钢-混凝土组合连续梁的施工

钢-混凝土组合连续梁的施工
钢-混凝土组合连续梁的施工

钢与混凝土组合梁

第四章 钢与混凝土组合梁 思考题: 1.组合梁是由哪几部分组成的?钢梁与混凝土板之间能够共同工作的条件是什么? 2.组合梁的设计计算理论有哪两种?一般各在什么情况下应用? 3.组合梁按塑性理论计算时,钢梁截面应满足哪些要求?为什么? 4.完全剪切连接组合梁按塑性理论计算时采用了哪些基本假定? 5.连续组合梁在受力性能和设计计算方面有什么特点? 6.连续组合梁按照弹性理论计算的原则和方法是什么? 7.连续组合梁按塑性理论计算时应满足哪些要求? 8.组合梁中的钢梁在哪些情况下可不进行整体稳定性验算? 9.什么是部分剪切连接?一般在什么条件下,采用部分剪切连接的设计方法? 10.在简支组合梁的变形计算中为什么采用折减刚度,而不直接采用换算截面刚度? 习题: 1.某平台次梁采用钢与混凝土简支组合梁,梁的跨度为6m ,梁间距为2m ,梁的截面尺寸见题图4.1。施工阶段和使用阶段的活荷载标准值分别为1.5kN/m 2和6kN/m 2,使用阶段活荷载的准永久值系数5.0=q ψ。平台上有30mm 厚水泥砂浆面层,钢梁与混凝土之间无温差。混凝土的强度等级为C25(2N/mm 9.11=c f ,24N/mm 1080.2?=c E ),钢材采用Q235钢(2N/mm 215=f ,2N/mm 125=v f ,25N/mm 1006.2?=s E )。钢梁与混凝土板之间采用栓钉连接件,以承受交界面上全部的纵向剪力.试按弹性理论进行以下内容的验算: 施工阶段:(1) 钢梁的受弯承载力;(2) 钢梁的受剪承载力;(3) 钢梁的挠度; 使用阶段:(1)组合梁的受弯承载力;(2) 组合梁的受剪承载力;(3) 组合梁 的挠度;(4) 钢梁腹板的局部稳定性;(5) 剪切连接件设计。

钢-砼组合梁施工工艺

钢-砼组合梁施工工艺标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

钢-砼组合梁施工方法与施工工艺 按设计要求,主线桥每个钢梁分六段、H匝道桥分四段工厂制作,现场拼装,通过高强螺栓连接。 一、钢梁制作 钢梁制作选择有施工资质的工厂制造。 我单位提供钢箱梁全部设计详图及设计说明。另外结合施工现场情况,提供必要的施工安装说明等。 制作过程中,会同监理单位进行质量检验验收。并要求工厂提供各种材质试验、焊接试验及钢结构探伤试验报告;提供构件编号及工地预拼图。 焊缝要求:所有对接接头均为Ⅰ级焊缝;腹板与上翼板及底板之间为双面贴角焊缝,焊缝标准为Ⅰ级;其他焊缝均为Ⅱ级。 桥梁钢结构内外表面均须进行二次除锈(污)。第一次是钢材进厂之后在下料之前要进行一次预处理-喷丸(在喷丸机上进行)。并及时涂装车间底漆(约15-20μm)。第二次钢构件焊接成型后在涂装之前要进行一次喷砂(金刚砂)喷砂要在密闭空间、保温保湿的条件下进行(内表面不喷砂)。钢板外露面喷底漆和面漆等。 二、钢梁运输 钢梁制作完成后,经验收达到要求后由工厂运输至工地预拼场,运输采用预先制订的装车及运输方案进行,保证钢梁各种构件不致损伤、变形。 三、钢梁工地试拼装、钢梁组合连接 钢梁运至现场后,在吊装前需要进行试拼装。钢梁试拼前,应根据事先计算的预拱度和准确试拼位置;预先制造好胎模,确保试拼达到要求后,便于钢梁组合连接。钢梁组合拼装时,对容易变形的够应进行强度和稳定性验算,必要时采取加固措施。钢梁拼装、连接过程中,每完成一节应测量其位置、轴线、标高和预拱度,如有不符和要求即进行校正。钢梁连接高强度螺栓,长度与施工图一致,安装时应按顺序穿入孔内,方向全桥一致,不得强行穿入,且施工的预拉力应符合规范要求。 四、钢梁移梁及吊装就位 根据工地现场情况,采用增设临时支承,通过在广深高速公路两侧支立的两台220吨吊车,将钢梁段吊放在永久桥墩和临时支承上,进而进行钢梁连

