##(已经打印)分泌型免疫球蛋白A的研究进展

##(已经打印)分泌型免疫球蛋白A的研究进展
##(已经打印)分泌型免疫球蛋白A的研究进展

分泌型免疫球蛋白A的研究进展

张宝中1,2,冉多良2,童贻刚1

1.军事医学科学院微生物流行病研究所,病原微生物生物安全国家重点实验室,北京100071;

2.新疆农业大学动物医学学院,新疆乌鲁木齐830052

[摘要]大部分感染都起源于黏膜表面,而黏膜免疫的主要抗体是分泌型免疫球蛋白A(SIgA),它能有效地阻断病原体的感染和侵入。SIgA是由1个IgA二聚体、1条J链和1个分泌片(SC)共价结合构成的异源十聚体。IgA和J链由活化B细胞产生,SC则由黏膜上皮细胞合成。SIgA分子具有极高的稳定性和极强的抗微生物活性。我们就SIgA合成的相关机制、IgA 单体和SIgA的结构与功能,以及重组SIgA的研究进展简要综述。

[关键词]分泌型免疫球蛋白A;多聚免疫球蛋白受体;重组分泌型免疫球蛋白A

[中图分类号]R392.1[文献标识码]A[文章编号]1009-0002(2009)02-0263-03

Advances in Research on Secretory Immunoglobulin A

ZHANG Bao-Zhong1,2,RAN Duo-Liang2,TONG Yi-Gang1

1.State Key Laboratory of Pathogen and Biosecurity,Institute of Microbiology and Epidemiology,Academy of Military Med-ical Sciences,Beijing100071;2.College of Veterinary Science,Xinjiang Agricultural University,Urumqi,830052;China

[Abstract]The majority of infections origin from the mucous membrane surface.The mucosa immunity mainly relies on secretory immunoglobulin A(SIgA),which blocks infection and invasion of the pathogens effectively.SIgA is composed of an IgA dimer,a J chain and a secretory component(SC),which forms a hetero-decamer by covalent interactions.IgA and J chain are produced by activated B cells,while SC is synthesized by mucous membrane epithelial cells.SIgA molecules are extremely stable and have very high anti-microbe activity.In this review we summarized the SIgA synthesis related mechanism,structure and functions of IgA monomer and SIgA,as well as the advances in recombinant SIgA.

[Key words]secretory immunoglobulin A(SIgA);poly immunoglobulin receptor;recombinant SIgA

doi:10.3969/j.issn.1009-0002.2009.02.032综述

分泌型免疫球蛋白A(secretory immunoglobulin A,SIgA)是20世纪60年代初在外分泌液中发现的一种IgA抗体,主要存在于乳汁、胃肠液、呼吸道分泌液等外分泌液中。SIgA分子是由2个IgA单体(每个单体含2条轻链和2条重链)、1条J链和1条分泌片(secretory component,SC,为多聚免疫球蛋白受体的胞外裂解片段)构成的异源十聚体[1],为了与血清IgA单体相区别而被命名为SIgA。研究表明,SIgA是外分泌液中存在的一种主要抗体,是呼吸道、消化道、泌尿生殖道等抵御病原体及有害物质的第一道免疫防线,是机体黏膜免疫最重要的抗体[2-4]。

