电子科技大学-量子力学论文 【建立薛定谔方程有哪些方法】

电子科技大学-量子力学论文 【建立薛定谔方程有哪些方法】
电子科技大学-量子力学论文 【建立薛定谔方程有哪些方法】

建立薛定谔方程有哪些方法

姓名:*** 学号:**********

班级:(二班)

联系电话:**************

中文摘要:

薛定谔方程是量子力学的重要基本方程,是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程,它反映了描述微观粒子的状态随时间变化的规律,在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的奠基理论之一.由对薛定谔方程式的解答,能清楚地描述量子系统里,量子尺寸粒子的统计性量子行为.本文将讨论以微分和类比的方法建立薛定谔方程.

关键词:量子力学波函数薛定谔方程

1 引言

薛定谔提出的量子力学基本方程建立于1926 年, 它是一个非相对论的波动方程.反映了描述微观粒子的状态随时间变化的规律, 地位与经典物理中的牛顿运动方程相当,是打开物质微观世界大门的金钥匙.设描述微观粒子状态的波函数为()t r,

U,中运动的薛定谔方程为在给定初ψ,质量为m 的微观粒子在势场()t r

始条件和边界条件以及波函数所满足的单值、有限、连续的条件下, 可解出波函数()t r,

U与时间无关而只是坐ψ,由此可计算粒子的能量、分布概率等.当势能()r

标的函数情况下为定态问题.定态时的波函数可写成式中()r

ψ称为定态波函数, 满足定态薛定谔方程, 这一方程在数学上称为本征方程,式中E为本征值,是定态能量()r

ψ又称为属于本征值E的本征函数,波函数本身及其一阶导数必须是单值、连续和有限的,这称为波函数的标准条件.薛定谔方程是线性、齐次的微分方程,满足叠加原理.定态薛定谔方程的每一个解就代表粒子的一个稳定状态.纵观物理学发展的历史,人们对于微观世界的认识是极其曲折复杂的,经历了许多伟大科学家的艰辛努力与激烈争论.其间,他们各有自己的高见,也都有各自的不足, 每人只认识其中的一个侧面,将他们各自正确的部分集中起来,才建立起反映微观世界的正确理论——量子力学.其重要组成部分之一是薛定谔创立的波动力学.在波动力学中薛定谔从几何光学向波动光学的过渡关系,而推断出由经典力学向波动力学如何过渡,再受德布罗意波的启发而建立了薛定谔方程.

由于在实践中只有少数几个特殊的粒子运动体系的薛定谔方程可以精确求解, 而对于复杂的多电子原子和分子体系的薛定谔方程则无法精确求解,即使是利用近似模型处理后,其求解过程仍然非常复杂烦琐.随着计算机技术的飞速发展, 经过适当的近似处理后,通过求解薛定谔方程来揭示物质的微观性质和状态已经得到了非常成功的应用,尤其是在量子化学计算领域.因此,薛定谔方程已经成为了人们打开物质微观世界大门的金钥匙.薛定谔方程在量子力学的研究中有着极其重要的作用, 它是量子力学重要的基本方程.这方程既不是推导,也不是证明出来的,它是假设而建立起来的.建立方程的依据是:(1)应当是波函数对时间的一阶微分方程;(2)方程要包含外界的因素;(3)方程中的系数不含有状态参量;(4)

方程是线性的.

2 薛定谔方程的建立

1 问题提出

1924 年,路易·德布罗意提出一个惊人的假设,每一种粒子都具有波粒二象性.电子也 有这种性质.电子是一种波动,是电子波.电子的能量与动量决定了它的物质波的频率 与波数. 1927 年, 克林顿· 戴维孙和雷斯特· 革末将缓慢移动的电子射击于镍晶体标靶. 然后,测量反射的强度,侦测结果与 X 射线根据布拉格定律 (Bragg's law) 计算的衍射图案相同.戴维森-革末实验彻底的证明了德布罗意假说.

薛定谔夜以继日地思考这些先进理论,既然粒子具有波粒二象性,应该会有一个反应这特性的波动方程,能够正确地描述粒子的量子行为.薛定谔通过类比光谱公式成功地发现了可以描述微观粒子运动状态的方法——薛定谔方程.

2 方程的建立

2. 1 用微分方法建立薛定谔方程

建立过程:自由粒子波函数所满足的方程推广到一般.

自由粒子的波函数为平面波 )(t r Et r p h i Ae -→→→=),(φ ①

对时间求偏微商: h Et r p i t )(--=??→→φ ②

对坐标求二次偏微商: φφφ22)(2222h p e h Ap x z p y p x p h i x z y x -=-=??++ ③

同理得: φφφ2222h p y -=?? , φφ2222h p z z -=?? ④

将以上三式相加:ψ=ψ?=?ψ?+?ψ?+?ψ?22

2222222- p z y x , ⑤

利用自由粒子的能量和动量的关系,我们可得到自由粒子波函数所满足的微

分方程:

φμφ222?-=??h t ih ⑥

上式中劈形算符:z k y j x i ??+??+??=? ,22

22222z

y x ??+??+??=???=? ⑦ 如存在势能()r U ,能量和动量的关系是: )(22

r U p E +=μ

⑧ 波函数应满足的微分方程是;

φφμ

φ)(222r U h t ih +?-=?? ⑨

这个方程称为薛定谔方程.

由建立过程可以看出,只需对能量动量关系进行如下代换:

t

ih E ??→ , ?-→→ih p 就可得到薛定谔方程.

