一种双锂电池组供电的混合动力汽车电池组设计

现代电子技术

Modern Electronics Technique

2015年11月15日第38卷第22期

Nov.2015Vol.38No.22

doi :10.16652/j.issn.1004?373x.2015.22.044

收稿日期:2015?04?09

0引言

电动汽车对环境友好,能量利用率高,在如今环境污染严重、石油资源有限的情况下,成为未来汽车产业的发展趋势[1]

。世界各主要国家,包括美国、日本、德国、法国等,都投入了很大的力量进行电动汽车研发。混合动力汽车是在传统驱动系统的基础上引进了电力驱动系统,与纯电动汽车相比,它有较长的行驶里程;与传统的内燃机汽车相比,它改善了燃油的经济性[2]。

目前,混合动力汽车已经全面进入产业化阶段,许多大公司推出了多款混合动力量产车型,其中丰田第三代Prius ,节油效果可以达到50%以上,百公里油耗下降到4.7升。截至2014年9月底,混合动力车的全球累计销量已经突破700万辆,达到705万辆[3]

然而,电池技术一直是电动汽车发展的瓶颈。在现有电池技术下,锂电池较铅酸电池、镍氢电池等而言具有能量密度高、工作电压高、无记忆效应、循环寿命长、

无污染、质量轻、自放电小等优点,成为动力电池的研究重点。但是,电动汽车的电压要求在100V 以上,需要数十个电池单体串联,并且为满足汽车续航所需电池容量,需要在串联基础上并联进行扩容。由于电池的生产工艺限制,锂电池单体之间存在容量、电压、内阻等的不一致,即使在同一批电池中也存在差异,并且随着使用时间和循环次数的增加,电池容量衰退和老化过程的不同还会加剧电池的不一致性。电池单体间的不一致性,会导致电池组整体性能下降,缩减电池组寿命。

串联电池组性能取决于电池组性能最差的那个电池单体,并且在充放电过程中,由于电池单体间的容量不一致可能造成个别单体电池的过充或过放。

在并联电池组中,电池单体不一致性会出现电流不均衡,并联支路电流同时受到本条支路参数和其他支路参数影响[4]。

由此可见,电池组的串并联方式,不仅影响宏观上的电量和电压,在微观上也会影响单体的寿命。通过研究合理的锂电池成组方式,辅以具有均衡模块的电池管理系统(Battery Management System ,BMS ),可以有效提

高电动汽车电池组寿命,优化电池性能。

一种双锂电池组供电的混合动力汽车电池组设计

莹,陈军峰,吴智正

(武警工程大学信息工程系,陕西西安

710086)

要:这里提出一种适用于混合动力汽车的双锂电池组供电方法。该混合动力汽车电池组由两个锂电池组组成,交

替供电和充电。大量锂电池单体的串并联会因单体之间一致性差而降低电池组寿命和可靠性。这种设计不仅可以消除电池并联中因一致性差引起的不均衡电流,还能进一步提高电池组的可靠性。

关键词:混合动力汽车;锂电池组;双电池组供电;优化成组中图分类号:TN958?34;TM912.8

文献标识码:A

文章编号:1004?373X (2015)22?0155?03

Design of dual lithium battery packs applied to hybrid power automobile

FANG Ying ,CHEN Junfeng ,WU Zhizheng

(Department of Information Engineering ,Engineering University of CAPF Engineering ,Xi ’an 710086,China )

Abstract :The power supply method of the dual lithium battery packs applied to hybrid power automobile is presented.The dual lithium battery packs are composed of two battery packs.The method makes one battery pack supply power for the vehicle while another is charged.The lifetime and reliability of the battery pack are influenced by the poor consistency of the batteries while they are connected in series or parallel.The design can eliminate the unbalanced current problem created by the poor con?

sistency of the paralleled batteries ,and improve the reliability of the battery packs.

