太阳能电池充电应用电路图集

太阳能电池充电应用电路图集
太阳能电池充电应用电路图集

太阳能电池充电器电路图

太阳能电池充电器电路

太阳能稳压电源电路图

太阳能稳压电源电路图

太阳能充电器电路图

太阳能充电器电路

太阳能电池快速充电器电路图

太阳能电池快速充电器电路图

太阳能电池并联充电器电路图

太阳能电池并联充电器电路图

太阳能控制电路

如图所示,双运放LM358与R1、R2构成两个电压比较器,参考电压为VDD(+12V)的1/2。光敏电阻RT1、RT2与电位器RP1和光敏电阻RT3、RT4与电位器RP2分别构成光敏传感电路,该电路的特殊之处在于能根据环境光线的强弱进行自动补偿。如下图所示,将RT1和RT3安装在垂直遮阳板的一侧,RT4和RT2安装在另一侧。当RT1、RT2、RT3和RT4同时受环境自然光线作用时,RP1和RP2的中心点电压不变。如果只有RT1、RT3受太阳光照射,RT1的内阻减小,LM358的3脚电位升高,1脚输出高电平,三极管VT1饱和导通,继电器K1导通,其转换触点3与触点1闭合,同时RT3内阻减小,LM358的5脚电位下降,K2不动作,其转换触点3与静触点2闭合,电机M正转;同理,如果只有RT2、RT4受太阳光照射,继电器K2导通,K1断开,电机M反转。当转到垂直遮阳板两侧面的光照度相同时,继电器K1、K2都导通,电机M才停转。在太阳不停地偏移过程中,垂直遮阳板两侧光照度的强弱不断地交替变化,电机M转-停、转-停,使太阳能接收装置始终面朝太阳。4只光敏电阻这样交叉安排的优点是:LM358的3脚电位升高时,5脚电位则降低,LM358的5脚电位升高时,3脚电位则降低,可使电机的正反转工作既干脆又可靠。可直接用安装电路板的外壳兼作垂直遮阳板,避免将光敏电阻RT2、RT3引至蔽阴处的麻烦。使用该装置,不必担心第二天早晨它能否自动返回。早晨太阳升起时,垂直遮阳板两侧的光照度不可能正好相等,这样,上述控制电路就会控制电机,从而驱动接收装置向东旋转,直至太阳能接收装置对准太阳为

锂电池充电电路

所有的 输入关键字 联系我们 | TI 全球网站: 中国 (简体中文) | my.TI 登录 返回目录页 先进的锂电池线性充电管理芯片BQ2057及其应用 北京理工大学机电工程学院 魏维伟 李杰 摘要:本文介绍美国TI 公司生产的先进锂电池充电管 理芯片BQ2057,利用BQ2057系列芯片及简单外围电 路可设计低成本的单/双节锂电池充电器,非常适用于 便携式电子仪器的紧凑设计。本文将在介绍BQ2057 芯片的特点、功能的基础上,给出典型充电电路的设 计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管 理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或 双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol) 电池的充电需要,同时根据不同的应用提供了MSOP 、 TSSOP 和SOIC 的可选封装形式,利用该芯片设计的 充电器外围电路及其简单,非常适合便携式电子产品 的紧凑设计需要。BQ2057可以动态补偿锂电池组的内 阻以减少充电时间,带有可选的电池温度监测,利用 电池组温度传感器连续检测电池温度,当电池温度超 出设定范围时BQ2057关闭对电池充电。内部集成的 恒压恒流器带有高/低边电流感测和可编程充电电流, 充电状态识别可由输出的LED 指示灯或与主控器接 口实现,具有自动重新充电、最小电流终止充电、低 功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可 选封装及型号,其封装形式如图2-1所示,有MSOP 、