钢一混凝土组合梁

钢-混凝土组合梁 钢-混凝土组合梁(以下简称组合梁)是在钢结构和混凝土结构基础上发展起来的一种新型梁,通常其肋部采用钢梁,翼板采用混凝土板,两者间用抗剪连接件或开孔钢板连成整体。抗剪连接件是钢梁与混凝土板共同工作的基础,它沿钢梁与混凝土板的交界面设置。两种材料按组合梁的形式结合在一起,可以避免各自的缺点,充分发挥两种材料的优势,形成强度高、刚度大、延性好的结构形式。近几年,钢-混凝土组合梁在我国的应用实践表明,它不仅可以很好地满足结构的功能要求,而且还具有良好的技术经济效益。 钢-混凝土组合梁的特点 钢-混凝土组合梁可以广泛的用于建筑结构和桥梁结构等领域。对比钢梁和钢筋混凝土梁,钢-混凝土组合梁具有以下主要特点: (1)由于混凝土板与钢梁共同工作,可以充分发挥钢材与混凝土材料各自材料特性;另外,钢-混凝土组合梁与钢板梁相比节省钢材约20%-40%,可以降低造价。 (2)增大梁的截面刚度,降低梁的截面高度和建筑高度。 (3)组合梁的混凝土受压翼板增加了梁的侧向刚度,防止了主梁在使用荷载下的扭曲失稳。 (4)降低冲击系数,抗冲击、抗疲劳和抗震性能好。 (5)可以节省施工支模工序和模板,有利于现场施工。 钢-混凝土组合梁发展 钢-混凝土组合梁结构是在钢结构和钢筋混凝土结构基础上发展起来的一种新型结构,其与木结构、砌体结构、钢筋混凝土结构和钢结构并列,已经扩展成为第五大结构(组合结构),它是通过连接件把钢梁和混凝土板连接成整体而共同工作的受弯构件。在荷载作用下,混凝土板受压而钢梁受拉,充分发挥钢材与混凝土的材料特性,实践表明,它兼顾钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,将成为结构体系的重要发展方向之一,作为组合结构体系中重要的横向承重构件的钢-混凝土组合梁在建筑及桥梁结构等领域必将具有广阔的应用前景。其发展过程大致经历以下四个阶段: 1、20世纪20年代--30年代。萌芽阶段。 钢一混凝土组合梁的研究始于1922年,MackayMH在加拿大Domion桥梁公司进行了两根外包混凝土钢梁试验,同时英国国家物理实验室也进行了外包混凝土钢梁的试验,随后在30 年代中期出现了钢梁和混凝土翼板之间的多种抗剪连接构造方法,可以看到处于萌芽阶段的研究主要集中于考虑防火需要的外包混凝土钢梁及实用连接件的研究,而未考虑两者的组合工作效应,这一阶段探索性的研究为后续钢-混凝土组合梁的蓬勃发展奠定了一定的基础。 2、20世纪40年代~60年代。发展阶段 这一阶段是组合梁发展的第二阶段,在这一阶段,许多技术先进的国家对组合梁开展了比较深入的试验研究,对组合梁的分析基本上按照弹性理论进行分析,并制定了相关的设计规范和规程,使得组合梁的应用在科学指导下逐渐普及。 3、20世纪60年代~80年代,全面研究,实用阶段 由于钢-混凝土组合梁具有广泛的应用前景,组合梁的研究工作进一步得到深化,在总结以往研究和应用成果的基础上,进一步改进和完善了组合梁的有关设计规范或规程,组合结构的应用和发展逐步成熟,几乎日趋赶上钢结构的发展,并广泛重视,研究工作重点也由简支梁研究转而开始了连续梁的研究,由完全剪力连接转为部分剪力连接;由考虑允许应力设计方法转为考虑极限状态设计方法;由弹性理论分析转为塑性理论分析。

钢-混组合梁桥的设计优化及应用

龙源期刊网 https://www.360docs.net/doc/1d18752139.html, 钢-混组合梁桥的设计优化及应用 作者:周俊书李兵任亚 来源:《中国科技纵横》2020年第06期 摘要:近年来,钢-混凝土组合梁桥因其施工快速及结构性能优越而越来越多地被应用于高速公路的建设中。以某高速公路互通主线的钢-混组合连续梁桥为背景,介绍了该类型梁桥的基本结构形式,阐述了钢-混组合连续梁桥设计过程中优化负弯矩区混凝土桥面板受力采取的措施,为类似桥梁设计优化提供思路。 关键词:钢-混组合梁;连接件;负弯矩区混凝土 中图分类号:U448.2 文献标识码:A 文章编号:1671-2064(2020)06-0130-02 1设计背景 随着科学技术的进步,中国桥梁建设工作在近年来迅速发展,预应力混凝土箱梁由于施工工艺成熟,施工质量优异等优点而被广泛应用。然而,随着桥梁对大跨径需求的增加,传统的混凝土箱梁桥由于结构自重大、地震响应大、腹板后期开裂等问题日益突出,已逐渐满足不了大跨径桥梁建设的需求。大跨径桥梁趋于选择自重更轻、跨越能力更大的结构形式。钢-混凝土组合梁桥相较于传统的混凝土箱梁桥具有自重小、结构轻巧美观、施工周期短、不中断下穿公路的通行等优点,而越来越多地被应用于高速公路的建设中。 钢-混凝土组合梁是由混凝土桥面板和钢梁通过剪力连接件组合共同承受荷载的梁。在设计过程中,尽力让混凝土桥面板承受压应力,钢梁承受拉应力,以此充分发挥各自材料特性来使结构的经济效益最大化。然而在钢-混组合连续梁的设计过程中,不可避免墩存在顶负弯矩区域的混凝土桥面板承受拉应力、钢梁承受压应力。此时需要采取措施控制混凝土桥面板开裂和钢梁承压局部失稳的问题。如根据路线设计要求,半径较小的曲線组合梁桥还应考虑弯扭耦合效应[1]。即将通车的杨寨东互通主线桥主跨部分采用36m+60m+42m的组合结构,本文将介绍其设计优化过程中采取的相关措施。 2工程概况 杨寨东互通K0+412.5主线大桥位于武汉城市圈环线高速公路大随至汉十段杨寨东互通内,为跨越麻竹高速而设。桥梁左幅桥宽8.25m,跨径为11×20m+(36+60+42)m+4×20m的连续小箱梁和钢-混凝土组合梁;桥梁右幅桥宽12.75m,跨径为11×20m+(42+60+36) m+4×20m的连续小箱梁和钢-混凝土组合梁。其中跨越麻竹高速主线按照8车道41m路幅预留,且建设期不中断麻竹高速公路的交通通行,受制于上跨麻竹高速主线的净空要求,预应力混凝土箱梁方案不再适用。在钢-混凝土组合梁与钢箱梁的方案选择过程中,钢筋混凝土桥面