Keywords :hybrid power automobile;lithium battery pack;twin battery pack power supply;optimized grouping

电动汽车电池包项目研究报告

电动汽车电池包研究报告 随着国家对新能源汽车的扶持和推广力度不断加大,行业规范也越来越完善,一些不符合要求的电池pack厂也逐渐被淘汰。未来要想在新能源汽车领域有所斩获,必须了解并适应国家对此行业的发展规划和发展方向。 根据国家对《锂离子电池行业规范条件》。首先是电池pack要进行公告申报,只有通过公告的电动汽车电池厂家,才能够进行电池的生产。 一、必要性 1、是对工厂的产能及实力的要求,《规范条件》对企业产能提出了量化的要求,锂离子动力蓄电池单体企业年产能力不得低于2亿瓦时,金属氢化物镍动力蓄电池单体企业年产能力不得低于1千万瓦时,超级电容器单体企业年产能力不得低于5百万瓦时。系统企业年产能力不得低于10000套或2亿瓦时。生产多种类型的动力蓄电池单体企业、系统企业,其年产能力需分别满足上述要求。 2、为推动企业的技术进步,《规范条件》对企业研发机构、人员、设计规范文件体系和具体的设计研发能力提出了要求,企业应建立产品设计研发机构,应配备占企业员工总数比例不得少于10%或总数不得少于100人的研究开发人员,应建立与汽车研发相适应的产品设计开发流程和技术管理体系,建立汽车动力蓄电池产品设计规范,建立产品开发信息数据库。 3、为保证企业产品的安全性和一致性,《规范条件》对企业产品和质量保证能力提出了要求,企业应通过IATF:16949质量体系认证,应建立从原材料、部件到成品出厂完整的检验和可追溯体系。 4、为推动新能源汽车市场的形成和发展,对动力蓄电池产品提供质量保证等售后服务,《规范条件》要求企业应建立完善的售后服务体系,会同汽车整车企业研究制定可操作的废旧动力蓄电池回收处理、再利用的方案。 而根据2017-3-1日,工业和信息化部发展改革委科技部财政部关于印发《促进汽车动力电池产业发展行动方案》的通知, 1、产品性能大幅提升。到2020年,新型锂离子动力电池单体比能量超过300瓦时/公斤;系统比能量力争达到260瓦时/公斤、成本降至1元/瓦时以下,使用环境达-30℃到55℃,可具备3C充电能力。到2025年,新体系动力电池技术取得突破性进展,单体比能量达500瓦时/公斤。 2、鼓励动力电池龙头企业协同上下游优势资源,集中力量突破材料及零部件、电池单体和系统关键技术,大幅度提升动力电池产品性能和安全性,力争实现单体350瓦时/公斤、系统260瓦时/公斤的新型锂离子产品产业化和整车应用。 第二、是对产品的要求,工信部于2017年1月6日发布《新能源汽车生产企业及产品准入管理规定》,自2017年7月1日起施行。通过审查的新能源汽车生产企业及产品,由工信部通过《道路机动车辆生产企业及产品公告》(以下简称《公告》)发布。根据准入新规,申请准入的新能源汽车产品,应符合《新能源汽车产品专项检验项目及依据标准》。

汽车动力电池的基本构成 各种电池的性能对比

汽车动力电池的基本构成各种电池的性能对比 电动汽车,是解决能源、环境、城市交通等问题的一个主流趋势,也是未来汽车产业发展的一个主要方向。 现状当下,家用的混合动力汽车,纯电动汽车已在大地区投入使用;电动公共汽车、巡逻车、接待车、搬运车、摆渡车等,已经在各行业得到广泛普及。燃料电池汽车、生物能源汽车等洁净能源汽车已正在如火如荼的研发设计中,未来必将成为主流。 政策我国新能源汽车的发展前景无限开阔。近10年来,国务院不断加大对其资金的投入,包括对技术进步、技术改造专项基金、支持重点汽车生产企业等。各城市也在不断在政策、发展规划、基础设施建设,消费补贴,等环节积极参与新能源汽车的普及推广中。格局传统汽车产业链涉及一百多个产业,新能源汽车是在传统汽车产业链的基础上进行延伸。当前,多数国家将重点放在发展纯电动车上。上游主要增加了锂离子电池、电机及控制系统、汽车整车控制系统,下游则增加了充电设施、电池回收等产业。核心在纯电动汽车(EV)的成本构成中,电力驱动系统(包括动力电池系统和电机驱动系统),占比达到整车的50%以上。其中,锂电池是关键之一,故有“得锂者得天下”的呼声。而胶粘剂是实现电力驱动系统稳定、高效、持久、安全工作的一个核心因素之一。汽车动力电池的基本构成 汽车动力电池简介 目前主流的汽车动力电池是:三元锂和磷酸铁锂电池。三元锂电池具有能量密度高、低温性能好、可靠性高、寿命长、电池续航也更长等特点,但造价偏高;而磷酸铁锂电池成本低、便于汽车量产且电池易于回收,安全性较三元锂高,但续航上逊于三元锂电池。 各种电池的性能对比 1软包电池 (1)安全性能好:软包电池在结构上采用铝塑膜包装,在发生安全隐患的情况下软包电