太阳能电池充电控制器电路图

太阳能电池充电控制器电路图(含原理说明) 采用专用蓄电池充电管理芯片UC3906设计太阳能充电控制器,经过实验室调试,其各项性能达到要求。控制器由切换电路、充电电路、放电电路三部分组成(见附图)。下面分别介绍其各个组成部分。 切换电路:太阳能电池接在常闭触点,继电器线圈受三极管Q2控制,当太阳能电池受光照时,Q1导通而02截止,使得继电器线圈绝大部分时间不耗电。在太阳能电池不受光照时,Q1截止而Q2导通,交流电经常开触点送出。 充电电路:由UC33906和一些附属元件共同组成了"双电平浮充充电器"。太阳电池的输入电压加入后.利用电阻R,检测出电流的大小,再利用R2、R3、R4、R5、R6检测蓄电池的工作参数,经过内部电路分忻.进而通过Q3对输出电压、电流进行控制。Rs取值为0.025Ω,充电电流最大为10A,根据蓄电池的容量大小.可改变R,以改变充电电流。 在恒流快速充电状态下,充电器输出恒定的充电电流Imax,同时充电器监视电池两端电压,当电池电压达到转换电压V12时,电池的电量已恢复到容量的70%~90%,,充电器转入过充电状态,在此状态下,充电器输出电压升高到V。。由于充电器输出电压恒定不变.所以充电电流连续下降.当充电电流下降到Io ct 时,电池容量已达到额定容量的100%,充电器输出电压下降到较低的浮充电压Vf蓄电池进入浮充状态。此时U C3906的⑩脚输出高电平,LM2903的①脚输出低电平,发光二极管发光,指示蓄电池已充足电。图中的电路还具有涓流充电的功能,涓流充电的电流值为It,R2为涓流充电的限流电阻。 放电电路:用LM2903接成双迟滞电压比较器,可使电路在比较电压的临界点附近不会产生振荡。R10、R Pl、RP2、LJ2B、Q4、Q5和K2组成过放电压检测比较控制电路。电位器RPl、RP2起设定过放电压的作用。可调三端稳压器LM317给LM2903提供稳定的8V工作电压。 当蓄电池端电压大于预先设定的过放电压值时,U2B的⑥脚电位高于⑤脚电位,⑦脚输出低电位使04截止,Q5导通,K2动作,其常开触点闭合,LED2发光指示负载工作正常;蓄电池对负载放电时端电压会逐渐降低,当端电压降低到小于预先设定的过放电址值时。U2B的⑥脚电位低于⑤脚电位,⑦脚输出高电位使Q 4导通,Q5截止,K2释放,LED2熄灭,指示过放电。该控制器能有效地防止蓄电池过充、过放、过流,可满足了太阳能充电控制器的需要。

关于浅谈锂电池充电电路原理及应用的专业论文

专业电子类论文 题目:浅谈锂电池充电电路原理及应用 作者:yyj 职称:自动化工程师 发表期刊号:XXX-XX 浅谈锂电池充电电路原理及应用 现代生活中,科技高速发展,电子产品需求量急升,应用之广,已达到一个新高度。从而对电子产品充电电池的要求,也越来越高。常用的电池有多种,而锂电池占据较大份额。锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比;

2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。 四、锂电池的充放电要求: 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

基于单片机的太阳能充电器

本科生毕业设计便携式太阳能充电器 2013 年04 月

独创性声明 本人郑重声明:所呈交的毕业设计是本人在指导老师指导下取得的研究成果。除了文中特别加以注释和致谢的地方外,设计中不包含其他人已经发表的研究成果。与本研究成果相关的所有人所做出的任何贡献均已在设计中作了明确的说明并表示了谢意。 签名: 年月日 授权声明 本人完全了解许昌学院有关保留、使用本科生毕业设计的规定,即:有权保留并向国家有关部门或机构送交毕业设计的复印件和磁盘,允许毕业设计被查阅和借阅。本人授权许昌学院可以将毕业设计的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编设计。 本人设计中有原创性数据需要保密的部分为(如没有,请填写“无”): 学生签名: 年月日 指导教师签名: 年月日