地裂缝对钢-混组合连续梁桥效应的影响分析及对策研究

地裂缝对钢-混组合持续梁桥效应的影响分析及对策研究 目前国内外修建结构物遇到地裂缝灾害时尽量选择避开方案,随着城市可用土地面积的日益减少,由于桥梁结构作为跨线工程,所以不可避免的要修建在地裂缝位置上。对跨地裂缝的桥梁,通常选择简支梁桥,因为简支梁桥作为静定结构体系,不平均沉降对桥梁上部结构的影响相对较小,安全性更高。 由于简支梁桥跨越能力无限,在桥下空间、管道、交通灯受到限制时,所以必须采用跨径相对较大的持续梁桥,如何减小地裂缝灾害对持续梁桥的晦气影响,成为众多桥梁工程师亟待解决的问题。本文以陕西省交通运输厅科研项目“钢-混组合持续梁桥跨地裂缝施工和运营阶段监测与监控技术研究”为依托。 以跨越地裂缝的雁塔路互通式立交桥为依托工程,采用数值模拟的方法,对钢-混组合持续梁跨越地裂缝的角度和合理跨径进行了深入的研究。主要研究内容如下:(1)通过建立了下部结构的仿真模型,选取了距离地裂缝较近的两个桩基,分别研究了斜交角和主梁跨径对下部结构的力学性能影响。 通过分级加载的方式施加沉降,从而对沉降过程中地裂缝对桩基的力学性能的影响进行了研究。结果表明,取较小斜交角和较小跨径时,地裂缝对桩基的晦气影响最小。 (2)通过建立上部结构的无限元模型,建立三种例外跨径组合的上部结构模型。分别从桥梁的受力和变形两个方面对结构进行分析,研究随着地裂缝沉降量的增大,桥梁上部结构力学性能的变化规律。 研究发现,地裂缝对采用较小斜交角和较小跨径的桥梁上部结构的晦气影响最小。(3)基于钢-混组合梁承载能力的沉降量预警分析,分别从承载能力极限状态和正常使用极限状态下,通过对桥梁抗弯、抗剪、抗裂、变形四个方面进行极限状态分析,分别得到基于承载能力状态和正常使用状态下桥梁的沉降量预警值,为相应的对策研究提供理论依据。 根据沉降量预警分析可知,在土体最大沉降量范围内,沉降预警分析主要考虑地裂缝灾害引起的弯矩和主梁变形。(4)对桥墩的沉降量和主梁的应力监测进行了详细的说明,并针对桥梁沉降量过大时,制订了详细支撑系统调节方案以及地基加固处理方法。

钢混组合连续梁桥顶推施工受力特性分析

钢混组合连续梁桥顶推施工受力特性分析 钢混组合梁因其受力性能好,预制化程度高而得到广泛应用,国家在“十三五”期间大力提倡钢桥的应用,因此该桥在我国又迎来了新的历史机遇。在钢混组合梁的施工中,主梁与桥面板往往是分开施工的,组合梁的钢主梁因为其自重轻、几乎是等截面的优点,通常采用顶推法进行施工,而桥面板通常采用预制形式,安装方法上采用间断施工法来改善支点处桥面板受力。 鉴于组合梁的应用前景,对于分析组合梁在施工过程的受力,模拟其在施工 中的受力状态,显得十分有必要。本文选择钢板组合梁进行研究,希望能为同类桥梁的施工与设计提供帮助。 本文主要进行了以下几个方面的研究:(1)回顾了钢混组合梁与顶推施工法 的发展历程,就顶推施工法的分类与与发展特点进行了详细阐述,展望了顶推施 工法需要关注的问题,对组合梁的结构特征以及顶推法的发展历程有了全方位的了解与认识。(2)简化导主梁模型,采用位移法分析了顶推过程主梁的受力。 获得了顶推过程中主梁内力与支点反力的解析表达式,确定了顶推过程主梁的控制截面与时间节点。分析了导梁长度、自重集度以及刚度对主梁受力的影响,确定了导主梁顶推过程最佳的长度比α,自重集度比β以及刚度比γ。 (3)采用杆系有限元分析了某钢板组合梁顶推施工过程,确定了导梁的合理 设计参数与截面形式,得到了有限元仿真模拟下导梁前端的挠度变化情况以及主梁的内力与支反力,验证了导梁设置的合理性和有效性。(4)采用有限元软件中的施工阶段联合截面分析了桥面板的施工过程,比较了桥面板在间断施工法与顺序施工法下施工顺序的差异,比较了在两种施工法下支点处桥面板的受力状态,验 证了间断施工法的可靠。

钢-混凝土组合梁计算原理及截面设计

钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来的一种新型结构型式。它主要通过在钢梁和混凝土翼缘板之间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。 钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自重,减小地震作用,减小截面尺寸,增加有效使用空间,节省支模工序和模板,缩短施工周期,增加梁的延性等。同钢梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。 近年来,钢-混凝土组合梁在我国城市立交桥梁及建筑结构中已得到了越来越广泛的应用,并且正朝着大跨方向发展。钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,是未来结构体系的主要发展方向之一。 计算原理 在钢-混凝土组合梁弹性分析中,采用以下假定: 1、钢材与混凝土均为理想的弹性体。 2、钢筋混凝土翼缘板与钢梁之间有可靠的连接交互作用,相对滑移很小,可以忽略不计。

3、平截面假定依然成立。 4、不考虑混凝土翼缘板中的钢筋(该假设只在正弯矩承载力计算时成立,负弯矩承载力计算式需考虑钢筋作用[1])。 钢-混凝土组合梁弹性分析采用换算截面法。(a)表示换算前截面,(b)表示换算后截面。换算截面法的基本原理是:混凝土翼缘板按照总力不变及应变相同条件,换算成弹性模量为Es、应力为бs的与钢等价的换算截面面积。具体计算时,为了混凝土截面重心高度换算前后保持不变,换算时混凝土翼缘板厚度不变而仅将翼缘板有效翼缘宽度be除以α E(钢材弹性模量与混凝土弹性模量的比值。 求得等价的钢梁截面后,可以按照材料力学的方法来计算截面的抗弯承载力。设换算后截面的惯性矩为 I换算,换算截面形心轴距离钢梁底部为y 换算,组合梁总高为y换算作用在截面上的弯矩为M,而组合梁挠度的计算,则按照换算截面惯性矩计算组合梁截面刚度后,再由结构力学的方法计算梁的挠度。 截面设计 根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86),对钢-混凝土组合梁进行了设计。如图4所示,为该工程选用的组合梁截面图。钢梁选为Q345B钢,混凝土翼缘板用 C40混凝土,剪力连接件采用[10槽钢。组合梁总高为1650mm,高跨比约为31.5。组合梁截面换算惯性矩为8.576×1010mm^4,而纯钢梁的截面惯性矩只有5.228×10 10mm^4,组合梁截面惯性矩是纯钢梁的1.64倍,大大提高了组合梁的刚度,减小了组合梁在荷载作用下的挠度