2.2 用类比方法建立薛定谔方程 几何光学和波动光学这两种光学理论分别是建立在光的微粒说和波动说基础上的. 早在19 世纪, 哈密顿根据几何光学中费马原理的数学表达式

0ds ==Θ?B A K δδ和经典力学中哈密顿原理的数学表达式?==B

A

dt 0s δδ相似, 曾

经提出经典力学和几何光学存在着某种相似性.

在研究几何光学和波动光学的关系时, 如果波长无限短, 即在 →0 的条件下, 波动光学就会过渡到几何光学; 在量子力学研究中, 如果忽略量子效应, 即在 →0 的条件下,量子力学就会过渡成为经典力学. 如果把几何光学与经典力学之间的相似性和波动光学与几何光学、量子力学与经典力学之间的过渡关系进行类比,

用图表示为

从类比图我们可以看出, 量子力学的波动方程和波动光学的波动方程在数学表达式上是相似的.在波动光学中, 光波的两个重要方程是

01-2222=???f u f

(1) ()iwt e r f - Φ=

(2)

将( 2) 代入( 1), 得 022=ψ+Φ?k (3) 其中波矢的大小u

w k =. 同样道理, 在量子力学中, 波函数的表达式应与( 2) 式相似, 记为:

()()()()t E i iwt e r e r t r --,ψ=ψ=ψ (4)

如果能量不随时间变化, 则波函数的空间部分()r ψ所满足的波动方程也应

与( 3) 相似, 记为

0Ψ22=ψ+?k

(5) 其中波矢的大小为() U E m P k -==2,代入( 5) 式, 得 0U)-(E 22=ψ+ψ? m 或ψ=ψ???? ??+?E U m 22

2- (6)

上式则是定态薛定谔方程. 如果我们知道势能()r U 的具体形式, 通过解方

程即可求出定态波函数()r ψ和粒子的能量E .

如果方程(6)两端同乘以()t E iw e -, 则方程变为

ψ???

? ??+?=ψU m E 22

2-

(7) 由( 4) 式可得 ()ψ=ψ=?

ψ?-E e E i t E i 将上式代入(7) 式左边, 得ψ???? ??+?-=?ψ?U m i 22

2 (8)

这就是薛定谔方程的一般形式. 对于自由粒子来说, 它不受保守力场的作用,

即U = 0, 则自由粒子的定态薛定谔方程为ψ=ψ?E m

22

2- (9) 自由粒子薛定谔方程的一般形式为ψ?=?ψ?22

2-m i (10)

由此可见, 利用类比的方法也可以建立起薛定谔方程, 它与用微分的方法来建立方程所得的结果是一致的. 主要是通过逻辑思维对经典力学、几何力学、波动光学、量子力学的相似之处及过渡关系进行比较, 得出量子力学的波动方程与光波的波动方程相似,以此作为基础而建立起薛定谔方程的. 需要注意的是, 薛定谔方程是实验的综合,不是推导和证明出来的, 薛定谔方程的正确性是靠它与大量实验相符合而得以证实的.

3 实验验证

薛定愕方程建立半个多世纪以来一直为人们所承认和接受并得到长远发展.那么其基本假设和由此而建立的方程的实验基础是什么?它经受住了一些什么样的实验检验呢?微观粒子的波粒二象性即德布罗意物质波的革命性假设及其实验被证实是薛定愕方程的实验基础和理论基础.

整个十九世纪物理学在对光的研究中首先发现了光的波动特性,在这方面有大量的实验事实可查.如扬氏双缝干涉实验,菲涅耳双棱镜干涉实验,牛顿环干涉实验,菲涅耳圆孔衍射实验等.

薛定愕方程的建立有着广泛的实验基础,但实验对方程的建立不是直接的,即方程不是大量实验结果的直接总结,因此方程还必须进一步接受实验的检验.那么薛定愕方程建立之后它经受住了一些什么样的实验检验了呢? 这里略举几例:

方程的解

实验结果 谐振子零点能:

hv 21=

E O 存在(低温超流实验验证) 氢原子能量本征值:

224

2n ue E n =,n=1,2,... 氢原子光谱的规律性已证实氢光谱具有分离的谱线

氢原子电离能: ev ue E 61.16224

1==-

ev E 6.131=- 里德伯常数: 1-34

1.109737314米==c e R π

μ

-110973731米=R

从薛定愕方程得到的结果与实验结果相符的事例还不止这些,但是从上述事例中,我们可充分看到薛定愕方程建立后,众多的实验结果为其正确性提供了坚实的实验基础.

4 结论

薛定谔方程可由微分法和类比法建立,且经检验,薛定谔方程是正确的,即:

(1) 从这个方程得到了谐振子的能级和定态波函数,结果与海森伯的矩阵力学所得相同.

(2) 从这个方程得到的解正是氢原子的能级公式.

(3) 该方程处理了普朗克谐振子和双原子分子等问题.

(4) 从这个方程可计算出里德伯常数,结果与实验相符合.

(5) 利用这个方程含时间的微扰理论,解决色散等问题.原子的稳定性问题.

参 考 文 献

[1] 杨亚培 张晓霞 光电物理基础.电子科技大学出版社 2009 14-28

[2] [日] 中岛贞雄. 最子力学(上) [M] . 北京: 北京师范大学出版社,1989.

[3] 张怿慈. 量子力学简明教程[M] . 北京: 人民教育出版社, 1979.

[4] 曾谨言.量子力学[M].北京:科学出版社,2007.1.26-28.

[5] 汪德新.量子力学[M].北京:科学出版社,2008.8.100-105.

[6] 郭奕玲.物理学史2版[M].北京:清华大学出版社,2005.8.45-49.