便携式太阳能充电器 摘要 16到20世纪,随着工业革命的兴起,科学技术的不断发展,人们对自然界中化石能源的索取速度越来越快、数量越来越多。与此同时,化石能源的燃烧对于自然界的生态环境造成了难以弥补的破坏。作为可再生能源,太阳能有着广阔的应用前景,可以成为移动设备供电的有吸引力的能源。当我们外出或旅游时,常常因为手机没电所带来的麻烦而苦恼,但又不能及时找到可以充电的场所,影响了手机的正常使用。为了解决这一问题,本毕业设计介绍一种便携式的太阳能手机充电器,利用单片机控制,实现对移动设备充放电的自由与智能控制。与常规的充电器相比,太阳能充电器必将因为便携式而得到长远的发展。 关键词:能源;太阳能;电池;单片机;便携式

Portable Solar Charger based on Microcontroller Abstract From 16 to 20 century, with the rise of industrial revolution and continuous development of science and technology, people demand a large quantity of fossil energy with increasing speed. At the same time, the burning of fossil energy has caused irreparable damage to the environment. As a renewable energy, solar energy enjoys broad application prospect. Solar power is attractive, because it supplies power for portable devices. When we go out or travel, we are often bothered by the failing power of cellphone. And we can’t find places to charge in time, which affects the normal use of mobile phone. In order to solve this problem, this thesis will introduce a type of portable solar mobile charger, using single-chip microcomputer so that the charge and discharge of mobile devices can be freely and intelligently controlled. Compared with the conventional charger, solar energy charger will definitly have a long-term development for its portable type. Key words: energy;solar energy;battery;intelligent;portable

LT8490锂电池充电器电路设计详解

LT8490 锂电池充电器电路设计详解 标签:LT8490(3) 低功耗(190)电源管理(505) LT8490( $12.5700)是降压升压开关稳压电池充电器,实 现恒流恒压( CCCV )充电模式,适用于大多数电池,包括密封铅酸电池( SLA )、溢流电池、胶体电池和锂电池。片上 逻辑在太阳能应用时提供自动最大功率点跟踪( MPPT),并 具有自动温度补偿功能。主要用在太阳能电池充电器、多种类型铅酸电池充电、锂电池充电器以及电池供电的工业或手持军用设备。 状态和故障引脚含有充电器的信息可以被用来驱动 LED指示灯。该器件采用扁平(高度仅0.75mm)7mm x 11mm 64 引脚QFN 封装。 图1 LT8490 框图 LT8490 主要特性

-VIN 范围:6V?80V - VBAT 范围:1.3V?80V ?单 电感器允许VIN高于,低于或等于VBAT ?自动MPPT,用于太阳能充电?自动温度补偿?无需任何软件或固件开发?从 太阳能电池板或直流电源供电?输入和输出电流监视器销弓 脚?四位一体的反馈回路?同步固定频率: 100kHz?400kHz 的-64 引脚(7mm X 11mm x 0.75mm 高度)QFN 封装LT8490 应用?太阳能电池充电器?多种铅酸蓄电池充电?锂离子电池充电器?电池供电工业产品或便携式军用设备 图2 LT8490 27.4V 锂电池充电器电路图 DC2069A( $195.9800)-LT8490 演示板高效率MPPT 电池充电器控制器17V?54V ,最高200W 太阳能电池板的输入电压。12V SLA 电池,最高16.6A 充电电流。演示电路2069A采用了LTR8490 (高性能降压-升压型转换器),实现了最大功率点跟踪功能和灵活的充电特性,适用于大多数类型的电池,如水淹电池,密封铅酸电池和锂离子电池,可在输入电压高于、低于或等于电池电压的情况下工作。 该演示板配置为17V~54V 的输入电压范围,电源可以 是太阳能电池板36?72单元(最高200W),或直流电压源。 提供两种输入接口。LTC4359($2.5500)理想的二极管控制器可以保护直流电源的输出(不受太阳能电池板回流的影响)这使得,例如在 24VDC 电源接通的同时,又可以使具有更高的电压的太阳能电池板,被用于对电路供电。

基于单片机太阳能充电器设计

山东交通学院 课程设计报告 课题名称基于单片机的太阳能充电器的设计学生姓名傅传银唐飞翔 学号140818108 140818110 专业电子信息工程(信职141) 指导教师张波 2016年06月26日