1分泌型IgA合成的相关机制

二聚体IgA(dIgA)或多聚体IgA(pIgA)从浆细胞分泌出来后,在上皮细胞的嗜碱性侧与多聚免疫球蛋白受体(poly im-munoglobulin receptor,pIgR)以共价健形成dIgA-pIgR或pIgA-pIgR复合物,然后通过内吞作用和转运被运输到黏膜外侧,此后完整的SIgA分子通过pIgR分裂(pIgR C端跨膜部分和胞内部分在黏膜上皮细胞内降解)释放出来。SIgA在保护机体免受黏膜表面的微生物侵袭方面起着非常重要的作用,其合成与抗原提呈、淋巴细胞归巢迁移(trafficking)及周围环境中的细胞因子均有很大关系[5]。在黏膜免疫诱导部位,抗原加工、提呈后,形成针对抗原的IgA型B细胞。在此过程中,B细胞的分化、增殖有赖T 细胞的帮助[6]。其中多种Th2样因子参与了诱导部位B细胞增殖、分化,相关因子包括TGF-β、IL-4等。前体B细胞在诱导部位内进行同种型转换(isotype switch),形成膜表面抗体IgA阳性的B细胞,同种型转换是形成IgA型浆细胞的关键之一。体外研究发现[7],在TGF-β作用下,B细胞基因重排,使Cα基因得以表达,从而使其转型为IgA型B细胞。但有研究证实IL-4的作用远高于TGF-β。在体内实验中[8],证实IL-4是调控B细胞在PP (潘氏结)内分化的主要因子,IL-4-/-小鼠失去合成IgA的功能,提示IL-4对于IgA的合成十分重要。

2SIgA的结构特征

IgA在分泌物中主要以二聚体形式存在,SIgA是由十肽组成的免疫球蛋白,来自2个不同的细胞系,沉降系数为11S,它包含2个单体的IgA、1条J链和1个分泌片,它们通过共价结合就形成所谓的SIgA。

[收稿日期]2008-08-06

[基金项目]国家自然科学基金(30872223)

[作者简介]张宝中(1982-),男,硕士研究生

[通信作者]童贻刚,(E-mail)tongyg@hotmail.com

单体IgA主要存在于血清中,含量较低,其沉降系数为7S,相对分子质量约为165×103,是重链为α的免疫球蛋白。IgA分子由2条κ链或2条λ链和2条α链构成,α链稍大于γ链。IgA 经木瓜蛋白酶水解可以得到3个大小相当的片段,其中有2个相同的片段因具有抗原特异性结合能力,而被称为抗原结合片段(fragment antigen binding,Fab)。另一个片段是含有Cα2和Cα3的重链片段,它能从溶液中结晶出来,呈明显的均一性,故被称为结晶片段(fragment crystallizablc,Fc),Fc不能结合抗原,但具有各类Ig的抗原决定簇及生物活性,Ig的许多效应功能由Fc部分介导。Fab和Fc之间有一个铰链区(hinge region),它的存在可以保证抗体分子的柔性,从而使抗体分子的许多结合位点在空间上能与抗原相互作用。人类的IgA包括IgA1和IgA2共2个亚型[9],它们由不同的基因表达。IgA1和IgA2的最大不同之处在于IgA1的铰链区比IgA2多13个氨基酸残基[3]。IgA2有3种亚型,即IgA2m(1)、IgA2m(2)[10]和IgA2n[11]。

人类J链是相对分子质量约15×103的多肽,与其他物种的J 链高度同源。人J链基因有4个外显子,外显子1编码前导肽,外显子2~4编码含有137个氨基酸残基的成熟肽[12],J链基因不是Ig基因簇的一部分,它定位于15号染色体。人类J链有8个半胱氨酸残基,Cys15和Cys69通过二硫键与IgA的α链相连,其他6个半胱氨酸残基形成链内二硫键(Cys13∶Cys101,Cys72∶Cys92,Cys109∶Cys134)[13]。Johansen[14]等发现,J链C端对于IgA聚合体的形成并非必要,但对于保持与SC的亲和力有着重要的作用;同时他们也发现,2个链内二硫键(Cys13∶Cys101和Cys109∶Cys134)对于SC的结合是不可缺少的,但对于IgA聚合体形成则可有可无,仅Cys15或Cys69的存在就足够保持多聚体IgA的稳定性。J链产生于合成IgA和IgM的浆细胞中,而且也产生于合成IgG的未成熟浆细胞,但它并不与IgG分子结合。用J链-/-鼠实验发现pIgA不能与SC结合,也不能被表达SC的上皮细胞有效转运,这说明J链参与了SC介导的转运。J链不仅是SC结合IgA的重要媒介,而且还在通过调节IgA结构而影响IgA在细胞内装配中起重要作用。