[7] 张永德.量子力学[M].北京:科学出版社,2008.8.35-78.

[8] 钱伯初.量子力学[M].北京:高等教育出版社,2006.1.254-259.

[9] 门福殿.量子力学.[M].北京中国石油大学出版社,2005.5.12-18.

[10] 孙利平.打开物质微观世界大门的金钥匙-薛定谔方程[J]长沙大学学报第18卷第4期2004年12月.

[11] 梁辉.从薛定谔方程谈量子力学与经典物理的区别[J]安徽技术师范学院学报2003,17( 1):70-71.

电子科技大学-量子力学论文 【建立薛定谔方程有哪些方法】

建立薛定谔方程有哪些方法 姓名:*** 学号:********** 班级:(二班) 联系电话:************** 中文摘要: 薛定谔方程是量子力学的重要基本方程,是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程,它反映了描述微观粒子的状态随时间变化的规律,在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的奠基理论之一.由对薛定谔方程式的解答,能清楚地描述量子系统里,量子尺寸粒子的统计性量子行为.本文将讨论以微分和类比的方法建立薛定谔方程. 关键词:量子力学波函数薛定谔方程 1 引言 薛定谔提出的量子力学基本方程建立于1926 年, 它是一个非相对论的波动方程.反映了描述微观粒子的状态随时间变化的规律, 地位与经典物理中的牛顿运动方程相当,是打开物质微观世界大门的金钥匙.设描述微观粒子状态的波函数为()t r, U,中运动的薛定谔方程为在给定初ψ,质量为m 的微观粒子在势场()t r

始条件和边界条件以及波函数所满足的单值、有限、连续的条件下, 可解出波函数()t r, U与时间无关而只是坐ψ,由此可计算粒子的能量、分布概率等.当势能()r 标的函数情况下为定态问题.定态时的波函数可写成式中()r ψ称为定态波函数, 满足定态薛定谔方程, 这一方程在数学上称为本征方程,式中E为本征值,是定态能量()r ψ又称为属于本征值E的本征函数,波函数本身及其一阶导数必须是单值、连续和有限的,这称为波函数的标准条件.薛定谔方程是线性、齐次的微分方程,满足叠加原理.定态薛定谔方程的每一个解就代表粒子的一个稳定状态.纵观物理学发展的历史,人们对于微观世界的认识是极其曲折复杂的,经历了许多伟大科学家的艰辛努力与激烈争论.其间,他们各有自己的高见,也都有各自的不足, 每人只认识其中的一个侧面,将他们各自正确的部分集中起来,才建立起反映微观世界的正确理论——量子力学.其重要组成部分之一是薛定谔创立的波动力学.在波动力学中薛定谔从几何光学向波动光学的过渡关系,而推断出由经典力学向波动力学如何过渡,再受德布罗意波的启发而建立了薛定谔方程. 由于在实践中只有少数几个特殊的粒子运动体系的薛定谔方程可以精确求解, 而对于复杂的多电子原子和分子体系的薛定谔方程则无法精确求解,即使是利用近似模型处理后,其求解过程仍然非常复杂烦琐.随着计算机技术的飞速发展, 经过适当的近似处理后,通过求解薛定谔方程来揭示物质的微观性质和状态已经得到了非常成功的应用,尤其是在量子化学计算领域.因此,薛定谔方程已经成为了人们打开物质微观世界大门的金钥匙.薛定谔方程在量子力学的研究中有着极其重要的作用, 它是量子力学重要的基本方程.这方程既不是推导,也不是证明出来的,它是假设而建立起来的.建立方程的依据是:(1)应当是波函数对时间的一阶微分方程;(2)方程要包含外界的因素;(3)方程中的系数不含有状态参量;(4)

最新薛定谔方程及其解法

关于薛定谔方程 一.定义及重要性 薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提 出的量子力学中的一个基本方程,也是量子力学的一个基本假定, 其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合 建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都 有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式 以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基 本假定,它的正确性只能靠实验来检验。 二.表达式 三.定态方程 ()() 2 2 2 V r E r m η ψψ + ?? -?= ?? ?? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。

2 2 22222 z y x ??????++=? 可化为 d 0)(222 =-+ψψv E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ). ()()((3) ) ,(),()( ,,(2) )(),( 311212 2111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==?????=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββα βα

电子科技大学本科论文格式要求定稿版

电子科技大学本科论文 格式要求 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电子科技大学 UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 学士学位论文 BACHELOR DISSERTATION 论文题目 学生姓名 学号 学院 专业 指导教师 指导单位 年月日

电子科技大学 20 级本科毕业设计(论文)任务书 拟题单位_________________________ 审题人(签名)__________ 题目及副标题______________________________________________ 题目来源: 1.科研 2.生产 3.教学(含实验) 4.其它(选择其中一种) 主要任务: 预期成果或目标: 预期成果形式:1.硬件 2.硬件+软件 3.软件4.纯论文(选择其中一种) 指导教师签名: _____________起止时间:年月日至年月日 学生姓名_______ 专业 _________________ 学号__________ 指导单位________________________________________________ 指导教师姓名、职称______________________________________ 设计地点________________________________________________ 年月日

备注:1.此任务书应由指导教师填写,签名处须由教师亲笔签名。 2. 此任务书必须在学生毕业设计开始前....... 下达给学生。

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文题目:《由薛定谔方程引发的深思》 学院:数理信息工程学院 专业:物理112班 学生姓名:徐盈盈王黎明 学号:11260124 11180216 完成时间: 2013年12月20日