1 绪论 1.1 本课题研究背景及现状 当代社会随着一些不可再生资源如煤炭,石油等日益减少,使得各国社会经济越来越受能源问题的约制,因此许多国家开始逐渐的实行“阳光计划”,开发洁净的能源如太阳能,用以成为本国经济发展的新动力。 首先让我们想到的是太阳能电池,因为它不会消耗水,燃料等物质,并且不会释放任何对环境有污染的气体,是直接通过太阳光与材料的相互作用释放出电能,这种无污染资源对环境的保护有着相当重要的意义[1]。由于无公害的作用,目前世界太阳能电池产业已经出具规模,1995年到2004年的十年内平均年增长率达到30%以上。随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势[2]。世界各国对光伏发电也越来越重视,目前全世界已超过一百个国家使用光伏发电系统,其中以欧洲为代表的发达国家为主,占总市场的80.1%,早在09年的时候,世界各国总的光伏新加装机容量接近800万千瓦,截至当年低,世界光伏装机容量总共接近2700万千瓦[3]。随着并网光伏发电市场的迅速发展,让它受到了世界各地的关注。 目前,太阳能电池的应用已经逐渐广泛得到推广,众所周知,沙漠地区由于气温特别高,因此最具有大规模开发太阳能的潜力,这使得沙漠等偏远地区对其的使用更加方便,并且能减低甚至节省昂贵的输电线路,从长远发展状况来看,随着改善太阳能电池制造技术和新的光 - 电转换装置发明,国家环保和清洁能源,光伏发电系统和太阳能发电的巨大需求恢复将继续利用太阳辐射能比较实用方法,这可以为人类以后能使用太阳能提供了广阔的开辟前景[4]。 当代社会太阳能手机充电器得到了一定的使用,它具有运用方便,环保,节能,格外使用于应急场合,高效率充电,性价比较高,让大家无论身处何处,都不会受到手机没电的困扰[5]。借此太阳能手机充电器的众多优点,因此提出本课题。 1.2 课题设计思想 基于单片机的太阳能充电器的设计是本次探导的课题。首先,由于太阳能电池板的电压会随太阳光的强度波动,强烈的太阳光的太阳能电池板的电压是高的数,当太阳光弱的强度,所述太阳能电池板的输出电压低时,从太阳能电池板的输出到稳定的

CN3063 CN3065和CN3082利用太阳能对电池充电

利用太阳能板对电池充电的应用 本文主要讨论太阳能电池的工作原理和电气输出特性,以及利用CN3063、CN3065和CN3082这三款芯片利用太阳能为电池充电的解决方案。 太阳能电池的I-V 特性 太阳能电池一般由p-n 结组成,p-n 结中的光能(光子)通过导致电子和空穴的重新组合而产生电流。由于p-n 结的特性类似于二极管的特性,我们一般以如图1中所示的电路作为太阳 能电池特性的一个简化模型。 IPH 图1 太阳能电池简化电路模型 电流源IPH 产生的电流和太阳能电池上的光量度成正比。在没有负载连接的时候,几乎所有产生的电流都流过二极管D ,其正向电压决定着太阳能电池的开路电压(V OC )。该电压会因各种类型太阳能电池的特性不同而有所差异。但是,对于大多数硅电池而言,这一电压都在0.5V 到0.6V 之间,这也是p-n 结二极管的正常正向电压。 在实际太阳能电池应用中,并联电阻(RP)的泄漏电流很小,而RS 则会产生连接损耗。图2展示了太阳能电池在输出上的特性。由于串联电阻(RS)的原因,电压会稍有下降。然而,有时如果通过内部二极管的电流太小,会导致偏置不够,并且穿过它的电压会随着负载电流的增加而急剧下降。最后,如果所有电流都只流过负载而不流过二极管,输出电压就会变为零。这个电流被称为太阳能电池的短路电流(I SC )。I SC 和V OC 都是定义太阳能工作性能的主要参数之一。因此,太阳能电池被认为是“电流限制”型电源。它的输出电压会随着输出电流的增加而降低,并在负载电流达到短路电流时降为零。 由于太阳能电池的输出电流同光照强度的变化而变化,所以一般不能用太阳能电池给用电系统直接供电,一般需要将太阳能电池的能量先存储在蓄电池中,然后通过电池为系统供电。这就要求充电电路能够适应太阳能电池的电压-电流输出特性。 CN3063、CN3065和CN3082就是根据太阳能电池的电压-电流输出特性而设计的,芯片内部集成有8位模数转换器,它能够根据输入电压源的电流输出能力自动调节充电电流。所以 只要太阳能电池的开路电压V OC 在4.35V~6V 之间, 那么CN3063、CN3065和CN3082就可以对电池进行充电。而且用户不需要考虑最坏情况,只要根据最好情况设置充电电流就可以了,最大限度地利用了输入电压源的电流输出能力。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