钢_混凝土组合结构桥梁研究新进展_聂建国

第45卷第6期2012年6月 土木工程学报 CHINA CIVIL ENGINEERING JOURNAL Vol.45Jun.No.62012 基金项目:国家自然科学基金重点项目(51138007),清华大学自主科 研计划(20101081766) 作者简介:聂建国,博士,教授收稿日期:2010- 12-09钢-混凝土组合结构桥梁研究新进展 聂建国 1 陶慕轩 1 吴丽丽 2 聂鑫 1 李法雄 1 雷飞龙 1 (1.清华大学土木工程安全与耐久教育部重点实验室,北京100084; 2.中国矿业大学(北京),北京100083) 摘要:钢-混凝土组合结构桥梁近年来在我国得到了迅速的发展。在传统桥梁结构形式的基础上,发展多种新型组合结构桥梁形式,拓宽组合结构桥梁的应用领域。介绍近年来在钢-混凝土组合结构桥梁方面的最新研究进展,内容包括波形钢腹板组合梁桥、槽型钢-混凝土组合梁桥、钢-混凝土组合刚构桥、双重组合作用连续组合梁桥和大跨斜拉桥组合桥面系。通过对传统结构形式的改进和发展,可充分发挥组合结构桥梁的综合优势,研究结果表明,钢-混凝土组合结构桥梁具有广阔的推广应用前景。 关键词:钢-混凝土组合结构;桥梁;波形钢腹板;槽型组合梁;组合刚构桥;双重组合;组合桥面系中图分类号:U448.38 文献标识码:A 文章编号:1000- 131X (2012)06-0110-13Advances of research on steel-concrete composite bridges Nie Jianguo 1 Tao Muxuan 1 Wu Lili 2 Nie Xin 1 Li Faxiong 1 Lei Feilong 1 (1.Key Laboratory of Civil Engineering Safety and Durability of the Ministry of Education ,Tsinghua University ,Beijing 100084,China ; 2.China University of Mining &Technology ,Beijing ,Beijing 100083,China ) Abstract :Steel-concrete composite bridges have been developed rapidly in recent years in China.Several new types of composite bridges have been developed on the basis of traditional structures to broaden the application area of composite bridges.In this paper ,some recent advances in research of steel-concrete composite bridges are summarized.The main research work involves composite girder bridges with corrugated steel webs ,channel-shaped steel-concrete composite girder bridges ,steel-concrete composite rigid frame bridges ,continuous composite bridges with double composite action and composite deck systems for large-span cable-stayed bridges.Through improvement and development of the traditional structural forms ,the comprehensive advantages of composite bridges can be fully displayed ,which demonstrates a good prospect of application and extension for steel-concrete composite bridges. Keywords :steel-concrete composite structure ;bridge ;corrugated steel web ;channel-shaped composite girder ;composite rigid frame bridge ;double composite ;composite deck system E-mail :dmh03@mails.tsinghua.edu.cn 引言 钢-混凝土组合结构桥梁(简称组合桥)是指将钢 梁与混凝土桥面板通过抗剪连接件连接成整体并考 虑共同受力的桥梁结构形式。相对于不按组合结构设计的纯钢桥,组合桥可以有效减小结构高度、提高结构刚度、减小结构在活荷载下的挠度。通过抗剪连接件的连接作用,混凝土桥面板对钢梁受压翼缘起到约束作用,从而增强了钢梁的稳定性,有利于材料强度的充分发挥。截面高度的降低,使结构外形更加纤 巧,改善桥梁的景观效果,有利于增加桥下净空或降 低桥面高程。组合桥相对于混凝土桥, 上部结构高度降低、自重减轻、地震作用减小、结构延性提高、基础造价降低。同时,组合桥便于工厂化生产、现场安装质量高、施工费用低、施工速度快,并可以适用于传统砖石及混凝土结构难以应用的情况 [1] 。 组合桥自20世纪50年代之后得到了迅速的发展, 从20 25m 跨径的中小跨径梁桥到跨径近千米的斜拉桥,都有组合结构的应用 [2] 。近年来,除常用的 组合板梁桥和组合箱梁桥之外,相继研发了波形钢腹板组合梁桥、组合桁梁桥、组合刚构桥等一系列新的结构形式,拓宽了组合桥的应用领域。而在国内,随着道路等级的不断提高和建设规模的扩大,桥梁呈现出跨径不断增大、桥型不断丰富、结构不断轻型化的发展趋势,同时对桥梁建设的经济性和综合效益也越

浅议钢筋混凝土梁与钢-混凝土组合梁

浅议钢-混凝土组合梁与钢筋混凝土梁 摘要:分析钢-混凝土组合梁与钢筋混凝土梁的设计和计算的异同,重点探讨钢-混凝土组合梁与钢筋混凝土梁的变形特点、裂缝、受弯承载力,在分析的基础上,加深对其的了解,从而知道钢-混凝土组合梁是组合结构中最常见的组合构件之一,是在钢结构和混凝土结构基础上发展起来的一种新型梁,它是由钢筋混凝土翼缘板,钢梁肋部和抗剪连接件组成的整体受力构件。钢与混凝土组合梁结构充分利用了钢材受拉性能好和混凝土受压性能好的特点,是将两种材料通过连接件组合成整体而共同工作发挥作用的一种新型结构。钢筋混凝土梁形式多种多样,是房屋建筑、桥梁建筑等工程结构中最基本的承重构件,应用范围极广。 关键词:钢-混凝土组合梁、钢筋混凝土梁、变形、受弯、裂缝 前言:钢-混凝土组合梁是由钢梁、连接件和钢筋混凝土板组成,而钢筋混凝土梁是用钢筋混凝土材料制成的梁。钢-混凝土组合梁的上翼缘有截面面积较大的钢筋混凝土板承受压力,致使钢梁上翼缘截面减小,从而节约钢材,钢梁下翼缘则承受拉力,这是组合梁的受力特点。钢筋混凝土梁既可作成独立梁,也可与钢筋混凝土板组成整体的梁-板式楼盖,或与钢筋混凝土柱组成整体的单层或多层框架。 1、变形 1.1钢-混凝土组合梁 1.1.1 在荷载保持不变的情况下,由于混凝梁发生收缩徐变,组合梁的变形将不断增加。 1.1.2 混凝土的收缩徐变受到钢梁的约束,组合梁截面中将产生内力重分布,这种内力重分布也会对组合梁的长期变形产生影响[1]。 中国现行《钢结构设计规范))(G B50017,送审稿) [2] 和《公路桥涵钢结构及木结构设计规范》(JTJ025-86)[3]中均采用降低棍凝土弹性模量的方法来考虑混凝土收缩徐变对组合梁长期变形的影响,混凝土长期荷载作用下的有效弹性模量E为

既有钢-混组合梁桥常见病害分析及其加固策略.

