................................................................................... - 4 - 3.2 未知荷载系数法功能........................................................................................................................................................................... - 5 - 3.3 索力调整功能...................................................................................................................................................................................... - 6 - 3.4 未闭合配合力功能............................................................................................................................................................................... - 7 - 四.斜拉桥分析例题 ...................................................................................................................................................................................... - 8 - 4.1 斜拉桥概况.......................................................................................................................................................................................... - 8 - 4.2 斜拉桥成桥分析 ................................................................................................................................................................................ - 10 - 4.3 斜拉桥倒拆分析 ................................................................................................................................................................................ - 14 - 4.4 斜拉桥正装分析 ................................................................................................................................................................................ - 15 -

迈达斯斜桥与弯桥分析

北京迈达斯技术有限公司 2007年8月

目录 1. 斜桥 (1) 1.1 概述 (1) 1.2 斜交桥梁的受力特点 (1) 1.3 建模方法 (2) 2. 弯桥 (3) 2.1 概述 (3) 2.2 弯桥的受力特点 (3) 2.3 建模方法 (4) 2.4 弯桥建模例题 (5)

1. 斜桥 1.1 概述 桥梁设计中,会因为桥位、线型的因素,而需要将桥梁做成斜交桥。斜交桥受力性能较复杂,与正交桥有很大差别。平面结构计算软件无法对其进行精确的分析,限制了此类结构桥型的应用。 1.2 斜交桥梁的受力特点 a) 钝角角隅处出现较大的反力和剪力,锐角角隅处出现较小的反力,还可能出现翘 起;(图1.2.1) b) 出现很大的扭矩;(图1.2.2) c) 板边缘或边梁最大弯矩向钝角方向靠拢。(图1.2.3 ~ 图1.2.4) 图1.2.1 斜交空心板桥支点反力 图1.2.2 斜交空心板桥扭矩图

图1.2.3 正、斜交板桥自重弯矩图(板单元) 图1.2.4 正、斜交空心板桥自重弯矩图(梁格单元) 这些效应的大小与斜交角度大小也有很大的关系,斜交角度越大,上述效应就越大。一般来说斜交角度小于20度时,对于简支斜交桥的上述影响可以忽略。如果斜交角度超过20度就必须考虑上述效应的影响。设计人员还应根据实际情况,找出适当的处理方案。 1.3 建模方法 对斜交桥梁多用梁格法建立模型。可用斜交梁格或正交梁格来建模。对于斜交角度小于20度时,使用斜交梁格是非常方便的。但是对于大角度的斜交桥,根据它的荷载传递特性,建议选用正交梁格,而且配筋时也尽量沿正交方向配筋。 图1.3.1 斜交梁格与正交梁格