太阳能电池充电应用电路图集

太阳能电池充电器电路图 太阳能电池充电器电路

太阳能稳压电源电路图 太阳能稳压电源电路图 太阳能充电器电路图 太阳能充电器电路

太阳能电池快速充电器电路图 太阳能电池快速充电器电路图 太阳能电池并联充电器电路图 太阳能电池并联充电器电路图 太阳能控制电路

如图所示,双运放LM358与R1、R2构成两个电压比较器,参考电压为VDD(+12V)的1/2。光敏电阻RT1、RT2与电位器RP1和光敏电阻RT3、RT4与电位器RP2分别构成光敏传感电路,该电路的特殊之处在于能根据环境光线的强弱进行自动补偿。如下图所示,将RT1和RT3安装在垂直遮阳板的一侧,RT4和RT2安装在另一侧。当RT1、RT2、RT3和RT4同时受环境自然光线作用时,RP1和RP2的中心点电压不变。如果只有RT1、RT3受太阳光照射,RT1的内阻减小,LM358的3脚电位升高,1脚输出高电平,三极管VT1饱和导通,继电器K1导通,其转换触点3与触点1闭合,同时RT3内阻减小,LM358的5脚电位下降,K2不动作,其转换触点3与静触点2闭合,电机M正转;同理,如果只有RT2、RT4受太阳光照射,继电器K2导通,K1断开,电机M反转。当转到垂直遮阳板两侧面的光照度相同时,继电器K1、K2都导通,电机M才停转。在太阳不停地偏移过程中,垂直遮阳板两侧光照度的强弱不断地交替变化,电机M转-停、转-停,使太阳能接收装置始终面朝太阳。4只光敏电阻这样交叉安排的优点是:LM358的3脚电位升高时,5脚电位则降低,LM358的5脚电位升高时,3脚电位则降低,可使电机的正反转工作既干脆又可靠。可直接用安装电路板的外壳兼作垂直遮阳板,避免将光敏电阻RT2、RT3引至蔽阴处的麻烦。使用该装置,不必担心第二天早晨它能否自动返回。早晨太阳升起时,垂直遮阳板两侧的光照度不可能正好相等,这样,上述控制电路就会控制电机,从而驱动接收装置向东旋转,直至太阳能接收装置对准太阳为

锂电池充电电压与充电电流设定

锂电池的充电电压和电流应该是多少 锂电池充电电流和电压关系图的原理图 有上图可以看出,锂电池充电电流和电压是动态变化的,这是由锂电池本身的化学物质决定的。所以需要根据锂电池本身的充电特性来配置充电IC 的性能,以达到正确,安全,高效 的使用锂电池。日常表述中的“锂电池充电电流”是针对锂电池在充电过程中所处快速充电阶 段的充电电流而言的,作为一个动态的过程,锂电池最理想充电电流实际上是分为三个阶段的。常用锂电池充电IC 如TP4012A 、TP8052 、TP8056 ,本文最后处有部分介绍。 几种不同充电状态的性能描述 1、待机状态: 在如下几种情况下会处理待机状态: a. 输入电压低于电路最低工作电压。 b. 电池电压充饱后。 c. 利用外置开关强行关断IC,停止IC 充电。 待机状态的电压电流特性:充电IC 无充电电压输出,IC 输入电流在uA 级,可以减小电路损耗。 2、预充状态:如上图所示。预充电时的最佳电流:即当锂电池的初始/空载电压低于预充电阈值时,首先要经过一个预充电阶段,就单个锂离子电池而言,这个阈值一般为 3.0V ,在此阶段,预充电电流大约为下一个阶段——恒流充电阶段电流的10% 左右。 3、恒流充电状态:如上图所示最大充电电流部分,在电池电压已经大于预设电压阀值而小 于最高电压 4.2V 时,此时IC 将以外挂电阻设定的最大充电电流来给电池充电。将电池电