既有钢一混组合梁桥常见病害分析及其加固策略 159 既有钢一混组合梁桥常见病害分析及其加固策略 黄侨1,2荣学亮2陆军3 (1.东南大学桥梁与隧道工程研究所南京210096; 2.哈尔滨工业大学桥梁工程研究所哈尔滨 150090; 3.苏州天狮建设监理有限公司苏州 215011 摘要:钢一混组合粱桥以其施工速度快,建筑高度小,抗震性能好等优点,在我国公路和城市桥梁建设中得到了广泛的应用。但是由于交通量和重型车辆的不断增加,空气、水汽、工业烟尘以及其他化学和污染物的环境作用,缺乏定期的养护维修等原因,既有钢一混组合梁桥在运营若干年后,出现了不同程度的病害问题。为保证该类桥梁的安全运营,延长其使用寿命,必须对该类型桥梁进行维修、加固。本文通过调研国内外既有钢一混组合梁桥的运营状况,总结、归纳了该类桥梁出现的几种常见病害, 并在病害成因分析的基础上,研究了该类桥梁的加固方法。并对几种不同的加固方式进行了对比分析,研究了各种加固方法的适用性。对症下药,几种加固方法相结合,变被动加固为主动加固的加固设计理念贯彻于本文的加固方法中。 关键词:钢一混组合梁桥病害加固方法体外预应力 1引言 钢一混组合梁桥是一种在公路尤其城市桥梁工程中应用较多的结构形式之一。该结构形式最早出现于 19世纪末20世纪初,经过几代工程师们近百年深入、细致、全面地研究和应用。自20世纪70年代开始快速发展。以法国为例,据该国1990~t993年建设的桥梁上部结构的统计分析,工字钢梁与混凝土桥梁构成的公路组合梁在跨长30--dlOm范围内最有竞争力,在60~80m跨长则有明显优势。组合粱的占有率达85%。在我国公路和城市桥梁中,组合梁的应用也取得了举世公认的进步,1993建成的上海杨浦大桥(跨径为 602m,2001建成的福建青州闽江大桥(跨径为

钢-混凝土组合梁的发展历程

目录 1 钢-混凝土组合梁的定义及分类 (1) 1.1 定义 (1) 1.2 分类 (2) 2 钢-混凝土组合梁的发展历程 (5) 2.1萌芽阶段 (5) 2.2发展阶段 (5) 2.3全面研究、实用阶段 (6) 2.4深入研究、推广应用、完善规范阶段 (6) 3 钢-混凝土组合梁的工程应用实例 (8) 3.1 多层工业厂房 (8) 3.2 高层建筑 (10) 3.3 桥梁结构 (10) 4 钢-混凝土组合梁的前景 (11) 参考文献 (13)

钢-混凝土组合梁结构的发展概述 1 钢-混凝土组合梁的定义及分类 1.1 定义 钢-混凝土组合结构是在钢结构和混凝土结构的基础上发展起来的一种新型结构形式[1]。目前钢-混凝土组合结构的主要形式包括组合结构、组合楼板、组合桁架、组合柱等组合承重体系以及组合斜撑、组合剪力墙等组合抗侧力体系,应用领域包括高层及超高层建筑(如图1所示)、大跨桥梁、地下工程、矿山工程、港口工程以及组合加固和修复工程等[2]。本文主要对钢-混凝土组合梁进行介绍。 图1 赛格广场大厦(深圳) 钢-混凝土组合梁作为建筑房屋的横向承重构件,通过抗剪连接件将钢梁与混凝土板组合成一个整体来抵抗各种外界作用,能够充分发挥钢梁抗拉、混凝土板受压性能好的优点,与非组合梁结构相比,具有以下一系列的优点:(1)组合梁截面中混凝土主要受压,钢梁受拉,能过充分发挥材料特性,

承载力高。在承载力相同时,比非组合梁节约钢材约15%-25%。 (2)混凝土板参加梁的工作,梁的刚度增大。楼盖结构的刚度要求相同时,采用组合梁可比非组合梁减小截面高度26%-30%。组合梁用于高层建筑,不仅降低楼层结构高度,且显著减轻对地基的荷载。 (3)组合梁的翼缘板较宽大,提高了钢梁的侧向刚度,也提高了梁的稳定性,改善了钢梁受压区的受力状态,增强抗疲劳性能。 (4)可以利用钢梁的刚度和承载力承担悬挂模板、混凝土板及施工荷载,无需设置支撑,加快施工速度。 (5)抗震性能好。 (6)在钢梁上便于地焊接托架或牛腿,供支撑室内管线用,不需埋设预埋件。 相比于混凝土结构,组合结构的缺点是需要采取防火及防腐措施。但组合结构的防火及维护费用比钢结构低,并且随着科学技术的发展,防腐涂料的质量和耐久性也在不断提高,为组合结构的应用提供了有利条件。 1.2 分类 组合梁自问世以来至今,各国学者们展开了广泛且具有深度的研究。目前,组合梁的种类已从单一的外包式钢-混凝土组合梁发展至T形组合梁、现浇混凝土翼板组合梁、预制混凝土翼板组合梁、叠合板翼板组合梁、压型钢板组合梁等形式。 钢-混凝土组合梁按照截面形式可以分为外包混凝土组合梁和钢梁外露的组合梁(如T形组合梁),如图2所示。外包混凝土组合梁又称为劲性混凝土梁或钢骨混凝土梁,主要依靠钢材与混凝土之间的粘结力协同工作;T形组合梁则依靠抗剪连接件将钢梁与混凝土翼板组合成一个整体来抵抗各种外界作用。大量的研究和实践经验表明,T形组合梁更能够充分发挥不同材料的优势,具有更高的综合性能,是组合梁应用和发展的主要形式。