波特五力模型分析动力锂电池行业及其战略群组概要

动力锂电池,是以锂离子电池为材料的一种高能量密度电池。磷酸铁锂具有很好的安全性能,因而是目前最理想的动力汽车用锂电正极材料。我国车企推出的纯电动车车型中,动力电池均为锂电池,奇瑞、比亚迪使用的均是磷酸铁锂。磷酸铁锂是引发锂电革命行业的一种新兴材料,是锂电池行业发展的最前沿。 下面将用波特五力模型分析动力锂电池行业: (一新进入者的威胁 新进入者在给行业带来新生产能力、新资源的同时,将希望在已被现有企业瓜分完毕的市场中赢得一席之地,这就有可能会与现有企业发生原材料与市场份额的竞争,最终导致行业中现有企业盈利水平降低,严重的话还有可能危及这些企业的生存。 磷酸铁锂行业有一定的门槛,不是谁来做就会做成功的,尤其是材料领域,技术壁垒很高,可以避免太多的竞争。作为新进入这个产业的企业,选择做材料可能要比做电池更为明智,因为现有的一些锂电池厂商很多,尤其是大厂的地位很难撼动,他们切入到磷酸铁锂电池更具优势。 由于制造动力电池涉及到电芯的组合,必须保证电芯的一致性,这样对电池的生产设备提出了更高更专业的要求,所以设备资金投入很大,一般来说,建设一条磷酸铁锂电芯生产线至少需要5000万元的启动资金。创业企业在进入这一领域有一定的 难度,传统的电池生产企业将具有较大的优势。 (二供应商的议价能力 供方主要通过其提高投入要素价格与降低单位价值质量的能力,来影响行业中现有企业的盈利能力与产品竞争力。 锂离子电池的性能主要取决于正负极材料,其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。磷酸铁锂正极材料做出大

容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点。 目前磷酸铁锂材料全球可查的产能是1500吨,如果按照未来5年内年产100万辆电动汽车的需求,每年就需要6万吨磷酸铁锂,潜在的供需缺口非常大,锂电池原材料之一是电解液,电解液约占锂电池成本12%,毛利率约40%,是锂电 产业链中盈利能力较强的环节之一。目前全国产能约 1.8万吨,供需基本平衡。 我国磷酸铁锂原材料丰富,价格低廉,这对于磷酸铁锂产业是一个极大的利好。 (三购买商的议价能力 购买者主要通过其压价与要求提供较高的产品或服务质量的能力,来影响行业中现有企业的盈利能力。 (1目前中国大陆锂电池产业正处于优胜劣汰的发展过程,唯具有技术和品牌优势的厂家,才有机会获得更大的市场空间。 (2电芯生产由于生产工艺和技术相对成熟,在有稳定的正极材料货源情况下,国内大部分锂离子电池厂商均能生产出磷酸铁锂电芯。 (四替代品的威胁 两个处于不同行业中的企业,可能会由于所生产的产品是互为替代品,从而在它们之间产生相互竞争行为,这种源自于替代品的竞争会以各种形式影响行业中现有企业的竞争战略 随着补贴和充电便利性的解决,新能源汽车市场将出现爆发式增长,而随着新能源汽车规模的迅速扩大,对动力电池、电机、电控等的需求也将显著增加,这有望成为未来10年行业增长的核心驱动因素。这其中,动力电池的性能对新能源汽车的发展

锂电池项目规划设计方案

锂电池项目 规划设计方案 规划设计/投资方案/产业运营

锂电池项目规划设计方案说明 随着电池市场规模崛起,锂电池价格还将继续下降。12月3日,彭博新能源财经(BNEF)发布锂离子电池组价格调研报告。报告显示,今年全球锂离子电池组的平均价格为156美元/千瓦时,同比下降13%;较2010年则下降87%。其中,今年中国市场锂电池组平均价格低至147美元/千瓦时,为全球最低。 该锂电池项目计划总投资16251.34万元,其中:固定资产投资12110.90万元,占项目总投资的74.52%;流动资金4140.44万元,占项目总投资的25.48%。 达产年营业收入38938.00万元,总成本费用31092.86万元,税金及附加314.80万元,利润总额7845.14万元,利税总额9242.03万元,税后净利润5883.86万元,达产年纳税总额3358.18万元;达产年投资利润率48.27%,投资利税率56.87%,投资回报率36.21%,全部投资回收期4.26年,提供就业职位703个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。