压充到等于最大充电电压( 4.2V 附近)时为止。 。恒流充电时的最佳电流:所谓恒流就是电流恒定,电压逐渐升高,此时进入快速充电阶段。大多数的恒流充电电流设定为0.5~0.8C 之间,可以理解为0.7C ,也就是在不考虑其他因素的情况下,大约两个小时可以充满。之所以选择0.7C ,是因为这个电流很好地做到了充电 时间与充电安全性的平衡。 恒流充电状态时需要注意的几个问题: 1. 在此状态下,IC 处于最大充电电流状态,此时的损耗也是也是最大的。线性降压的损 耗计算=(VIN-VOUT)×IOUT 。此时需要注意IC 的最高工作温度。 2. 因为最高充电电流的造成温升的提高,IC 会自动降低最大充电流。这就是在过热时充 电电流下降的原因。 4、恒压充电状态:如上图所示最大充电电压部分,当检测到电池电压等于或者接近电池充 电电压时。此时将会以恒定 4.2V 充电电压,而逐步降压充电电流的充电方式。当检测到充 电电流小于最大设定电流的1/10 时,将会停止充电。恒压充电时的充电电流:就单节锂离 子电池而言,当电池达到一定电压值时,即进入恒定电压充电,这个电压值一般为 4.2V ,在此阶段,电压不变,电流减小;这种电流减小是个依次递减过程,大多数的锂电池保护选 择0.1C 为终止电流,这也就意味着充电过程进入结束状态。一旦充电结束,则充电电流降 为零。在此状态下需要注意的问题就是:当电池充大最高设定电压时可以自动关断,同时, 当IC 的过压保护点在非正常电池状态下,可以自动锁定。 锂电池最佳充电电流的核心是恒流充电时的电流设计,这里要强调的是,大多数便捷式 锂电池较宜设计为0.5C~0.8C 充电,如:iPhone 的1400mAh 容量(容量mAh =电流mA×时间h)的电池为例,苹果选择了0.7C ,即苹果充电电流多为1A 左右,大部分的电池在0.5C--0.8C 之间你们可以选择了! 锂电池最大充电电流严格说是由电池结构决定的,因而,各个锂电池生产厂家对此规定 并不一致,有的设定为0.6C ,便携式锂电池最高的规定为1C。 当然也不能忽视预充电和恒压充电的电流设计,这两个过程中,如果初始电压不低于预 充电阈值 3.0V ,则不存在预充电过程。总的来说,在恒流充电过程前后有一个事前酝酿和 运动休整的过程有利于锂电池的长期使用。 锂电池充电管理IC 分类及应用 电池充电管理IC 分类: 按照充电电路结构可以分为: 1. 线性降压充电管理IC: 主要型号: TP4010,TP4011,TP4012,TP4013,TP4014,TP4015,TP4016 。 线性降压部份基本功能类似于LDO 的线性降压电路。 最大可充电电流设定:一般是通过恒流源外挂电阻的方式来设定,而且一般是内部集成功率器件。 主要应用领域:MP3 ,MP4 ,GPS ,PMP ,PDP