钢与混凝土组合梁的应用实例

工 程 技 术 中国新技术新产品- 121 - 一、工程概况 某钢结构框架厂房,两层,柱距6m,底层跨度6m,四跨,层高4.2m,二层两跨12m,层高3.9m,二层楼面采用钢梁混凝土板,设计楼面活荷载2t/m 2,无动力荷载,屋面采用轻型彩钢板。抗震设防烈度6度,0.05g,地震分组第二组,场地类别二类,地基比较均匀,土质良好。 二、工程设计方案 根据工程基本情况,拟定设计方案采用底层钢框架,上层门式刚架,楼面沿纵向设置次梁兼做横向刚架侧向支撑,次梁间距3m。次梁采用混凝土-钢梁组合结构,主刚架梁采用非组合连续钢梁。刚架采用PKPM-STS钢结构整体计算。 三、楼板的设计计算 压型钢板-混凝土做组合楼板时,钢板能作为板底受力钢筋,比非组合楼板更省材料,但是,施工中需要采用比较可靠地连接构造传递压型板与混凝土结合面的纵向剪力,并需要在压型板上涂刷防火涂料及后期保护性维护。因此本工程采用非组合型楼板,压型板仅作为混凝土的永久支撑使用,楼板按照普通楼板设计。 四、组合梁的设计 1 组合梁的设计计算原则 组合梁均按照极限状态设计准则进行,塑性设计法比弹性设计法计算简便,且考虑钢梁的塑性承载力,与实际情况更吻合,安全的同时更加经济,本工程采用塑性设计方法计算组合梁的承载力。 2 简支组合梁的受弯承载力计算 计算组合梁的受弯承载力需首先确定梁属于完全抗剪连接或部分抗剪连接,然后采用相应的公式计算其受弯承载力。对于简支梁,仅存在正弯矩区,钢梁与混凝土面之间的纵向剪力Vs取Af和behc1fc中的较小值,若抗剪连接件能完全抵抗此纵向剪力,抗剪件不会进入全截面塑性状态,钢梁与混凝土理论上无相对滑移,即完全抗剪连接;若抗剪连接件不能完全抵抗纵向剪力,抗剪连接件全面进入塑性状态后,钢梁与混凝土之间将会产生相对滑动,即部分抗剪连接。 3 组合梁的抗剪承载力计算 组合梁的全部竖向剪力,由钢梁的 腹板承受,按下式计算:V≤hwtwfv,对于连接节点处,梁端剪力还应考虑强剪系数1.3。 4 本工程组合梁截面的选取和计算工程材料:混凝土C30,钢梁钢材Q 345B ,因采用压型钢板,抗剪连接件采用圆柱头栓钉,性能等级4.6级, f=215N/mm 2 ,r=1.67。 (1)梁上荷载计算 恒载:上部楼板自重,及楼板面层gk1=(25×0.2+1.1)×3.0=18.6kN/m gk2=1kN/m(钢梁自重)活荷载:使用荷载20kN/m 2qk=20×3=60kN/m (2)单个栓钉抗剪承载力 压型钢板组合梁,栓钉的抗剪承载力需要考虑折减系数βv,本工程压型钢板板肋垂直于钢梁布置, 其中,bw——混凝土凸肋的平均宽度,当肋的上部宽度小于下部宽度时,区上部宽度;he——混凝土凸肋的高度;hd ——栓钉的高度;n0——梁截面肋中栓钉数,多于3个时,按3个计算。 本工程中,将压型板较宽凸肋朝下,bw=120,单排按2个栓钉考虑,凸肋高度he=60,栓钉高度hd=130,30≤hd-he=70≤75,满足构造要求。 (3)钢梁截面的初步选择 钢梁的抗剪全部由腹板承担,故可以根据支座剪力及板的高厚比限制估算钢梁的高度 支座剪力V=[(18.6+1)×1.2+60× 1.4]×3=322.56kN 腹板主次梁连接处考虑切肢削弱每侧45mm,节点连接处考虑强剪系数1.3,腹板按弹性高厚比控制,则有: [V]=(66tw-90)×tw×180≥1.3× 322.56×1000 hw≥6.5,取板厚tw=8mm 反算梁高度h0 (H0-90)×8×180≥1.3×322.56×1000H0≥381mm,初步取H0=400mm进行试算 根据构造要求及试算,满足使用阶段的强度及刚度要求下,钢梁截面H=450,上翼缘宽度160mm,厚度12mm,下翼缘宽度200mm,厚度8mmAs=6960mm 2。 混凝土翼板的有效宽度be=b0+b1+b2 其中,b0=130(压型板上部宽度)b1=b2=min(L/6,6×hc1,S/2) =min(6000/6,6×160,3000/2) =1000 b e =b 0+b 1+b 2=130+1000+1000 =2130mm A×f=6960×310=2157.6kN·m b e ×h c 1×f c =2130×160×14.3 =4873.44kN·m 因此,组合梁的纵向剪力Vs=Af=2157.6kN·m 抗剪连接件的设置: 根据构造,最终设置单排2M16栓钉(As=201mm 2),单个栓钉抗剪承载力βv×Nvc=1.0×251.34×201=50.53kN,按完全抗剪连接,需栓钉排数n=2157.6/(50.53×2)=22排,排间距S=3000/22=136mm,因板肋的间距为200mm,不能保证栓钉均位于板肋上,故不能满足要求,因此改用部分抗剪连接设计,栓钉间距S=200mm,均设于板肋间,经过计算,钢梁强度及刚度满足要求,实际栓钉排数n=3000/200-1=14排,满足完全抗剪连接50%的最小要求,且钢梁翼缘,腹板厚度均满足相应的高厚比及其它构造要求。 (4)组合梁与非组合梁的经济型比较 如果采用非组合梁,按简支梁计算,需采用H600×200×10×10截面钢梁,As=9800mm 2,相对节省钢材率(9800-6960)/9800=28.9%。 参考文献 [1]张作运,陈远椿,周廷坦.钢与混凝土组合梁设计[M].北京:中国建筑工业出版社. 钢与混凝土组合梁的应用实例 李蔚然 (中色科技股份有限公司,河南 洛阳 471039) 摘 要:组合梁是由钢梁、钢筋混凝土板及两者之间的剪切连接件组成整体而共同工作的一种结构形式。混凝土处于受压区,钢梁主要处于受拉区,两种不同材料都能充分发挥各自的长处,受力合理,节约材料。本文通过一个工程实例,介绍一些该结构形式的技术特点及设计过程中的一些计算及构造细节。关键词:压型钢板组合梁;设计计算;设计方案中图分类号:TU375 文献标识码:A DOI:10.13612/https://www.360docs.net/doc/1d18752139.html,tp.2016.01.111