Midas建模技巧总结

《Midas建模技巧总结》- 如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接? 可以在主梁之间隔一定间距用横向虚拟梁连接,并且将横向虚拟梁的两端的弯矩约束释放。此类问题关键在于横向虚拟梁的刚度取值。可参考有关书籍,推荐E.C.Hambly写的"Bridge deck behaviour",该书对梁格法有较为详尽的叙述。 3、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可否自己编辑截面形式 可以在定义截面对话框中点击"数值"表单,然后输入您自定义的截面的各种数据。您也可以在工具>截面特性值计算器中画出您的截面,然后生成一个截面名称,程序会计算出相应截面的特性值。您也可以从CAD 中导入截面(比如单线条的箱型截面,然后在截面特性值计算器中赋予线宽代表板宽)。 4、如果截面形式在软件提供里找不到,自己可否编辑再插入变截面,如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法 目前MIDAS中的变截面组支持二次方程以下的小数点形式的变截面方程,如1.5次等。您可以先在SPC 中定义控制位置的两个变截面,然后用变截面组的方式定义方程。然后再细分变截面组。我们将尽快按您的要求,在变截面组中让用户可以输入方程的各系数。谢谢您的支持!>如果我设计的桥梁是变截面但满足某一方程F(x),且截面形式Midas/civil里没有,需通过**C计算再填入A、I、J等。也就是说全桥的单元截面都要用ACAD画出来再导入**C,如果我划分的单元较小这样截面就很多很麻烦,**C有没有提供象这种变截面的简单计算方法 5.弯桥支座如何模拟?用FCM建模助手建立弯箱梁桥模型后,生成的是梁单元(类似平面杆系),请问在如何考虑横向的问题?(假如横向设置两个抗扭支座,分别计算每个支座的反力)?采用梁单元能否计算横向的内力和应力(例如扭距、横梁的横向弯距等)?提个建议,因建模后梁单元已赋予了箱型截面,横向尺寸均有,能否程序加入把梁单元自动转换成块单元的功能,那就很方便了。目前国内有个软件就具有这个功能,建模很方便,也很实用,对精确分析斜弯坡桥梁就很方便,避免采用梁格法的繁琐模拟。FCM虽然生成的是梁单元,但可以进行抗扭计算。假如有双支座,您可以修改为两个支座(在支座位置建立两个节点,并将其沿Z轴复制,连接节点建立弹簧)。MIDAS软件中的梁单元可以计算扭矩和横梁的横向弯矩。将梁单元的截面建成面单元(也可从DXF文件导入),然后用单元扩展的功能生成实体块单元即可。谢谢您的支持!> 用FCM建模助手建立弯箱梁桥模型后,生成的是梁单元(类似平面杆系),请问在如何考虑横向的问题?(假如横向设置两个抗扭支座,分别计算每个支座的反力)?> 采用梁单元能否计算横向的内力和应力(例如扭距、横梁的横向弯距等)?> 提个建议,因建模后梁单元已赋予了箱型截面,横向尺寸均有,能否程序加入把梁单元自动转换成块单元的功能,那就很方便了。目前国内有个软件就具有这个功能,建模很方便,也很实用,对精确分析斜弯坡桥梁就很方便,避免采用梁格法的繁琐模拟。 6、曲线桥的设计。 第一种方法:直接导入曲线。 第二种方法:直接在表格中输入节点建模。 第三种方法:使用单元扩展功能,可方便地建立弯桥的梁单元模型、板单元模型、实体单元模型。梁单元弯桥:先建立一个点,然后在模型>单元>扩展命令中选择由点生成直线,并选择旋转。然后输入半径中心位置和分割数(或分割间距)。点击适用即可。板单元弯桥:先建立一条直线,然后在模型>单元>扩展命令中选择由线生成面,其余同上。建成后可再细分板单元。实体单元弯桥:先建立一个截面(板单元模型),然后在模型>单元>扩展命令中选择由面生成块,其余同上。建成后可再细分块单元。 7、弯矩My是绕y轴的弯矩,这个没有问题。只是弯曲应力的问题,正如你所说,弯曲应力Sbz是My 引起的应力,同样,弯曲应力Sby是Mz引起的应力,刚好和习惯相反。另外,在组合应力中,也是类似情形:弯矩(+y) 弯矩(-y) 弯矩(+z) 弯矩(-z) 其中,弯矩(+y)实际上是弯距Mz产生的应力,弯矩(+z)实际

midas斜拉桥建模(知识参考)

斜拉桥成桥阶段和正装施工阶段分析

目录 概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料和截面特性值 4 成桥阶段分析 6 建立模型 7 建立加劲梁模型 8 建立主塔 9 建立拉索 11 建立主塔支座 12 输入边界条件 13 索初拉力计算 14 定义荷载工况 18 输入荷载 19 运行结构分析 24 建立荷载组合 24 计算未知荷载系数 25 查看成桥阶段分析结果 29查看变形形状 29 正装施工阶段分析 30

正装施工阶段分析 34 正装施工阶段分析 34 正装分析模型 36 定义施工阶段 38 定义结构组 41 定义边界组 48 定义荷载组 53 定义施工阶段 59 施工阶段分析控制数据 64 运行结构分析 65 查看施工阶段分析结果 66 查看变形形状 66 查看弯矩 67 查看轴力 68 查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70