智能太阳能充电电路设计

智能太阳能充电电路设计 针对油田无线示功仪及其无线网络节点的供电问题,采用开关电源技术实现了太阳能组件电压变化或负载波动时自动调节占空比的供电网络,运用自动控制技术设计了过电压保护电路、过放电保护电路与应急充电电路等,采用充电管理技术实现了锂电池充电及电压调节电路,根据光敏传感器输出差值比较电压设计了太阳自动跟踪控制器。该太阳能充电电路思路新颖,在应用上是一种突破,工作效率达到92%,输出电压精度为98%,系统运行一年来,工作性能安全、稳定。应用证明具有较高的实用和推广价值。 随着无线技术的发展,无线网络技术越来越多投入到实际应用中,无线传感器网络一般分布范围较广,架设供电线路,投资大,维护成本高。如采取干电池方式供电,则每个节点的电源供电能力有限,对每个节点更换电池不仅费时、费力,增加成本,而且影响工作效率。能否稳定持续的供电,成为制约油田无线示功仪及其无线网络发展的一个重要因素,太阳能技术的发展使供电方式产生了飞跃式的发展,已经成为油田无线示功仪及其中继网络节点供电方式的发展方向。本文拟对油田监测示功仪及中继网络节点设计一种智能化、免维护型的太阳能充电电路,为无线网络节点供电。该设计电路具有以下特点:①基于开关电源技术设计的充电网络具有自动调节占空比的功能,具有很宽的输入电压范围。②采用线性电源管理芯片,用先预充2恒流2恒压的充电方式完成整个充电过程。③采用低噪声、高速度的CMOS型电压调节器,具有高精度的恒压、恒流输出。④充电过压保护、锂电池过放电保护功能,使锂电池充、放电安全可靠。⑤自动跟踪太阳的功能,太阳能采集板始终保持对准太阳,充分利用太阳能。 1系统设计 现有的光伏电池,单体的输出电压都很低(在1V以下),本设计中,将多个光伏电池相串联,组成太阳能组件。通过可以自动调节占空比的供电网络保证在光照强度变化和负载变化时,输出电压基本稳定,为充电管理芯片提供稳定的电压输入。通过对供电网络的副边电压监测,保护充电管理芯片不因电压过高而损坏。通过对电池两端的电压监测,保证锂电池不会因过放电而损坏。由于无线示功仪及其中继网络节点的供电要求是313V,采用低噪声、高速度的CMOS 型电压调节器。在自动跟踪控制器作用下,始终保持全天候跟踪太阳。为了防止因连续阴雨天而导致的太阳能供电不足,设计应急充电电路,充电期间,无线示功仪及其节点正常运行。具体系统设计模块如图1所示。

锂电池充电电路及原理简介

锂离子电池的原理及充电器 锂离子电池是前几年出现的金属锂蓄电池的替代产品,它的阳极采用能吸藏锂离子的碳极,放电时,锂变成锂离子,脱离电池阳极,到达锂离子电池阴极。锂离子在阳极和阴极之间移动,电极本身不发生变化。这是锂离子电池与金属锂电池本质上的差别。锂离子电池的阳极为石墨晶体,阴极通常为二氧化锂。充电时,阴极中锂原子电离成锂离子和电子,并且锂离子向阳极运动与电子合成锂原子。放电时,锂原子从石墨晶体内阳极表面电离成锂离子和电子,并在阴极处合成锂原子。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,所以这种电池叫做锂离子电池。 一、锂离子电池的充放电特性 500mAh的AA型锂离子电池的充放电特性曲线如图1。单只锂离子电池的充电电压最好保持在4.1V+50mV,充电电流通常限制在1C(500mA)以下,否则会造成锂离子电池永久性损坏。锂离子电池通常采用恒流/恒压充电模式,即先采用1C的恒定电流充电,电池电压不断上升,当上升到4.1V时充电器应立即转入恒压方式(4.1V+50mV),充电电流逐渐减小,当电池充足电时,电流降到涓流充电电流。用此方法,大约两个小时电池可以充足(500mAh)。锂离子电池放电电流不应超过3C(1.5A),单体电池电压不应低于2.2V,否则会造成损坏。采用0.2C的放电电流,电池电压下降到2.7V时,可以放出额定电池容量(500mAh),采用1C的放电电流时,电池能够放出90%的电池容量,另外环境的温度对电池的放电容量也会产生影响,所以规定了锂离子电池放电时的温度为-20℃~+60℃。锂离子电池的一个特点是比较容易显示剩余电量,因为锂离子电池的工作电压随时间徐徐下降,锂离子电池放电起始电压为4.1V(4.2V),放电终止电压为2.5V。 二、锂离子电池的优缺点 优点:1.工作电压高;2.体积小、重量轻、能量高;3.寿命长;4.安全快速充电;5.允许温度范围宽;6.放电电流小、无记忆效应、无环境污染。 缺点:1.与干电池无互换性;2.不能快速充电;3.内部阻抗高;4.工作电压变化大;5.放电速率大,容量下降快,无法大电流放电。 三、锂离子电池充电器 下面介绍一种新型的锂离子电池充电器模块PS1719,它采用恒流/恒压方式控制锂离子电池充电。恒流、恒压调整方便,以充电电流减小到最大电流(恒流)的15%作为充满判别基准,并终止充电。此外还有充电显示和充满显示功能。PS1719模块工作电压为9V,内部结构见图2。 图3给出了PS1719的典型电路图,按图可以组成简单且功能齐全的锂离子电池充电器。