由薛定谔方程引发的深思 【摘要】 薛定谔方程的提出揭示了微观物理世界物质运动的基本规律,它是原子物理学中处理一切非相对论问题的有力工具[1]。作为量子力学之魂,薛定谔方程完整的向我们诠释了微观世界的魅力。为更加深入地学习薛定谔方程和量子力学,我们将分析薛定谔方程的推导过程、介绍其在求解粒子问题中的应用以及其在原子物理、核物理、固体物理等学科的应用,最后谈谈自己的想法。 【引言】 随着“任何粒子都具有波粒二象性”的德布罗意假说成功被戴维森-革末实验所证实,薛定谔思考着会有一个波动方程可以反应粒子的这种量子行为。于是,基于众多前人研究成果,薛定谔于1926年提出薛定谔方程,完美的解释了波函数的行为。正是因为薛定谔方程在量子力学进程中起着举足轻重的作用,所以我们必须深入学习其推导过程和应用。并且由薛定谔方程出发,深刻思考我们在物理学习过程中所必须具备的思维方式和学习态度。 【关键词】 薛定谔方程玻尔理论波函数深思 【正文】 一、薛定谔方程的提出与推导 1、薛定谔方程的历史背景 爱因斯坦认为普朗克的量子为光子,并且提出了奇妙的“波粒二象性”。1924年,路易·德布罗意提出“物质波”的概念,认为任何粒子都具有波粒二象性,并且这个假说于1927年成功被戴维森-革末实验所证实。薛定谔由此认为一定会有一个波动方程能够恰当的描述粒子的这种性质。最后他借助于经典力学的哈密顿原理以及光学的费马原理,将牛顿力学与光学类比,并且以哈密顿-雅克比方程为工具,成功建立了薛定谔方程,并且准确的计算了氢原子的谱线。 2、薛定谔方程的推导思路 ①首先自由粒子可用平面波来表示,可当粒子收到随时间或位置变化的力场的作用时,应该用波函数来表示。波函数描写体系的量子状态。波函数是指在空间中某一点的强度和在该点找到粒子的概率成比例[2]。 ②当讨论粒子状态随时间变化所遵从的规律时,必须建立波函数随时间变化的方程。 ③用平面波描写自由粒子的波函数ψ(r,t)=Ae i(p.r-Et)/h,并且对时间求偏微商,对位置求二次偏微商,再利用能量和动量的关系式E=p2/2m+V(r),最终可得到薛定谔方程: ④从一维薛定谔方程出发,可以得出三维薛定谔方程和定态薛定谔方程:

薛定谔方程

第一章 薛定谔方程 §1.1.波函数及其物理意义 1. 波函数: 用波函数描述微观客体的运动状态。 例:一维自由粒子的波函数 推广 :三维自由粒子波函数 2. 波函数的强度——模的平方 3. 波函数的统计解释 用光栅衍射与电子衍射对比的方式理解波函数的统计解释。 t 时刻,出现在空间(x,y,z )点附近单位体积内的粒子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z )点附近单位体积内的概率。 t 时刻,粒子在空间分布的概率密度 4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1 标准条件:一般情况下, 有关特殊情况波函数所满足的条件参看曾谨言教程。 对微观客体的数学描述: 脱离日常生活经验,避免借用经典语言引起的表观矛盾 §1.2. 薛定谔方程 是量子力学的基本假设之一,只能建立,不能推导,其正确性由实验检验。 1. 建立 (简单→复杂, 特殊→一般) 一维自由粒子的振幅方程 非相对论考虑 2. 一维定态薛定谔方程 2 |),,,(|t z y x ψ1d d d d d ||2===?=ψ???N N N N V V N N V V V . 是单值、有限、连续的ψ0)(2d )(d 222=ψ+ψx mE x x 0)()(2d )(d 222=ψ-+ψx U E m x x

3. 三维定态薛定谔方程 4. 一般形式薛定谔方程 5. 多粒子体系的薛定谔方程 讨论: 1、薛定谔方程也称波动方程,描述在势场U 中粒子状态随时间的变化规律。 2 、建立方程而不是推导方程,正确性由实验验证。薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 3、薛定谔方程是线性方程。是微观粒子的基本方程,相当于牛顿方程。 4、自由粒子波函数必须是复数形式,否则不满足自由粒子薛定谔方程。 5、薛定谔方程是非相对论的方程。 量子力学的中心任务就是求解薛定谔方程。 求解问题的思路: 1. 写出具体问题中势函数U (r )的形式代入方程 2. 用分离变量法求解 3. 用归一化条件和标准条件确定积分常数 4. 讨论解的物理意义, 薛定谔的另一伟大科学贡献 《What is life ?》 薛定谔(Schroding,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(Dirac,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖 定态薛定谔方程 一.定态薛定谔方程条件:V (r,t )=V(r), 与t 无关。用分离变量法, 令Ψ=φ(r)f(t),代入薛定谔方程,得两个方程: 此称定态薛定谔方程 整个定态波函数形式: ),,,(),,,()],,,(2[),,,(2121212221t r r t r r V t r r m t r r t i i i i ψ+ψ?-=ψ??∑)t (Ef t )t (f i =?? Et i ce )t (f -=)r (E )r ()r (V )r (m ?=?+??-222Et i e )r ( -?=ψ