SC是上皮细胞上的pIgR的一部分,pIgR为免疫球蛋白超家族成员。pIgR由上皮细胞产生,与pIgA特别是dIgA相结合,成为IgA聚合体的转运受体,是SIgA的重要组成部分。人Fc介导了pIgA和pIgR的相互作用,pIgR细胞外部分包含5个与免疫球蛋白相似的功能域(D1~D5)。其中D1在与dIgA的Cα3功能域非共价结合过程中起了重要的作用,D5与IgA的Cα2共价结合使复合物分子更加稳定。正是SC的存在,使SIgA对蛋白酶的敏感性下降,黏液更黏稠,增强了黏附作用及防御能力。在SIgA的运输过程中,pIgR的细胞外部分与分泌性抗体结合成为固定SC,即我们经常所指的SC,可抵抗蛋白酶的降解,从而起到稳定SIgA的作用。有些未与SIgA结合的pIgR分子也被转运到黏膜外侧,并通过水解与细胞脱离,形成游离SC,与固定SC相似,亦为相对分子质量为80×103的蛋白。SC是黏膜免疫系统的重要组分,参与SIgA形成和分泌[15],在SC-/-转基因小鼠中,由于SC基因的缺失,不能进行pIgA的选择性上皮运输,导致该小鼠完全没有黏膜免疫功能。

3SIgA的功能

与普通的抗体分子相比,SIgA具有许多优良特性。SIgA分子中的J链将2个IgA单体连接起来,由于每个IgA单体具有2个抗原结合部位,因此每个SIgA抗体即有4个抗原结合位点(四价),从而比普通抗体分子具有更高的亲和力[16]。SIgA具有很高的稳定性,其在黏膜表面的半衰期为IgG的3倍,其在人体外分泌道中的保护作用可以持续4个月以上[16]。这种高稳定性主要是由以下几种因素所致:一是由于SIgA的铰链区较之其他抗体分子短,而铰链区是最容易受到蛋白酶攻击的部位,铰链区的缩短有利于抵抗蛋白酶的降解[1];二是由于SIgA的分泌片高度稳定,其多糖侧链具有防止蛋白酶降解的作用,分泌片对抗体分子的包裹使整个抗体分子变得十分稳定[17-18]。此外,分泌片还赋予SIgA特殊的免疫保护作用:首先,分泌片具有非特异性的病原微生物中和活性[19];其次,分泌片上的糖基黏附于黏膜上皮,更使SIgA整齐地排列在黏膜表面,形成隔离保护层,可有效地阻止病毒的入侵[18]。

4重组SIgA

基因工程抗体药物是现代免疫学和生物工程技术的重要产物,已经发展成为一大类市场上热销的产品,约占整个生物类药品的1/3[20-21]。已经上市的抗体药物主要用于器官移植及肿瘤、免疫性疾病和心血管疾病等,仅有一种抗病毒感染的抗体药物。但是,处于临床前研究和临床研究的抗病毒感染抗体药物数量却很多,抗病毒基因工程抗体已经成为一个研究热点[22-25]。目前已上市和处于研发阶段的抗体多为IgG类型,还没有IgA或SIgA 抗体产品上市,国外有一些研究小组在进行基因工程SIgA研究,而国内尚未见到SIgA基因工程抗体的报道。