概要 斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环 境融合,是符合环境设计理念的桥梁形式之一。 为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。 一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分 析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例 题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。 图 1. 斜拉桥分析模型

MIDASCIVIL钢桁梁桥建模及分析

MIDASCIVIL钢桁梁桥建模及分析 第三章 MIDAS/CIVIL钢桁梁桥建模及分析 3.1概述易学易用能够迅速、准确地完成类似结构的分析和设计是MIDAS的独到之处。 MIDAS/Civil是针对土木结构特别是分析预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁 结构形式同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、 动力弹塑性分析。 本教程手把手教你如何使用MIDAS/Civil 以64m下承式铁路简支钢桁梁桥为例详细 介绍设定操作环境、建立模型、定制分析选项和查找计算结果的完整过程旨在引导初学者 快速熟悉和掌握MIDAS/Civil的基本操作和使用注意事项。本教程使用软件版本为2006 为了适应不同习惯的读者该教程在尽可能多的地方给出了菜单和工具栏两种操作方式为 了使读者快速全面地掌握MIDAS的实际操作本教程对同样的操作功能在不同的地方给出 了尽可能多的实现方法如对不同选择方式的操作。 本教程中64m下承式铁路简支钢桁梁桥共8个节间节间长度8m 主桁高11m 基本 尺寸如图3. 1所示。

图3. 1 64m下承式铁路简支钢桁梁桥结构的基本尺寸 3.2 设定操作环境 3.2.1 启动MIDAS/Civil 安装完成后双击桌面上或相应目录中的MIDAS/Civil的图标打开程序启动界面如 图3.2所示分为主菜单、图标菜单、树形菜单、工具条、主窗口、信息窗口、状态条等部 分。图3.2 MIDAS/Civil的启动界面 3.2.2 创建新项目 通过选择主菜单的文件?新项目(或者点击工具条 按钮)创建新项目之后选择文件?保存菜单(或者)设置路径保存项目。 3.2.3 定制工具条 图3.3 定制菜单对话框选择主菜单的工具?用户定制?用户定制…调出如图3.3所示定制工具条对话框在 Toolbars选项卡下通过勾选复选框可以定制符合自己风格的工具条该教程采用默认选项 点击按钮关闭对话框。 3.2.4 设置单位体系 (1) 在主菜单中选择工具?单位体系打开单位体系设置对话框如图XN.4所示。 (2) 在长度栏中选择“m”。 (3) 在力(质量)栏中选择“kN”。 (4) 在热度栏中默认选择“kJ”。 (5) 在温度栏中默认选择“Celsius”。 (6) 点击按钮。 图3. 4 单位体系设置对话框图

斜拉桥相关知识

midas Civil 20109 9 Integrated Solution System for Bridge and Civil Strucutres 桥专题—斜拉桥设计专题

目一、斜拉桥概述录二、斜拉桥索力调整理论三、midas Civil中的斜拉桥功能中的斜拉桥功能 1. 拉索单元模拟............................................4 2. 未知荷载系数法功能.................................7 3. 索力调整功能............................................7 4. 未闭合配合力功能. (7)

目四、斜拉桥分析例题录 1.桥梁概况......................................................7 2. 斜拉桥成桥分析.........................................7 3.斜拉桥倒拆分析........................................11 4.斜拉桥正装分析.. (7) 5.斜拉桥稳定分析 (7)

斜拉桥的上部结构是由梁、索、塔三个主要部分组成,它是一种桥面体系以加劲梁受压(密索)或受弯(稀索)为主,支承体系以斜索受拉及桥塔受压为主的桥梁。1956年,瑞典建成的Stroemsund 桥拉开了现代斜拉桥建设的序幕。随后斜拉桥建设如雨后春笋般蓬勃发展,其跨径已经进入以前悬索桥适用的特大跨径范围。4