南京大桥北路钢—混凝土连续组合梁桥设计

一文章编号:1673-6052(2019)01-0023-04一一一一一一DOI:10.15996/j.cnki.bfjt.2019.01.006 南京大桥北路钢 混凝土连续组合梁桥设计 柳双军 (上海市政工程设计研究总院(集团)有限公司南京分公司一南京市一210000)一一摘一要:钢 混凝土连续组合梁桥具有自重轻二抗扭能力强二刚度大二施工速度快的优点?结合南京大桥北路匝道桥?介绍了组合梁在城市高架中的设计与应用?通过调整桥面板混凝土浇注顺序?中支点顶升20cm?有效控制了负弯矩区域混凝土桥面板的开裂? 一一关键词:组合梁桥设计?中支点顶升?负弯矩设计?混凝土桥面板 中图分类号:U448.34一一一一一一文献标识码:B 一一钢-混凝土组合结构桥梁充分利用钢材和混凝土各自的材料性能?通过剪力连接件将二者结合起来共同受力?相对于混凝土梁具有自重轻二构件截面尺寸小二承载能力高二施工速度快等优点?相对于钢梁具有刚度大二整体稳定性能好二造价低二无桥面板疲劳问题等优点?目前?钢-混凝土组合结构桥梁在城市高架等工程中应用相当广泛?结合南京大桥北路工程匝道桥?介绍钢-混凝土连续组合梁桥的总体布置二构造二剪力钉布置二施工顺序二钢梁涂装方案及采用中支点顶升的方法减小负弯矩区域混凝土桥面板的拉应力? 1一工程概况 南京大桥北路快速化改造工程南起浦珠路(江山路)桥北互通?穿过毛纺厂路二柳洲路和梅桂营铁路?北至江北大道?工程设计范围全长约2.7km?高架段全长1.75km?主线高架及匝道桥上部结构以现浇预应力混凝土连续箱梁为主?其中QC匝道桥第二联需跨越已运行的南京地铁S8号线1号风井二2号风井及出入口处?混凝土箱梁现浇支架荷载对地铁构筑物结构影响较大?因此采用钢-混凝土连续组合箱梁跨越地铁构筑物?组合梁钢梁部分采用少支架拼装?桥面板采用现浇施工方法?下部结构桥墩采用实体 花瓶 型?墩身横桥向宽2.5m?顶部扩大为3.9m?顺桥向宽1.8m?支座间距2.4m?基础采用4根直径1.2m钻孔灌注桩基础 ? 图1一大桥北路QC匝道立面图 2一钢-混凝土连续组合梁设计 2.1一组合梁构造 钢-混凝土连续组合梁跨径布置为35.687m+37m+36m?桥宽B=8.2m?截面采用单箱双室?梁总高2.0m?桥面板厚0.3m?腹板斜率为1?2?钢梁由顶板二腹板二底板二横隔板二加劲肋组成?顶板板厚25~30mm?宽0.6m?腹板板厚16~18mm?底板板厚20~25mm?宽3.905m?钢梁沿纵向每6m设置一道横隔板?中支点两侧各1.5m设置一道顶升隔板?隔板间设置一道竖向加劲肋?现浇混凝土桥面板全宽8.2m?厚度为0.3m?挑臂长度1.35m?采用C50钢纤维混凝土?钢箱梁与桥面板通过剪力连接件连接在一起共同受力?剪力连接件钉采用D22?220mm圆柱头焊钉?钢梁采用Q345qD钢材?全桥钢材合计265.2t?用钢指标为297kg/m2?钢梁采用少支架吊装施工?桥面板混凝土采用现浇施工?图2为钢-混凝土组合梁标准断面图? 32 2019年一第1期一一一一一一一一一一一一一一一一北方交通

钢混结合连续梁施工重点技术讲解

钢混结合连续梁施工重点技术讲解 钢混结合连续梁是一种新型桥梁结构。梁体由钢梁和混凝土共同组成承载结构体系,优点是跨度大、重量轻、高度低,适合在跨公路立交结构中采用。钢梁由两片焊接工字形梁(箱梁)组成,纵向每隔4m(或者6m)设l处横隔板,将两片工字形梁(箱梁)联成稳定的空间结构。桥面采用高标号无收缩混凝土。大跨度(40+50+40m)钢混结合连续梁在负弯矩区混凝土内张拉钢绞线,和在浇筑混凝土前顶起中间支座、混凝土达到设计强度后采用落梁的办法,共同施加预应力。桥面板与钢梁之间采用马蹄形传剪器和剪力钉连接,确保桥面混凝土与钢梁之间应力的有效传递。 钢混结合梁的施工主要分三个阶段进行。第一阶段为钢梁制造阶段,这一阶段是委托专业的桥梁厂在工厂中制造。第二阶段为现场组拼与架设阶段。第三阶段为桥面混凝土结合板施工阶段。本节主要介绍第二及第三阶段的情况。钢混结合连续梁施工的重点技术是钢梁制造架设、无收缩混凝土施工、负弯矩区预应力和落梁。 一、钢梁架设施工技术 钢梁架设一般有两种方法:现场吊装组拼架设与先组拼后采用拖拉法架设。吊装法施工受场地限制较大,尤其是桥下为河流或者有立交限制时施工困难。拖拉法架设因施工快、成本低、拼装精度高、不受场地限制等优点。本文中重点对连续拖拉法施工技术进行阐述。

1、拖拉滑道体系 连续拖拉施工是采用一台连续拖拉千斤顶产生牵引力、使用钢绞线作为牵引传力索、利用群锚方式连接钢绞线与钢梁、路基上的滑道使用轮轨结构、在墩顶采用滚轮滑道的连续拖拉体系,进行钢混结合连续梁钢梁的拖拉施工。采用轮轨结构体系和滚轮滑道,降低了摩擦系数,大大减小牵引力和在墩顶产生的反作用力,同时消除了传统的拖拉方法使用四氟板滑道因人工传递四氟板造成的施工中断现象。拖拉牵引动力采用柳州的ZLD60-250型千斤顶代替两台DPM70/600型穿心式千斤顶,牵引传力索采用3根7φ5钢铰线。 2、钢梁拼装焊接 钢梁在工厂制作完成后,试拼后运至台后路基顶面。钢梁现场焊接(或栓接),现场拼装时,按钢梁构件设计的先后位置,把前跨的两片工字钢主梁用自制小龙门吊吊放到拼装台座的正确位置上,(工字钢主梁的中心线应和滑道中心线重合)然后对此垮内的横隔板进行连接。对横隔板进行连接时应由一端顺次向另一端进行。全部横隔板连接完后,依次把下一梁段两片工字钢主梁与前一片已拼好的梁段连接在一起,然后再对此段钢梁内的横隔板进行拼装。按此方法分别对梁段进行拼装,然后再对每段钢梁进行连接。钢梁全部拼装后即可进行拖拉作业。 3、拖拉施工 钢梁拖拉作业是以千斤顶作为牵引动力,以钢铰线作为传力索,实现对钢梁的拖拉作业。拖拉作业开始前应把三根钢铰线调整好,使