...... 报告主要内容:项目概述、背景、必要性分析、市场调研预测、项目建设内容分析、选址评价、土建工程研究、项目工艺原则、项目环境影响分析、项目安全保护、风险评价分析、项目节能分析、实施安排、投资方案、经济收益、总结说明等。

第一章项目概述 一、项目概况 (一)项目名称 锂电池项目 随着电池市场规模崛起,锂电池价格还将继续下降。12月3日,彭博新能源财经(BNEF)发布锂离子电池组价格调研报告。报告显示,今年全球锂离子电池组的平均价格为156美元/千瓦时,同比下降13%;较2010年则下降87%。其中,今年中国市场锂电池组平均价格低至147美元/千瓦时,为全球最低。 (二)项目选址 某科技园 (三)项目用地规模 项目总用地面积46236.44平方米(折合约69.32亩)。 (四)项目用地控制指标 该工程规划建筑系数71.90%,建筑容积率1.52,建设区域绿化覆盖率5.55%,固定资产投资强度174.71万元/亩。 (五)土建工程指标

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(BatteryElectric Vehicle,BEV)与混合动力汽车(HybridElectric Vehicle,HEV)和燃料电池汽车(Fuel CellElectric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1传统汽车与纯电动汽车综合能量效率比较(单位:%) (2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 王楠 摘要:主要针对电动汽车动力电池运行检修管理, 研究了电池接收检验、运行管理、日常维护、运行检测与安全管理等关键环节, 结合电池运行的技术特点, 对电池的日常检测、维护与检修等进行了分析, 分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法, 同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 目录: 摘要 1、动力电池的检修内容 (1)电压异常(2)温度异常(3)外观异常(4)检测振动对电池的影响 2、动力电池的检测系统总成 3、动力电池的维护 (1)充电不足与过充电 (2)大电流放电与过放电 (3)要及时充电 (4)短时充电 4、如何解决电池硫化与修复仪的使用 引言:在环境污染日益加剧,能源形势日益严峻的现代生活中,电动汽车无疑以其对排碳量减少无可非议的贡献受到全球的关注。当前与电动汽车有关的研究热点很多,但电池技术无疑就是其中重之又重的一块领域。现在应用于电动汽车的电池大多为电化学电池,在电池的发展史之中,铅酸蓄电池就是最成熟的电动汽车蓄电池,动力电池在能量、安全性、使用寿命等各个方面进行一代又一代的优化,才有了今天相对较为完备的电池体系。在今年4月21日至29日的北京国际车展当中备受人瞩目的典型车型都就是新出的纯电动汽车,不管就是国内还就是国外,许多汽车厂商都推出了自己的纯电动车型。由此可见在未来的汽车发展当中电动汽车将成为未来汽车发展的主要方向,然而由于受到电池技术的影响,纯电动汽车一直难以推广到市场。本文主要就是结合电池产业的厂商,引出当下比较主流的电池技术,从中了解电动汽车动力电池的结构,并结合各电池厂商分析可以怎样改正,以及探究了电动电池的检测与维护方法。 动力电池的结构 1、电池盖 2、正极--活性物质为氧化钴锂 3、隔膜--一种特殊的复合膜 4、负极--活性物质为碳 5、有机电解液 6、电池壳 动力电池的特点 1、高能量(EV)与高功率(HEV); 2、高能量密度;

纯电动汽车用锂离子电池的建模和模型参数识别(精)