整理论斜拉桥不仅具有优美的外形,而且具有良好的力学性能,其主要优点在于:恒载作用下,拉索的索力是可以调整的。斜拉桥可以认为是大跨径的体外预应力结构。在力学性能方面,当在恒载作用时,斜拉索的作用并不仅仅是弹性支承,更重要的是它能通过千斤顶主动地施加平衡外荷载的初张力,正是因为斜拉索的索力是可以调整的,斜拉索才可以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支承的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。张拉斜拉索时,实际上已经将该斜拉索脱离出来单独工作,因为斜拉索的张力和结构的其它部分无关,而只与千斤顶有关,因此在张拉斜拉索时,其初张力效应必须采用隔离体分析(midas Civil中采用体外力来进行模拟)。确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。5

斜拉桥常见建模问题

建立悬索桥模型时,如何定义索单元的几何初始几何刚度?相关命令 模型〉单元〉建立... 荷载〉初始荷载〉大位移〉几何刚度初始荷载… 相关知识 (1)静力线性分析时,几何刚度初始荷载不起作用。此时必须输入“小位移〉初始单元内力”,不然运行分析时程序会提示发生奇异; (2)静力非线性分析时,程序根据几何刚度初始荷载考虑结构的初始状态。且根据不同的荷载工况,结构的几何刚度会发生变化。另外,不同荷载工况作用效应的算术迭加不成立; (3)施工阶段非线性分析(独立模型,不考虑平衡单元节点内力)时,几何刚度根据不同施工阶段荷载的作用发生变化,且考虑索单元节点坐标变化引起的影响(索单元); (4)施工阶段非线性分析(独立模型,考虑平衡单元节点内力)时,几何刚度初始荷载不起作用,此时发生作用的是“大位移〉平衡单元节点内力”发生作用; (5)施工阶段非线性分析(独立模型,考虑平衡单元节点内力,但未输入平衡单元节点内力,只输入了几何刚度初始荷载)时,几何刚度初始荷载不起作用,对施加的荷载工况进行静力非线性分析。下一个阶段中也一样,但前一阶段的荷载和本阶段的荷载相当于一同作用并对之进行分析; (6)移动荷载分析时,程序会自动将索单元转换为等效桁架单元进行线性分析,其几何刚度将利用“小位移〉初始单元内力”来确定。 索单元输入的初拉力是i 端或j 端的切向拉力吗? 相关命令模型〉单元〉建立... 问题解答索单元输入的初拉力不是i 端或j 端的切向拉力。建立索单元时输入的初拉力是为了生成索单元的初始几何刚度而输入的。索单元进行非线性分析时,是以新生成的初始几何刚度为初始状态,随荷载的变化不停更新结构的几何刚度。最后根据最终的几何刚度以及索的自重重新计算出索单元两端i 端和j 端的切向拉力。 初拉力荷载可分为体外力和体内力(“施工阶段分析控制” 对话框)。体内力荷载分析是在索单元上作用等效于初拉力荷载的变形量,再与其它结构相连接后进行整体结构分析的过程。根据索单元两端结构的刚度,索单元两端节点会发生新的位移量,此位移量将决定索单元的内力。而且同时作用在索单元上的其它荷载,也会使索单元的内力发生变化。假如索单元两端是固定边界条件,则索单元将发生与初拉力相同大小的内力。 采用程序中的“组合截面(钢管形-砼)”建立的模型,如何考虑钢管内混凝土部分的收缩徐变特性? 相关命令模型〉材料和截面特性〉时间依存性材料(徐变/ 收缩)荷载〉施工阶段分析数据〉施工阶段联合截面… 问题解答程序中的“组合截面(钢管形-砼)”定义的截面是利用使用等效截面特性值来进行分析和计算的。如果需要考虑混凝土部分的收缩徐变特性,就需要模拟出钢管与混凝土分阶段施工的过程。可采用程序中的“施工阶段联合截面” 功能来模拟组合截面的分阶段施工过程,然后按通常的方法定义混凝土的收缩徐变特性即可。 钢管混凝土截面的两种材料的时间依存特性是不同的,而且混凝土的膨胀的系数也比钢材大的多,所以在实际工程中两种材料之间的互相作用是无法正确模拟的。目前还没有出现能够完全正确地模拟两种材料之间的互相作用的软件。本程序也是假定钢材和混凝土紧密地连接在一起,且没有考虑钢管对混凝土的套箍作用。 定义收缩徐变对话框中有一个定义材龄的地方,定义施工阶段对话框中也有一个定义材龄的地方,两个材龄有什么区别?对哪些结果产生影响? 相关命令 模型〉材料和截面特性〉时间依存性材料(徐变/ 收缩) 荷载〉施工阶段分析数据〉定义施工阶段… 问题解答 定义收缩徐变对话框中的材龄是混凝土开始收缩的材龄,是混凝土从浇注到开始发生收缩(即拆模)时的时间;定义施工阶段时,也需要输入被激活结构组的材龄,这个材龄是混凝土开始能够承