钢桥、组合梁桥-midas操作例题资料-钢混组合梁

Civil&Civil Designer 二、钢混组合梁操作例题资料 1工程概况 本桥为某高速路联络线匝道桥中的一联,桥宽6m。上部结构采用 38+33.5+37.5m钢混组合连续梁,下部结构桥墩为柱式。主梁为单箱单室,梁高3.5m,预制高3.1m,钢箱底板厚50mm,上翼缘板厚50mm,腹板厚20mm,布置加劲肋。钢材均采用Q345,分4段预制后现场采用高强螺栓拼接。钢箱顶部混凝土桥面板厚0.2m,承托高0.2m,抗剪界面为c-c,采用C50混凝土现浇;横隔板等设置距离详见图2所示。 图1.1-1 钢箱梁构造图(一)

钢混组合梁操作例题资料 图1.1-2 钢箱梁构造图(二)

2 建模步骤 2.1定义材料 特性>材料特性值>材料 图2.1-1 材料定义

图2.1-2 材料数据 《公路钢混组合桥梁设计与施工规范》(JTG/T D64-01-2015)桥梁设计,需要定义组合材料,选择规范“JTG D64-2015(S)”。 2.2定义截面 特性>截面特性值>组合梁截面 组合梁截面支持“钢-箱型(Type1)”、“钢-I 型(Type1)、“钢-槽型(Type1)” 、“钢-箱型(Type2)、“钢-I 型(Type2)、“钢-槽型(Type2),共六种。截面中可任意设置纵向加劲肋,支持“平板”、“T 形”、“U 肋”三种类型,截面特性值考虑了纵向加劲肋的影响。

图2.2-1 截面数据 按照界面内辅助示意图,输入混凝土板和钢箱梁各段距离,顶底板、腹板厚度等。输入Es/Ec(钢与混凝土弹性模量之比)、Ds/Dc(钢与混凝土容重之比)、Ps(钢梁泊松比)、Pc(混凝土板泊松比)、Ts/Tc(钢与混凝土线膨胀系数之比)。点击“截面加劲肋”,进行加劲肋设置。 点击“定义加劲肋”,定义加劲肋尺寸,设置加劲肋布置位置及间距。

钢混凝土组合梁2015

钢-混凝土组合梁 2015 钢-混凝土组合梁(以下简称组合梁)是在钢结构和混凝土结构基础上发展起来的一种新型梁,通常其肋部采用钢梁,翼板采用混凝土板,两者间用抗剪连接件或开孔钢板连成整体。抗剪连接件是钢梁与混凝土板共同工作的基础,它沿钢梁与混凝土板的交界面设置。两种材料按组合梁的形式结合在一起,可以避免各自的缺点,充分发挥两种材料的优势,形成强度高、刚度大、延性好的结构形式。近几年,钢-混凝土组合梁在我国的应用实践表明,它不仅可以很好地满足结构的功能要求,而且还具有良好的技术经济效益。 钢-混凝土组合梁的特点 钢-混凝土组合梁可以广泛的用于建筑结构和桥梁结构等领域。对比钢梁和钢筋混凝土梁,钢-混凝土组合梁具有以下主要特点: (1)由于混凝土板与钢梁共同工作,可以充分发挥钢材与混凝土材料各自材料特性;另外,钢-混凝土组合梁与钢板梁相比节省钢材约20%-40%,可以降低造价。 (2)增大梁的截面刚度,降低梁的截面高度和建筑高度。 (3)组合梁的混凝土受压翼板增加了梁的侧向刚度,防止了主梁在使用荷载下的扭曲失稳。 (4)降低冲击系数,抗冲击、抗疲劳和抗震性能好。 (5)可以节省施工支模工序和模板,有利于现场施工。 钢-混凝土组合梁发展 钢-混凝土组合梁结构是在钢结构和钢筋混凝土结构基础上发展起来的一种新型结构,其与木结构、砌体结构、钢筋混凝土结构和钢结构并列,已经扩展成为第五大结构(组合结构),它是通过连接件把钢梁和混凝土板连接成整体而共同工作的受弯构件。在荷载作用下,混凝土板受压而钢梁受拉,充分发挥钢材与混凝土的材料特性,实践表明,它兼顾钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,将成为结构体系的重要发展方向之一,作为组合结构体系中重要的横向承重构件的钢-混凝土组合梁在建筑及桥梁结构等领域必将具有广阔的应用前景。其发展过程大致经历以下四个阶段: 1、20世纪20年代--30年代。萌芽阶段。 钢一混凝土组合梁的研究始于1922年,MackayMH在加拿大Domion桥梁公司进行了两根外包混凝土钢梁试验,同时英国国家物理实验室也进行了外包混凝土钢梁的试验,随后在30年代中期出现了钢梁和混凝土翼板之间的多种抗剪连接构造方法,可以看到处于萌芽阶段的研究主要集中于考虑防火需要的外包混凝土钢梁及实用连接件的研究,而未考虑两者的组合工作效应,这一阶段探索性的研究为后续钢-混凝土组合梁的蓬勃发展奠定了一定的基础。 2、20世纪40年代~60年代。发展阶段 这一阶段是组合梁发展的第二阶段,在这一阶段,许多技术先进的国家对组合梁开展了比较深入的试验研究,对组合梁的分析基本上按照弹性理论进行分析,并制定了相关的设计规范和规程,使得组合梁的应用在科学指导下逐渐普及。 3、20世纪60年代~80年代,全面研究,实用阶段 由于钢-混凝土组合梁具有广泛的应用前景,组合梁的研究工作进一步得到深化,在总结以往研究和应用成果的基础上,进一步改进和完善了组合梁的有关设计规范或规程,组合结构的应用和发展逐步成熟,几乎日趋赶上钢结构的发展,并广泛重视,研究工作重点也由

相关文档
最新文档