本文由鱼松树贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第25卷第1期 2100年3月 电力科学与技术学报 JoURNALOFEIECTRIPC0WERCISENCEANDCHN0LOGYTE Vo.5N0112. Ma.01r2O 纯电动汽车用锂离子电池的建模和模型参数识别 姜久春,文锋,温家鹏,郭宏榆,玮时 (北京交通大学电气工程学院。京104)北004 摘要:极化电压是电池状态估算的重要参数,但不能直接测量.采用阻容模型分析,出极化电压模型阶次与极指 化深度密切相关,出一种极化电压的快速识别方法,出变电流放电情况下电池的去极化时间和容量的计算方提给法,采用FS模拟工况对新、并UD旧电池和不同厂家的电池进行测试,验证了该方法的有效性和可行性,电池状为态的准确估算提供了数据支持. 关键词:锂离子电池;数学建模;模型参数识别;去极化;最小二乘法拟合 中图分类号:M1T92 文献标识码:A 文章编号:6394(000—07817—1021)16—00 Liinbteymoeigado-ndl ?oatrdlnnn?iemoe-lprmeesieiiainfrPEVaatrdntfctoo JANGi—hn,WENeg,WENi—eg,GUOn-uHIWeIJucuFnJapnHogy,Si (colflcraniergoeigJoogUnvriyeig104,iaShoetilgneifinitniest.Bin004Chn)oEcEnBjaj Absrc:lrztootgeinipraeprmeeorbatrttsiain,wheestatPoaiainvlasamotncaatrfteysausetmtora, icntbesrddrcl.Th,rssac-aairmoesaotdfrplrztootgta’emaueietyeeitnecpctdlidpeooaiainvleoamoeig,acoecnetnbtehrefplrztnvlaemoenoaiaindlnlsonciewenteodrooaiaiotgdladplrztooodphihnpitdotnatplrztnvlgetiain

纯电动汽车动力电池包结构静力分析及优化设计

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

基于单片机的锂离子电池充电系统设计方案

济南大学泉城学院毕业设计方案 题目基于单片机的锂离子电池 充电系统设计 专业电气工程及其自动化 班级1301班 学生姚良洁 学号2013010873 指导教师张兴达魏志轩 二〇一七年四月十日

学院工学院专业电气工程及其自动化 学生姚良洁学号2013010873 设计题目基于单片机的锂离子电池充电系统设计 一、选题背景与意义 1. 国内外研究现状 自90年代以来,中国正日趋成为世界上最大的电池生产国和最大的电池消耗国。随着科技的发展,人们对身边电子产品的数字化、自动化和效率的要求越来越高。便携式电池成为用户的首选,随着各式各样的电池出现,用户在选用电池时,在考虑到电池的环保、性价比的同时,更加注重电池的便携性。正因为锂离子电池具有高的体积比能量和环保性能,符合当前世界电池技术的发展趋势,逐渐成为市场的主流[1]。我国锂电池行业的年增长率已超过20%,2016年电池总体需求量达到50亿块左右。可见,在当前和今后相当一段时间,锂电池将成为我国电池工业的龙头。 虽然我国已是仅次于日本的锂离子电池生产大国,市场增长空间巨大,但并非强国,在全球锂离子电池产业仍处于低端。随着手机用户的日益增多,如何保养手机也成为了众多手机使用者面临的一个实际问题,而手机电池作为手机的一个重要组成部分,直接影响了使用寿命和性能。智能手机的屏幕越来越大,功能越来越多,现有的锂离子电池产品越来越难以满足需求,选择合适的充电器,可以延长我们的手机锂离子电池的使用寿命。 现阶段消费者除了通过原厂配备的充电器给便携式设备充电之外,普遍采用的是通过移动电源来补充电池的电量。根据日本矢野经济研究所的预测,锂离子电池正以53.33%的年增长率快速取代传统的镍铬镍氢电池市场。目前国内移动电源市场上主要的品牌有小米、爱国者、品胜、华为等,国外市场比较知名的品牌有BOOSTCASE、MALA 等。移动电源市场在近几年得到了很大的发展,市场中出现了各式各样的品牌。与此同时,在移动电源产品中也存在很多需要解决的问题。比如:自身充电所需时间过长,USB输出电压不稳定,电能转化效率不高,输出保护较为单一,输出大电流时散热性能不好等。相较于国外而言,国内的锂电池智能充电系统性能欠佳,还需要加大研究力度[2]。 2. 选题的目的及意义 近几年来,便携式电子产品的迅猛发展促进了电池技术的更新换代。其中锂离子电池以其重量轻、储能大、功率大、无记忆效应、无污染、自放电系数小、循环寿命长等优点,脱颖而出,迅速成为市场的主流。锂电池是20世纪末才出现的绿色高效能可充电电池,目前随着锂离子电池的推广及大量应用,锂离子电池深受社会和用户的欢迎[3]。目前已广泛应用于手机、笔记本电脑、数码相机及众多的便携式设备,其中笔记本电脑占23%,手机占50%,为最大领域。电子、