天然的SIgA是由2种不同细胞产生的,IgA单体和J链由浆细胞产生,分泌片则由黏膜上皮细胞合成。SIgA的相对分子质量比较大,约为400×103(单体IgA约为165×103,SC约为80×103,J链约为15×103),组装起来相当困难,尽管如此还是有许多SIgA的表达和组装系统被建立。Ma[16,26]等利用转基因烟草表达了鼠源SIgA抗体的κ链、重链、J链及兔的SC,且在植物中组装成分泌型抗体。而Johansen[27]等证明,经共转染的哺乳动物细胞(CHO)也能够组装完整的SIgA分子。Berdoz[28]等也利用CHO细胞共转染建立了稳定转染的细胞株,该细胞株能高效表达人鼠嵌合IgA抗体的重链和轻链、人J链和人SC,并能产生高浓度的、具有抗原特异性的人鼠嵌合单体IgA、dIgA和SIgA抗体。Chintalacharuvu[29]等分别在CHO细胞和淋巴瘤细胞中表达和组装了不同形式的IgA分子,并发现二者的表达产物在不同形式的IgA组分(单体、二聚体和分泌型)上有所区别。上述一系列实验说明,利用抗体工程的手段,在单个非免疫细胞中表达SIgA 的4种多肽链,并组装成具有天然结构和功能的SIgA分子是完全可能的。CHO细胞作为目前最常用的抗体工程的表达系统,其发酵和纯化工艺成熟,且与其他常用的表达系统相比,其进化地位与人类细胞最为接近,表达的抗体在糖基化和构象等特性方面与人体内的天然抗体最为接近,因此用CHO细胞作为SIgA 表达的宿主细胞是一种较好的选择。

5结语

与普通的非分泌型抗体相比,SIgA局部用于呼吸道或消化

道,使用方便,使用剂量小,无须进入血液,其纯度要求不必过高,因此非常适合于在特定条件下的紧急生产制备。而重组SIgA 作为基因工程抗体产品,对于进一步研究SIgA阻断细菌和病毒的黏附机制有着重要的意义。

参考文献

[1]Corthesy B.Recombinant immunoglobulin A:powerful tools for fun-

damental and applied research[J].Trends Biotechnol,2002,20(2): 65-71.

[2]Snoeck V,Peters I R,Cox E.The IgA system:a comparison of

structure and function in different species[J].Vet Res,2006,37(3): 455-467.

[3]Woof J M,Kerr M A.The function of immunoglobulin A in immu-

nity[J].J Pathol,2006,208(2):270-282.

[4]Hanson L A,Korotkova M.The role of breastfeeding in prevention

of neonatal infection[J].Semin Neonatol,2002,7(4):275-281.

[5]Kramer D R,Sutherland R M,Bao S,et al.Cytokine mediated ef-

fects in mucosal immunity[J].Immunol Cell Biol,1995,73(5):389-396.

[6]Ehrhardt R O,Strober W,Harriman G R.Effect of transforming

growth factor(TGF)-beta1on IgA isotype expression.TGF-beta1 induces a small increase in sIgA+B cells regardless of the method of B cell activation[J].J Immunol,1992,148(12):3830-3836.

[7]Vajdy M,Kosco-Vilbois M H,Kopf M,et al.Impaired mucosal

immune responses in interleukin4-targeted mice[J].J Exp Med, 1995,181(1):41-53.

[8]Kraehenbuhl J P,Neutra M R.Molecular and cellular basis of im-

mune protection of mucosal surfaces[J].Physiol Rev,1992,72(4): 853-79.

[9]Corthesy B.Recombinant secretory immunoglobulin A in passive im-

munotherapy:linking immunology and biotechnology[J].Curr Pharm Biotechnol,2003,4(1):51-67.

[10]Mestecky J,Tomana M,Czerkinsky C,et al.IgA-associated renal

diseases:immunochemical studies of IgA1proteins,circulating im-mune complexes,and cellular interactions[J].Semin Nephrol,1987, 7(4):332-335.

[11]Chintalacharuvu K R,Raines M,Morrison S L.Divergence of hu-

man alpha-chain constant region gene sequences.A novel recombi-nant alpha2gene[J].J Immunol,1994,152(11):5299-5304.