西安电子科技大学本科生毕业设计(论文)撰写规范

西安电子科技大学本科生毕业设计(论文)撰写规范一. 毕业设计(论文)的总体要求: 撰写论文应简明扼要,一般不少于15000字(外语专业可适当减少,但不得少于10000单词,且须全部用外语书写)。 二. 毕业设计(论文)的编写格式: 每一章、节的格式和版面要求整齐划一、层次清楚。其中: 1. 论文用纸:统一用A4纸,与论文封皮,任务书,工作计划,成绩考核表一致。 2. 章的标题:如:“摘要”、“目录”、“第一章”、“附录”等,黑体,三号,居中排列。 3. 节的标题:如:“2.1认证方案”、“9.5小结”等,宋体,四号,居中排列。 4. 正文:中文为宋体,英文为“Times News Roman”,小四号。正文中的图名和表名,宋体,五号。 5. 页眉:宋体五号,居中排列。左面页眉为论文题目,右面页眉为章次和章标题。页眉底划线的宽度为0.75磅。 6. 页码:宋体小五号,排在页眉行的最外侧,不加任何修饰。 三. 毕业设计(论文)的前置部分: 毕业设计(论文)的前置部分包括封面、中英文摘要、目录等。 1.封面及打印格式 (1)学号:按照学校的统一编号,在右上角正确打印自己的学号,宋体,小四号,加粗。(2)题目:题目应和任务书的题目一致,黑体,三号。 (3)学院、专业、班级、学生姓名和导师姓名职称等内容,宋体,小三号,居中排列。 2. 中英文摘要及关键词 摘要是关于论文的内容不加注释和评论的简短陈述,具有独立性和自含性。它主要是简要说明研究工作的目的、方法、结果和结论,重点说明本论文的成果和新见解。关键词是为了文献标引工作从论文中选取出来用以表示全文主题内容信息的术语。 (1)中文摘要,宋体小四号,一般为300字;英文摘要,“Times News Roman”字体, 小四号,一般为300个实词。摘要中不宜出现公式、非公用的符号、术语等。 (2)每篇论文选取3 ~ 5个关键词,中文为黑体小四号,英文为“Times News Roman”字 体加粗,小四号。关键词排列在摘要的左下方一行,起始格式为:“关键词:”和“Keyword:”。具体的各个关键词以均匀间隔排列,之间不加任何分隔符号。 四. 目录:按照论文的章、节、附录等前后顺序,编写序号、名称和页码。目录页排在中英文摘要之后,主体部分必须另页右面开始,全文以右页为单页页码。 五. 毕业设计(论文)的主体部分: 毕业设计(论文)的主体部分包括引言(绪论)、正文、结论、结束语、致谢、参考文献。

电子科技大学成都学院毕业论文电子版要求

第四节毕业论文规范 论文是学生对本人在毕业设计过程中,为完成课题主要任务、实现主要技术指标(或论述主要观点)等而进行的全部工作的文字总结。要求作者围绕课题主要任务、主要技术指标要求(或主要观点)等简明扼要地介绍课题的社会和技术背景,对课题的方案(或观点)进行分析、比较、论证与选择,对方案实施所得到的数据等进行分析与总结,力求全面反映课题的工作量及工作水平。 毕业论文规范的具体内容如下: 一、一般要求和装订顺序 封皮由教务处实践实训管理科统一设计提供。 1、封面 封面的填写要求如下: (1)系(分院)名称必须完整填写,不能随意简写。 (2)专业名称必须以教育部高等教育司批准的专业名称为准,不能随意简写。 (3)指导教师一律以实际指导的教师署名,且只能填写一名。 (4)指导单位为署名的指导教师所在单位。 2、毕业设计(论文)任务书 论文题目名称应力求简练,能概括整个论文最重要的内容,字数在25字以内。任务要求应明确,思路清晰,语句通顺。任务书由指导教师填写,使用黑色钢笔或签字笔。 3、毕业设计(论文)开题报告(双面打印) 4、毕业设计(论文)进度计划表 5、毕业设计(论文)初期检查表 6、毕业设计(论文)中期检查表(双面打印) 7、毕业设计(论文)成绩考核表(双面打印) 毕业设计(论文)任务书、开题报告、进度计划表、初期检查表、中期检查表和成绩考核表的标准表格由教务处实践实训管理科统一制定,并公布在学院教学管理网站上。学生和老师应按照表格上的要求认真、完整地填写。其中,成绩考核表一式三份,论文装订时只须装订一份,另两份交给系(分院)教务科。 注:2—7所列表格一律使用黑色钢笔或黑色签字笔手工填写。 8、中文摘要 150~200字左右。内容应包括课题设计意义、完成的主要工作、形成的重要结论等。语言力求精炼,突出论文的主要成果及创新性。为了便于文献检索,要求作者从正文或标题中挑选出3~8个能表达论文主要内容的词语作为论文的 1

量子力学专题二(波函数和薛定谔方程)

量子力学专题二: 波函数和薛定谔方程 一、波粒二象性假设的物理意义及其主要实验事实(了解) 1、波动性:物质波(matter wave )——de Broglie (1923年) p h =λ 实验:黑体辐射 2、粒子性:光量子(light quantum )——Einstein (1905年) h E =ν 实验:光电效应 二、波函数的标准化条件(熟练掌握)

1、有限性: A 、在有限空间中,找到粒子的概率是有限值,即有 =?ψψτ* d 有限值 有限空间 B 、在全空间中,找到粒子的概率是有限值,即有 =? ψψτ* d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续; 3、单值性:2 ψ是单值函数(注意:不是说ψ是单值!) 三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;

2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率); 四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解) 1、态叠加原理:设1ψ,2ψ是描述体系的态,则 2211ψψψC C += 也是体系的一个态。其中,1C 、2C 是任意复常数。 2、两种表象下的平面波的形式: A 、坐标表象中 r d e p r r p i 3/2/3)() 2(1)( ??=?πψ B 、动量表象中

p d e r p r p i 3/2/3)() 2(1)( ?-?=ψπ? 注意:2/3)2( π是热力学中,Maxwell 速率分布的一个常数,也可以使原子物理中,一个相空间的大小! 五、Schrodinger Equation (1926年) 1、Schrodinger Equation 的建立过程(熟练掌握) ψψH t i ?=?? 其中,V T H ???+=。 2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解) A 、定态:若某一初始时刻(0=t )