电动汽车结构与原理

电动汽车结构与原理 名词解释 1.纯电动汽车:指由蓄电池或其他储能装置作为电源的汽车。 2.再生制动:指将一部分动能转化为电能并储存在储能设备装置内的制动过程。 3.续驶里程:指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶的最大距离。 4.逆变器:指将直流电转化为交流电的变换器。 5.整流器:指将交流电变化为直流电的变换器。 6.D C/DC变换器:指将直流电源电压转换成任意直流电压的变换器。 7.单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。

8.蓄电池放电深度:指称为“ DOD,表示蓄电池的放电状态的参数,等于实际放电量与额定容量的百分比。 9.蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用C表示。 10.荷电状态:称为"SOC,指蓄电池放电后剩余容量与全荷电容量的百分比。 11.蓄电池完全充电:指蓄电池内所有的活性物 质都转换成完全荷电的状态。 12.蓄电池的总能量:指蓄电池在其寿命周期内电能输出的总和。 13.蓄电池能量密度:指从蓄电池的单位质量或体积所获取的电能。 14.蓄电池功率密度:指从蓄电池的单位质量或单位体积所获取的输出功率。 15.蓄电池充电终止电压:指蓄电池标定停止充电时的电压。 16.蓄电池放电终止电压:指蓄电池标定停止放电时的电压。 17.蓄电池能量效率:指放电能量与充电能量之比值。

18.蓄电池自放电:指蓄电池内部自发的或者不期望的化学反应造成的电量自动减少的现象。 19.车载充电器:指固定安装在车上的充电器。 20.恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。 21.感应式充电:指利用电磁感应给蓄电池进行充电的方式。 22.放电时率:电流放至规定终止电压所经历的时间。 23.连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。 24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数次完全充放电循环后可恢复的现象? 25.蓄电池的循环寿命:在一定的充放电制度下,电池容量下降到某一规定值时,电池所能经受的循环次数。 26.蓄电池内阻:指蓄电池中电解质、正负极群、隔板等电阻的总和。 27.汽车悬架:指车身(或车架)与车轮(或车桥)之间的一切传动连接装置的总称。

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统(Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

电动汽车电池更换站设计规范标准

电动汽车电池更换站设计规 1.围 本规规定了电动汽车锂电池更换站的设计原则。 本规适用于电动汽车锂电池更换站新建、扩建和改建工程的设计。

2.规性引用文件 下列文件中的条款通过本规的引用而成为本规的条款。凡是注明日期的应用文件,其随后所有的修订单(不包括勘误的容)或修订版均不适用于本规,然而,鼓励根据本规达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本规。 GB/T 2900.1 电工术语基本术语 GB 3096 声环境质量标准 GB/T 3730.1-2001 汽车和挂车类型的术语和定义 GB 4208 外壳防护等级(IP 代码) GB 5749 生活应用水卫生标准 GB 6067 起重机械安全规程 GB/T l2325-2003 电能质量供电电压允许偏差 GB 12348 工业企业厂界环境噪声排放标准 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15945-1995 电能质量电力系统频率允许偏差 GB/T 18487.1-2001 电动车辆传导充电系统一般要求 GB/T 18487.3-2001 电动车辆传导充电系统电动车辆交流/直流充电机(站) GB/T 18663.1-2008公制系列和英制系列的试验机柜、机架、插箱和机箱的气候、机械试验及安全要求 GB 50011 建筑抗震设计规 GB 50016 建筑设计防火规 GB 50034 建筑照明设计标准 GB 50052 供配电系统设计规 GB 50053 10kV及以下变电站设计规 GB 50054 低压配电设计规 GB 50057 建筑物防雷设计规 GB 50058爆炸和火灾危险环境电力装置设计规 GB 50059 35~110kV变电所设计规 GB 50060 3110kV高压配电装置设计规 GB 50116 火灾自动报警系统设计规 GB 50140 建筑灭火器配置设计规 GB 50150 电气装置安装工程电气设备交接试验标准 GB 50191 构筑物抗震设计规 GB 50217 电力工程电缆设计规 GB 50229 火力发电厂与变电站设计防火规 GB 50260 电力设施抗震设计规 GBZ 1 工业企业设计卫生标准 GBJ 19 采暖通风与空气调节设计规 GBJ 140 建筑灭火器配置设计规 DL 408 安全工作规程(发电厂和变电所电气部分) DL/T 620-1997 交流电气装置的过电压保护和绝缘配合 DL/T 621-2007 交流电气装置的接地