(经典)锂电池过充电_过放_短路保护电路详解

(经典)锂电池过充电_过放_短路保护电路详解 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状

4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响?

锂电池充电电路及电源自动切换电路的设计

BATT BATT-8.4V 图1 锂电池充电电路原理图 输入电源V in =24V ,充电电流1~1.5A,锂电池参数为8.4V,2.5A 1、充电电流的设置 恒流充电电流由下式决定:CS CH R mV I 200=,取A I CH 25.1=,得 Ω=16.0CS R 选取R CS 参数为0.16Ω±5%/1W 实际使用电阻值为150mΩ,得A A R mV I CS CH 33.1150 200 200=== 2、充电结束电流的设置 在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC 管脚的电阻所设置的电流时,充电结束。充电结束电流由下式决定: 6 10 ) 314350(278.1×+×= CS EOC R R I ,R3取10K ,I EOC =0.2A 3、电感的选择 在正常工作时,瞬态电感电流是周期性变化的。在P 沟道MOS 场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P 沟道MOS 场效应晶体管关断期间,电感向电池放电,电感电流减小。电感的纹波电流随着电感值的减小而增大,

随着输入电压的增大而增大。较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。所以电感的纹波电流应该被限制在一个合理的范围内。 电感的纹波电流可由下式估算: )1(1 VCC V V L f I BAT BAT L ?×××= Δ 其中: f 是开关频率,300KHz L 是电感值 VBAT 电池电压 VCC 是输入电压 在选取电感值时,可将电感纹波电流限制在△IL =0.4×I CH ,I CH 是充电电流,得 L>34.2μΗ,实际取电感值为39μΗ。 4、电源自动切换电路 VOUT 给后续电路供电 图2 电源自动切换电路 当外部电源断开时,PMOS 管导通,由电池给外部系统供电,当外部电源接入时, PMOS 管关断,电池和系统电源之间断开,外部电源对系统供电。

太阳能充电保护电路

2.1 太阳能充电保护电路 2.1.1 太阳能电池板 太阳能电池板不仅白天能提供电能,而且在夜间也可提供电力。太阳能电池板同晶体管一样,由半导体组成的,主要材料是硅,也有一些其他合金。 太阳能电池板的表面由两个性质各异的部分组成。当受到光的照射时,能够把光能转变为电能,使电流从一方流向另一方。 太阳能电池板只要受到阳光或灯光的照射,一般就可发出相当于所接收光能1/10的电能。为了使太阳能电池板最大限度地减少光反射,将光能转变为电能,一般在上面蒙上了一层防止光反射的膜,使太阳能电池板的表面呈紫色。 太阳能供电部分主要由太阳能电池板(光伏组件)、充电电路和蓄电池组成。光伏组件在白天吸收光照,将太阳能转化为电能储存在太阳能电池内。一般晴天时,在理想的光照强度下,充满电只要4小时。本系统采用15V太阳能电池板,实际测得电池板两端供电电压为17V~20V,充电电流为200mA~800mA。 2.1.2 蓄电池组容量设计 太阳能电池电源系统的储能装置主要是蓄电池。与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。它的容量比负载所需的电量大得多。蓄电池提供的能量还受环境温度的影响。为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。 (1)蓄电池的选用 能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。 (2)蓄电池组容量的计算

锂电池过充电-过放-短路保护电路详解

本文由https://www.360docs.net/doc/1d15991196.html,提供 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右

5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度

相关文档
最新文档