[12]Max E E,Korsmeyer S J.Human J chain gene.Structure and ex-

pression in B lymphoid cells[J].J Exp Med,1985,161(4):832-849.[13]Bastian A,Kratzin H,Fallgren-Gebauer E,et al.Intra-and inter-

chain disulfide bridges of J chain in human S-IgA[J].Adv Exp Med Biol,1995,371A:581-583.

[14]Johansen F E,Braathen R,Brandtzaeg P.The J chain is essential

for polymeric Ig receptor-mediated epithelial transport of IgA[J].J Immunol,2001,167(9):5185-5192.

[15]Norderhaug I N,Johansen F E,Schjerven H,et al.Regulation of

the formation and external transport of secretory immunoglobulins[J].Crit Rev Immunol,1999,19(5-6):481-508.

[16]Ma J K,Hikmat B Y,Wycoff K,et al.Characterization of a re-

combinant plant monoclonal secretory antibody and preventive im-munotherapy in humans[J].Nat Med,1998,4(5):601-606.

[17]Crottet P,Corthesy B.Secretory component delays the conversion

of secretory IgA into antigen-binding competent F(ab')2:a possible implication for mucosal defense[J].J Immunol,1998,161(10):5445-5453.

[18]Phalipon A,Cardona A,Kraehenbuhl J P,et al.Secretory compo-

nent:a new role in secretory IgA-mediated immune exclusion in vivo[J].Immunity,2002,17(1):107-115.

[19]Dallas S D,Rolfe R D.Binding of Clostridium difficile toxin A to

human milk secretory component[J].J Med Microbiol,1998,47(10): 879-888.

[20]Nissim A,Chernajovsky Y.Historical development of monoclonal

antibody therapeutics[J].Handb Exp Pharmacol,2008,(181):3-18.[21]Zhang Q,Chen G,Liu X,et al.Monoclonal antibodies as thera-

peutic agents in oncology and antibody gene therapy[J].Cell Res, 2007,17(2):89-99.

[22]Hammarstrom L,Weiner C K.Targeted antibodies in dairy-based

products[J].Adv Exp Med Biol,2008,606:321-343.

[23]Xiao X,Dimitrov D S.Monoclonal antibodies against viruses and

bacteria:a survey of patents[J].Recent Patents Anti-Infect Drug Disc,2007,2(3):171-177.

[24]Marasco W A,Sui J.The growth and potential of human antiviral

monoclonal antibody therapeutics[J].Nat Biotechnol,2007,25(12): 1421-1434.

[25]Huber M,Olson W C,Trkola A.Antibodies for HIV treatment and

prevention:window of opportunity[J]芽Curr Top Microbiol Immunol, 2008,317:39-66.

[26]Ma J K,Hiatt A,Hein M,et al.Generation and assembly of se-

cretory antibodies in plants[J].Science,1995,268(5211):716-719.[27]Johansen F E,Natvig Norderhaug I,Roe M,et al.Recombinant

expression of polymeric IgA:incorporation of J chain and secretory component of human origin[J].Eur J Immunol,1999,29(5):1701-1708.

[28]Berdoz J,Blanc C T,Reinhardt M,et al.In vitro comparison of

the antigen-binding and stability properties of the various molecu-lar forms of IgA antibodies assembled and produced in CHO cells [J].Proc Natl Acad Sci USA,1999,96(6):3029-3034.

[29]Chintalacharuvu K R,Gurbaxani B,Morrison S L.Incomplete as-

sembly of IgA2m(2)in Chinese hamster ovary cells[J].Mol Im-munol,2007,44(13):3445-3452.