midas关于斜弯桥

midas关于斜弯桥 -柔性梁格法如果解决实际问题的方面,介绍的都不是很详细,在此希望能通过此论题的开始,起到抛砖引玉的作用,一方面为困惑的设计人员深入了解,另一方面彼此交流互相提高弯桥的设计水平。 目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 弯桥的受力特性如下: 弯桥由于弯扭耦合现象的存在,其应力和变形不再仅仅是弯矩单独的影响,这样使得外梁弯曲应力大于内梁的弯曲应力,外梁的挠度大于内梁的挠度。一般不主张采用加大外腹板高度的箱梁截面形式来改善受力特性。

剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性有了以上的理论知识后便可以开始弯桥的设计,步骤如下: 1、截面尺寸的拟订 2、模型的划分 3、模型特性的计算 4、结果整理,并根据内力输出结果配筋 5、检算各项设计指标:设置预偏心,支承反力的调整应力、挠度、裂缝宽度、斜截面承载力检算、抗扭检算等。 现以一三跨曲线梁桥为例说明以上的设计过程。跨径20m+25m+20m;梁高1.6m,端横梁宽1.0m,中横梁宽度均为2.0m 桥面宽为:净8+2x0.5m(防撞栏);双支座径向距离5.0m,单支座设在横梁中心,曲线半径50.0m,其截面形式如下: 目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。尤其在互通式立交的匝道桥设计中应用更为广泛。由于受地形、地物和占地面积的影响,匝道的设计往往受到多种因素的限制,这就决定了匝道桥设计具有以下特点: ⑴匝道桥的桥面宽度比较窄,一般匝道宽度在6~11m左右。 ⑵由于匝道是用来实现道路的转向功能的,在城市中立交往往受到占地面积的限制,所以匝道桥多为小半径的曲线梁桥,而且设置较大超高

根据MIDASCivil的斜拉桥施工监控仿真分析

基于MIDAS Civil的斜拉桥施工监控仿真分析 【摘要】斜拉桥结构复杂,超静定次数高,施工复杂。本文以一座预应力混凝土独塔斜拉桥为研究背景,介绍了斜拉桥施工监控的意义及施工仿真计算的分析方法,确定了桥梁施工各阶段的立模标高及索力值。 【关键字】斜拉桥;施工监控;有限元;预拱度斜拉桥结构较复杂,超静定次数高,在施工过程中有效地进行内力控制和线形控制是保证斜拉桥安全性和耐久性的关键。我国已建成相当数量的斜拉桥,施工控制问题已经越来越受到重视。尽管在设计时已经考虑了施工中可能出现的情况,但是施工中斜拉索的实际张拉力、梁段的重量、材料的弹性模量、各构件混凝土徐变收缩和温度对结构的非线性影响等因素,在设计时很难准确把握。所以必须在施工过程中对桥梁结构进行实时监测,并根据监测结果对设计的施工过程中进行相应的调整,使桥梁建成时最大可能地接近设计状态。 1工程概况 江油市涪江五桥主桥为跨径组合为155+155m的