第二章 薛定谔方程

第二章 薛定谔方程 本章介绍:本章将系统介绍波动力学。波函数统计解释和态叠加原理是量子力学的两个基本假设。薛定谔方程是波动力学的核心。在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。 §2.1 波函数的统计解释 §2.1.1 波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。 2.1.1 波动—粒子两重性矛盾的分析能否认为波是由粒子组成? 粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。 能否认为粒子是由波组成? 比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾 经典物理对自然界所形成的基本物理图像中有两类物理体系: ◆一类是实物粒子 ◆另一类是相互作用场(波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。经典波动则是以场量(振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。波与其他物质体系相互作用时,可同时与波所在广延空间内的所有物理体系相互作用,其能量可连续变化,波满足叠加原理,“非定域”是波动性运动的特性。◆◆在经典物理中,粒子和波各为一类宏观体系的呈现,反映着两类对象,两种物质形态,其运动特点是不相容的,即具有粒子性运动的物质不会具有波动性;反之具有波动性运动的物质不会具有粒子性。综上所述,微观粒子既不是经典的粒子又不是经典的波,或者说它既是量子概念的粒子又是量子概念的波。其量子概念中的粒子性表示他们是具有一定的能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。◆现在被物理学家们普遍接受的波函数解释是玻恩提出的统计解释。他认为,粒子在衍射或干涉实验中所揭示的波动性质,既可以看成是大量粒子在同一实验中的统计结果,也可以认为是单个粒子在多次相同实验中显示的统计结果。 ◆玻恩的统计解释:波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波 §2.1.2 波函数统计解释 波函数的的特点:1.由于 2 |),(|t r ψ给出在 t 时刻,粒子在 r 处出现的几率密度,因此原 则上可由统计平均公式:? ?>= <)(r f 。在这种意义下,波函数),(t r ψ描述了微观粒子的运

薛定谔方程的建立

薛定谔方程的建立 1925年,薛定谔在苏黎世大学任教,并兼任大物理学家德拜的助手。薛定谔过去一直在致力于分子运动的统计力学方面的研究,所以很快注意到爱因斯坦于1925年2月德布罗意发表的关于理想气体量子理论的论文,并从中受到影响.薛定谔本人在1926年4月给爱因斯坦的一封信中曾谈起过:“如果不是您的第二篇关于气体简并的论文提示了我注意到德布罗意思想之重要性的话,恐怕我的整个事情都还未能开始呢。”德拜的回忆说,当初在慕尼黑大学时,曾由德拜、薛定谔等人一块儿组织过一些讨论,德布罗意的博士论文发表后,他们曾进行过讨论。由于难于理解,德拜就让薛定谔仔细钻研一下,然后给大家讲解。“正是这个准备过程使他进步了。作了报告后不过数月之久,他的正式论文就发表出来了.” 薛定谔建立的波动力学是从光学和力学的类比入手的;他发现,微观粒子的运动,用哈密顿动力学方程描述和用德布罗意波波阵面方程描述具有同样的形式,从而看出物质波的“几何光学"等同于经典力学。他把光学与力学进行类比:几何光学是波动光学的近似和简化,若经典力学等同于几何光学,则应该有一门波动力学等同于波动光学,它将如波动光学可以解释干涉衍射一样,用来解释原子领域的过程。他于是引进波函数,把粒子在力场中的运动,描绘成波动的过程,建立了有名的薛定谔方程。 薛定谔的论文正式发表于1926年3月,题目为“作为本征值问题的量子化”,这是他四篇系列论文中的第一篇。薛定谔利用哈密顿—雅可比(Hamilton -Jacobi )微分方程,针对氢原子的具体情形,最后导出了一个一函数的本征值方程: 0)(2222=++?ψψr e E K m 这就是定态下的薛定谔方程.玻尔的氢原子能级作为方程中函数的本 征值自然而然地出现了。薛定谔方程的引入方式并不是唯一的,其正 确性只能由它所得出的结果是否正确来加以保证.事实证明,薛定谔 方程在低速微观领域是十分正确的。波动方程的建立标志了波动力学 的诞生。孤独的研究者,通过曲折的道路,终于达到了一个光辉的顶 点。 当波动力学出现的时候,玻恩正致力于自由粒子与原子间碰撞问 题的研究,他看出波动力学的描述方法更为便利,就采用了这种理论. 运用的结果使他认识到,波动力学并没有回答碰撞之后各粒子的状态 问题,而只是给出了碰撞后各种状态的可能性.这就促使他提出了波 函数的统计解释:“粒子的运动遵循着统计规律,而统计性则按因果 律在坐标中传播.”并把波函数的绝对值二次方解释为与粒子在单位 体积内出现的几率成比例,被称为玻恩对波函数的统计诠释。波函数所表示的波也常被称为几率波。 由于粒子肯定存在于空间中,因此,将波函数对整个空间积分,就得出粒子在空间各点出现几率之和,结果应等于1,即: ??==1),(),(2τ?τd t r c d t r p 可以用),(t r c ?代替),(t r ?作为波函数,那么波函数),(),(t r c t r ??≡'就满足条件: 图10-11为中年时的薛定谔

§16.3 一维定态薛定谔方程的建立和求解举例

§16.3 一维定态薛定谔方程的建立和求解举例 (一)一维运动自由粒子的薛定谔方程 波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程. 将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程: ψ-=?ψ?)/iE (t 即ψ=?ψ?E t i (16.3.1) ψ=?ψ ?22)/ip (x 2 ψ=ψ ?-2222p ????? ?????<<的薛定谔方程自由粒子轴运动的沿)c x (v 方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程. 请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式?. 这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明. (二)一维运动自由粒子的定态薛定谔方程?? 上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即 〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4) 将此式代入(16.3.3)式得: 22 2dx u d )t (f )m 2/(dt df )x (u i -= 两边除以ψ=uf 得: 22 2dx u d u 1)m 2/(dt df f 1i -= 此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即 ? 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版. ? 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版. ? 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.