电动汽车动力电池研究综述

目录 1引言 (2) 2电动汽车对动力电池的发展及要求3? 2.1动力电池的发展 (3) 2.2?电动汽车对动力电池的要求 ............................................................. 43?铅蓄电池?4 3.1铅蓄电池工作原理 (4) 3.2铅蓄电池性能特点 (5) 3.3铅蓄电池应用范围5? 4?镍氢电池........................................................................................................... 6 4.1?镍氢电池工作原理 (6) 4.2镍氢电池性能特点.......................................................................... 6 4.3?镍氢电池应用范围 (7) 5?锂离子电池7? 5.1?锂离子电池工作原理?错误!未定义书签。 5.2?锂离子电池性能特点7? 5.3锂离子电池应用范围8? 6?电动汽车动力电池发展趋势?8 6.1铅蓄电池发展趋势.......................................................................... 8 6.2?镍氢电池发展趋势 (9) 6.3?锂离子电池发展趋势 ......................................................................... 9 7?结论................................................................................................................. 10参考文献11? ? 电动汽车动力电池研究综述

电动汽车动力电池的热效应模型_杨凯

收稿日期:2008-04-10基金项目:国家重点基础研究发展计划项目(2002C B 211800)作者简介:杨凯(1977—),男,博士,副教授,E -m ail :yk bit @bit .edu .cn . 第28卷 第9期 2008年9月 北京理工大学学报 T r ansactio ns of Beijing Institute of Technolo gy V ol .28 No .9Sep .2008 电动汽车动力电池的热效应模型 杨凯, 李大贺, 陈实, 吴锋 (北京理工大学化工与环境学院,北京 100081) 摘 要:综述了国内外电池热效应模型的研究进展,归纳总结了动力电池热效应模型通用的建立方法及参数确定的计算或实验过程.基于一系列简化和假设,建立方程并确定相关参数,建立模型.结合所进行的电池热效应研究工作,提出改进电池热效应模型的意见,在模型建立中采用微量热仪对热量产生速率进行精确测定代入模型,并在实验中验证模型改进的效果,实验验证表明,模型的计算结果与实验结果吻合.关键词:动力电池;热效应;建模 中图分类号:T M911 文献标识码:A 文章编号:1001-0645(2008)09-0782-04 Thermal Model of Batteries for Electrical Vehicles YANG Kai , LI Da -he , CH EN Shi , WU Feng (Schoo l of Chemical Enginee ring and the Environment ,Beijing Institute o f T echno log y ,Beijing 100081,China ) A bstract :Therm al mo del can be used to analyze and predict the therm al behavior o f batte ries fo r electrical vehicles .Based o n recent research on thermal m odel of batteries ,this paper provides a general method to develop thermal m odel for electrical vehicle batteries ,and the determination of paramete rs through calculation or ex periment .An equa tion based o n a series of assum ptions is e stablished and so lved .Parameters o f the model are thus determined ,and modelin g completed .Incorpo rating present researc h on the thermal behavio r of N i /M H battery ,suggestio ns are put fo rw ard to improve the thermal model .The applica tion of microcalorimete r in ex periments to measure heat generation rate precisely is proved to be effective in ex periments .Result of calculation matched the experimented result very w ell . Key words :electrical vehicle batte ry ;thermal behavio r ;modeling 电动汽车相对于传统汽车具有能量效率高,环境污染小的特点,已成为世界各国研究的热点.动力电池作为电动汽车的重要组成部分,其性能直接影响电动汽车的性能.在众多现行研究开发的动力电池中,锂离子电池和镍氢电池成为目前的研究热点 [1] . 由于电池内部的电化学反应和电流产生的焦耳热,动力电池在使用时都会产生热量,如果这些热量未及时消散,将导致电池温度升高.尤其在温度超过50℃时,电池的性能和循环寿命都会下降[2].在大多数情况下,电池只能采用被动散热,因此,需要 对电池在不同使用条件下的热效应进行研究,针对电池的热效应行为进行相应的设计[3-4],在热效应数学模型可以模拟电池在应用条件下的热效应行为,并用于指导电池的设计和改进.作者介绍了建立电池热效应模型通用的数学和实验方法. 1 电池热效应模型的建立和检验 电池热效应模型的建立可以采用流体动力学方法.现有电池系统的热效应模型一般将电池内部视为一个温度场,内部热源均匀分布,通过建立输运方程并引入若干边界和初始条件计算求解得到电池内 DOI :10.15918/j .tbi t1001-0645.2008.09.013