两跨预应力混凝土单塔双索面斜拉桥。主梁采用预应力混凝土双纵肋式连续梁,桥面全宽32.5m,标准梁段边肋高度2.7m,桥面板厚度为28cm;肋间横梁间距与拉索间距相同,厚度30cm。除索塔区0号梁段、边跨合拢段为非标准梁段外,每个悬臂侧各有23个标准梁段,其标准梁段长度为6.0m。悬臂浇筑梁段均采用前支点挂篮悬浇施工,最大节段控制重量375吨,挂篮设计重量170吨。 2有限元模型 斜拉桥为多点支承的高次超静定结构,运用传统结构力学中的力法和位移法来解,显然不便。计算技术的不断发展使有限单元法成为桥梁结构分析必不可少的得力工具。桥梁施工的每一个阶段的内力和线形都可以有限元模拟计算出来并和实际内力和线形数据作对比,从而做到实时跟踪监测和调整。 本桥采用Midas civil进行建模分析,斜拉索采用只受拉索单元,主梁和桥塔均采用梁单元。主梁模型采用单根主梁带刚性短刚臂的鱼骨式模型,如图1所示。结构所受荷载包括恒载和活载,同时考虑混凝土收缩徐变的影响。一期恒载主要为结构自重,标准梁段重量按375T计算,二期恒载包括桥面铺装、防撞护栏等按159KN/m计算。挂篮重量为170T,用节点

基于MIDASCivil的斜拉桥施工监控仿真分析

基于MIDAS Civil 的斜拉桥施工监控仿真分析 【摘要】斜拉桥结构复杂,超静定次数高,施工复杂。本文以一座预应力混凝土独塔斜拉桥为研究背景,介绍了斜拉桥施工监控的意义及施工仿真计算的分析方法,确定了桥梁施工各阶段的立模标高及索力值。 【关键字】斜拉桥;施工监控;有限元;预拱度斜拉桥结构较复杂,超静定次数高,在施工过程中有效地进行内力控制和线形控制是保证斜拉桥安全性和耐久性的关键。我国已建成相当数量的斜拉桥,施工控制问题已经越来越受到重视。尽管在设计时已经考虑了施工中可能出现的情况,但是施工中斜拉索的实际张拉力、梁段的重量、材料的弹性模量、各构件混凝土徐变收缩和温度对结构的非线性影响等因素,在设计时很难准确把握。所以必须在施工过程中对桥梁结构进行实时监测,并根据监测结果对设计的施工过程中进行相应的调整,使桥梁建成时最大可能地接近设计状态。 1工程概况 江油市涪江五桥主桥为跨径组合为155+155m 的两跨预应力混凝土单塔双索面斜拉桥。主梁采用预应 力混凝土双纵肋式连续梁,桥面全宽32.5m,标准梁段边肋高度2.7m,桥面板厚度为28cm;肋间横梁间距与拉索间距相

同,厚度30cm。除索塔区0号梁段、边跨合拢段为非标准梁 段外,每个悬臂侧各有23 个标准梁段,其标准梁段长度为6.0 m。悬臂浇筑梁段均采用前支点挂篮悬浇施工,最大节段控制重量375 吨,挂篮设计重量170 吨。 2有限元模型斜拉桥为多点支承的高次超静定结构,运用传统结构力学中的力法和位移法来解,显然不便。计算技术的不断发展使有限单元法成为桥梁结构分析必不可少的得力工具。桥梁施工的每一个阶段的内力和线形都可以有限元模拟计算出来并和实际内力和线形数据作对比,从而做到实时跟踪监测和调整。 本桥采用Midas civil 进行建模分析,斜拉索采用只受拉索单元,主梁和桥塔均采用梁单元。主梁模型采用单根主梁带刚性短刚臂的鱼骨式模型,如图1 所示。结构所受荷载包括恒载和活载,同时考虑混凝土收缩徐变的影响。一期恒载主要为结构自重,标准梁段重量按375T 计算,二期恒载包括桥面铺装、防撞护栏等按159KN/m计算。挂篮重量为 170T,用节点 荷载进行模拟。活载按城-A 级取值,人群荷载按 CJJ11-2011规范第10.0.5条取值。图1 有限元仿真模型3分析结果 3.1 .应力 本桥为预应力混凝土受弯构件,在预应力和构件自重,

相关文档
最新文档