薛定谔方程及其解法

关于薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理 学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )() ,( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

原子物理学——薛定谔方程

§3.4 薛定谔方程 一、薛定谔方程的建立 1.自由粒子的薛定谔方程 自由粒子的波函数:)(0)(0Et zp yp xp i Et p r i z y x e e -++-?== ψψψ (1) 对x 、y 、z 分别求二次偏导: ψψx p i x =?? ψψψ2222 x x p x p i x -=??=?? ψψy p i y =?? ψψψ22 22 y y p y p i y -=??=?? ψψz p i z =?? ψψψ22 22 z z p x p i z -=??=?? 三者相加: ψψψψψ222 222222222)(1 p p p p z y x z y x -=++-=??+??+?? 拉普拉斯算符:2 22 22 22 z y x ??+ ??+ ??= ? ψψ22 2 p -=? (2) 对t 求一次偏导:ψψE i t -=?? ψψ E t i =?? (3) 自由粒子,m p m E 22122 ==υ ψψm p E 22= (4) 由(3)(4)式: ψψm p t i 22 =?? (5) (2)式代入(5)得: ψψ2 22?-=??m t i ――自由粒子的薛定谔方程。 (6) 2.一般粒子的薛定谔方程

一般粒子常受到力场的约束,用),(t r V 表示力场,则粒子在力场中受到的力为:),(t r V F -?=,假设处于这种力场中的微观粒子的波函数为),t r (ψ,假设 ),t r (ψ仍满足方程: ψψE t i =?? ψψ222 p -=? 但此时 V m p E +=22 (7) 即一个质量为m 动量为p ,在势场V 中运动的非相对论粒子的能量:动能 (m p 22)+势能(V ). 则有:ψψψV m t i +?-=??2 22 (8) ――处在以势能V 表征的力场中的微观粒子所满足的运动方程,称之为薛定谔方程。 如果已知V 和微观粒子的初始条件0ψ,原则上,可以求出粒子在任何时刻t 的状态ψ。可见,薛定谔方程在量子力学中的地位相当于经典力学中的牛顿第二定律。 二、定态薛定谔方程 能量不随时间变化的状态称为定态。设作用在粒子上的力场不随时间改变,即势能V 中不显含时间t ,将其代入方程: ψψψV m t i +?-=??2 22 (9) 则(9)式的解可以表达为坐标的函数和时间的函数的乘积,即波函数可分离变量:)()(),(t f r u t r =ψ E Vu u m u dt t df t f i =+?-=]2[1)()(2 2 E 为一常数(要相等必等于常数) Eu u V m =+?-]2[22 定态薛定谔方程 (10)

薛定谔方程的建立和探讨

编号 学士学位论文 薛定谔方程的建立和探讨 学生姓名:麦麦提阿布都拉.艾沙 学号:20070105034 系部:物理系 专业:物理学 年级:07-1班 指导教师:艾沙江.赛来 完成日期:2012 年 5 月 5 日

中文摘要 薛定谔方程是量子力学的重要基本方程其地位与经典物理中的牛顿运动方程相当,打开物质微观世界大门的金钥匙。薛定谔方程是关于微观粒子运动状态的描述和微观粒子力学量的表达等方面谈量子力学,量子力学的基本规律是统计规律,介绍了薛定谔方程的表述形式, 分析了不同体系的薛定谔方程的建立方法, 并介绍了求解复杂体系的薛定谔方程的近似模型和方法分析了薛定谔方程在揭示物质微观世界的实际应用价值,从而有助于更好地认识薛定谔方程的重要意义,首先分析薛定谔方程在一维势场中的应用然后建立波函数最后建立薛定谔方程,还要说薛定愕方程的实验基础。 关键词:创造性思维; 特性;薛定谔方程。

目录 中文摘要 (1) 引言 (3) 1. 薛定谔方程的建立和创造性的思维 (4) 1.1问题提出 (4) 1.2发散思维 (4) 2. 薛定谔方程的建立 (4) 2.1.薛定谔方程的建立 (4) 2.2再造想象 (8) 3.一维定态薛定谔方程的建立和求解举例 (8) 3.1一维运动自由粒子的薛定谔方程 (8) 3.2一维运动自由粒子的定态薛定谔方程 (9) 4.薛定谔方程的实验基础: (10) 5. 量子力学与经典物理的区别: (12) 5.1.关于运动状态的描述 (12) 5.2.关于状态量的解释 (12) 5.3.关于力学量的表达 (13) 结论 (14) 参考文献. (15) 致谢 (16)

薛定谔方程的相对论形式的推导

狄拉克方程 理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-?粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。 狄拉克方程的形式如下: , 其中是自旋-?粒子的质量,与分别是空间和时间的坐标。 狄拉克的最初推导 狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑薛定谔方程 薛定谔方程只包含线性的时间一阶导数从而不具有洛伦兹协变性,因此很自然地想到构造一个具有线性的空间一阶导数的哈密顿量。这一理由是很合理的,因为空间一阶导数恰好是动量。 其中的系数和不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数是矩阵,那么波函数也不能是简单的标量场,而只能是N×1阶列矢量

狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值 同时,这些旋量的每一个标量分量需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系: 满足上面条件的系数矩阵和本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。 在不同基中这些系数矩阵有不同形式,最常见的形式为 这里即为泡利矩阵 因此系数矩阵和可进一步写为

量子力学_王学雷_第二章波函数薛定谔方程

§2.1 波函数的统计解释 一.波动-粒子二重性矛盾的分析 物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误? 实物粒子波长很短,一般宏观条件下,波动性不会表现出来。到了原子世界(原子大小约 1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。 传统对波粒二象性的理解: (1)物质波包物质波包会扩散,电子衍射,波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。电子双缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒子性一面。 对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。在经典概念下,粒子和波很难统一到一个客体上。 二.波函数的统计解释 1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。既描写粒子的波叫几率波。 描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。 几率波的概念将微观粒子的波动性和粒子性统一起来。微观客体的粒子性反映微观客体具有质量,电荷等属性。而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。 描述经典粒子:坐标、动量,其他力学量随之确定; 描述微观粒子:波函数,各力学的可能值以一定几率出现。 设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x到x+dx、 y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体 积和强度 归一化条件:在整个空间找到粒子的几率为1。

求解非线性薛定谔方程的一类数值解法

求解非线性薛定谔方程的一类数值解法 张艳敏,刘明鼎 (青岛理工大学琴岛学院,山东青岛266106) 摘要:利用非标准有限差分方法构造了求解非线性薛定谔方程的两个非标准有限差分格式。对于离散后的差分格式,把关于时间和空间的步长函数作为分母逼近导数项。对于非线性项,通过非局部的离散方法计算了这两个非标准有限差分格式的局部截断误差。数值实验结果验证了非标准有限差分格式的有效性。关键词:非线性薛定谔方程;局部截断误差;数值解法中图分类号:O241.82 文献标识码:A 文章编号:2095-7726(2019)03-0008-03 薛定谔方程是物理学中量子力学的一个重要方程,可以用于研究深水波浪理论。柱(球)非线性薛定谔方程常用于描述单色波的一维自调适、光学的自陷现象、固体中的热脉冲传播和等离子体中的Langnui 波[1–5],因此对于此类方程的研究具有非常重要的意义。 薛定谔方程有线性和非线性两种,在本文中,我们研究的是非线性薛定谔方程。非线性薛定谔方程解的解析表达式是很难得到的,因此求解此类方程最常用的就是数值解法。求非线性薛定谔方程数值解的方法主要有差分方法、配置谱方法[6]、有限元方法[7]和平均离散梯度方法[8]等。在本文中,我们利用非标准有限差分方法研究了非线性薛定谔方程的数值解,这种方法已在求解偏微分方程中得到了广泛的应用[9],其优点是对非线性项作非局部离散,对导数项作离散后用步长函数作分母,这样不仅能保持差分方程的数值解与原方程的解析解具有相同的正性,而且能保持较好的数值稳定性。 1非标准有限差分格式的构造 现在我们利用文献[10-12]给出的方法构造非线 性薛定谔方程的两种非标准有限差分格式,要考虑的非线性薛定谔方程为 (1)相应的初边值条件为 其中:为虚数单位;、、和均为连续函数;和均为正数。 为了得到非线性薛定谔方程的差分格式,需要对式 (1)进行离散。首先,需要利用网格对区域进行分割,取空间步长时间步长其 次,在网格点处,定义数值解其中,且下面将分别构造式(1)的两种非标准有限差分格式。 1.1第一种非标准有限差分格式的构造 为了构造式(1)的第一种非标准有限差分格式,我们利用R.E.Mickens 提出的构造非标准有限差分格式的原理[10]和文献[13-14]中提到的方法,并利用给定的记号,对式(1)进行离散。离散后的差分方程为 其中,和为分母函数,且,且分母是通过步长函数逼近得到的。 从式(4)可以看出,和分别取代了和分母函数的选择依据了薛定谔方程解的性质[4]。 记对式(4)进行整理,可得第36卷第3期Vol.36No.3 新乡学院学报 Journal of Xinxiang University 2019年3月Mar.2019 收稿日期:2018-12-21 基金项目:山东省高校科技计划项目(J17KB053);青岛理工大学琴岛学院教育教学研究重点项目(2018003A)作者简介:张艳敏(1981—),女,山东东营人,副教授,硕士,研究方向:偏微分方程数值分析。通信作者:刘明鼎(1982—),男,辽宁大连人,副教授,硕士,研究方向:偏微分方程数值分析。 222 (,)(,) (,)(,)(,),i u x t u x t u x t u x t g x t t x ??=++??(,0)(), u x f x =(2) 01(0,)(), (,)()u t p t u L t p t =ìí =?。 (3)0,0;x H t T <£<£i (,)g x t ()f x 0()p x 1()p x H T [0,][0,]H T ′,h H M =Δt T N =。(,)m n x t (,),n m m n u u x t =(0,1,2,,),m x mh m M ==L Δ(0,1,2,,),n t n t n N ==L ,M N ++??Z Z 。111212 2(),i n n n n n m m m m m n n n m m m u u u u u u u g D D ++---+=++(4) 1D 2D 12exp(Δ)1,D t D =-=24sin ()2 h 1D 2D Δt 2,h 11122 ,,D R D R D ==

相关文档
最新文档