锂电池铝塑膜项目规划设计方案 (1)

锂电池铝塑膜项目 规划设计方案 规划设计/投资分析/产业运营

锂电池铝塑膜项目规划设计方案说明 铝塑膜是软包装锂电池电芯封装的关键材料。铝塑膜即铝塑复合膜, 可以将组装后的单片电池密封形成一个电池,起保护内容物的作用,铝塑 膜对电池的性能有重要影响,因此用于锂电池电芯封装材料的铝塑膜必须 具有极高的阻隔性、良好的热封性、耐电解液与强酸、和延展性、柔韧性、高机械强度等特点。 该锂电池铝塑膜项目计划总投资18663.13万元,其中:固定资产投资14082.83万元,占项目总投资的75.46%;流动资金4580.30万元,占项目 总投资的24.54%。 达产年营业收入37057.00万元,总成本费用28454.74万元,税金及 附加341.71万元,利润总额8602.26万元,利税总额10130.49万元,税 后净利润6451.69万元,达产年纳税总额3678.80万元;达产年投资利润 率46.09%,投资利税率54.28%,投资回报率34.57%,全部投资回收期 4.39年,提供就业职位597个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价 方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和 对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与 未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬

请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后 续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供 报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。 ...... 报告主要内容:概论、背景、必要性分析、项目市场前景分析、项目 建设方案、项目选址规划、土建工程设计、项目工艺先进性、环保和清洁 生产说明、安全经营规范、投资风险分析、项目节能评估、进度计划、项 目投资方案、项目经济效益、项目结论等。

串联式锂电池组的锂电池保护板实现方案

郑州正方科技: 如今资源紧缺以及环境污染对人类造成的困扰越来越大,新能源的开发成了国家乃至全球发展的重点对象,众所周知,新型的锂电池组也逐步取代老式的铅酸电池组用于电动自行车以及电动汽车上,锂电池的轻便,高性能等等的一系列的优点,也使得电动工具更加的方便,高效。目前,各个生产商也针对不同的类型的锂电池组生产相对应的锂电池保护板以保证电池组的安全性,以及对电池组的一系列的保护措施。这类型的锂电池保护芯片也主要对应的是1~4串的锂电池组,当然也有对应5~10串电池组的保护板,如BQ77PL900芯片,这种芯片的功能更加全面,应用度也很广泛。这也完全避免了目前市场上集成电路芯片保护板的一些弊端,例如保护失效以及复杂等等缺点! 此外,锂电池组在充电的时候如果不能保证每个单节电池的均衡充电,那么就会极大的影响了电池组的性能以及使用寿命,目前最常见的均衡充电有这么几类:(1)恒定电流分阻均衡充电(2)电感均衡充电(3)降压型变换器均衡充电(4)开关电容均衡充电等等,所以有一点大家可想而知,单单节电池不存在多个电池组合的问题,所以不需要均衡充电控制功能;下面我们就讲的是锂电池保护板的一些实现方案。 根据锂电池保护板的保护原理,我们做了实验,在实际的应用中,某厂要求2组并联、10节串联的36V8A·h锰酸锂动力电池组保护板的设计,考虑到外部干扰可能会引起电池电压不稳定的情况,这样

会造成电压极短时间的过压或欠压,从而导致电池保护电路错误判断,因此在保护芯片配有相应的延时逻辑,必要时可在保护板上添加延时电路,这样将有效降低外部干扰造成保护电路误动作的可能性。由于电池组不工作时,保护板上各开关器件处于断开状态,故静态损耗几乎为0。当系统工作时,主要损耗为主电路中2个MOS管上的通态损耗,当充电状态下均衡电路工作时,分流支路中电阻热损耗较大,但时间较短,整体动态损耗在电池组正常工作的周期内处于可以接受的水平。经测试,该保护电路的设计能够满足串联锂电池组保护的需要,保护功能齐全,能可靠地进行过充电、过放电的保护,同时实现均衡充电功能。 本文采用单节锂电池保护芯片设计实现了多节锂电池串联的锂电池保护板,除可完成必要的过电压、欠电压、过电流和短路保护功能外,还可以实现均衡充电功能。这一串联式锂电池组的锂电池保护板实现方案的实验结果验证了该方案的可行性,市场使用情况检验了该设计的稳定性。

相关文档
最新文档