张宝中等:分泌型免疫球蛋白A的研究进展265

抗体技术研究进展_人源抗体技术

第33卷第5期暨南大学学报(自然科学版) Vol.33No.52012年10月 Journal of Jinan University (Natural Science ) Oct.2012 [收稿日期]2012-03-26 [基金项目]国家自然科学基金项目(81202449);广东省科技计划项目(201213010300016)[作者简介]向军俭(1952-),男,教授,研究方向:抗体技术与应用 抗体技术研究进展(1):人源抗体技术 向军俭,童吉宇,王 宏 (广东省分子免疫与抗体工程重点实验室;暨南大学抗体工程研究中心,广东广州510632) [摘 要]100年来,抗体的发现为人类疾病诊断、治疗和有害物质的分析检测发挥了巨大的作用.特别是1975年 发明了单克隆抗体技术以及1986年发明基因工程抗体技术,为研制特异性高、大量均一并大量生产抗体成为了现实,也使嵌合抗体、全人源抗体造福人类并产生巨大的经济效益.为了克服鼠源性单抗可诱发人抗鼠抗体(HA-MA ),通过嵌合抗体、改构抗体、小分子抗体等技术和改良抗体与抗原结合的特异性,已成为抗体技术研究的主要发展方向,本文主要就抗体人源化及抗体分子小型化,抗体功能复合化两个部分的进展进行综述.[关键词]抗体; 人源化抗体; 基因工程抗体; 抗体库技术; 小分子抗体 [中图分类号]R392.11 [文献标志码]A [文章编号]1000-9965(2012)05-0524-07 Recent advances in antibody technique (1):Humanized antibody technique XIANG Jun-jian ,TONG Ji-yu ,WANG Hong (Guangdong province Key laboratory of Molecule Immunology and Antibody Engineering ,Jinan University ,Guangzhou 510632,China ) [Abstract ]In the past 100years ,antibody has played a significant role in human disease diagnosis and treatment and the analysis of detrimental substances.Especially ,the inventions of both monoclonal antibody technique in 1975and genetic engineering technique in 1986,on one hand ,have made it possi-ble for producing abundant antibodies of high specificity and homogeneity ,on the other hand ,help chim-eric antibody and fully human antibody bring benefit to human beings.To overcome the problem that mu-rine monoclonal antibody may induce HAMA ,technologies such as chimeric antibody ,reshaping antibod-y ,small-molecule antibody and improvements of the specificity between antibody and antigen have be-come the main trend when developing antibody technique.This review gives an overview on antibody hu-manization ,small-molecule antibody and composite function of antibody.[Key words ]antibody ;humanization antibody ;genetic engineering antibody ; antibody library technique ;small-molecule antibody 19世纪末抗体首次被发现,其后很长一段时间内人们都以抗原免疫动物获得抗血清(多克隆抗 体).1975年, K hler 和Milstein 建立了B 淋巴细胞杂交瘤技术,为大量生产均一、特异性强的单克隆抗体提供了技术支持并使免疫学发生一场革命,有力 地促进诊断与治疗性抗体的发展.然而由于单克隆 抗体大部分为鼠源性抗体,在临床治疗中可在人体 内可诱发人抗鼠抗体(HAMA )[1] ,限制了单克隆抗体在临床治疗中的应用.随着基因工程技术的发展和对各类抗体结构和氨基酸序列、及其变异种属和

抗独特型调节作用

抗独特型抗体的调节及其应用 摘要:抗独特型抗体是针对抗体可变区的抗原决定簇(独特型)产生的特异性抗体,其中Ab2是初始抗原在体内的“内影像”由于可模拟初始抗原并竞争性抑制Ab1与抗原的结合而广泛应用于疫苗研究、肿瘤免疫、移植耐受、自身免疫病、食品安全等方面,因此对近年采抗独特型抗体的应用进行综述。 关键词:抗体,抗独特型 前言:Jerne,N.K于1974年提出的免疫调节网络学说认为:外来抗原在机体内应答产生的抗体Ab1,同时可刺激产生抗Ab1的第二抗体(Ab2),并称之为抗独特型抗体。机体免疫系统内的各个细胞克隆,通过自我识别,相互刺激,或相互制约,构成一个动态的网络结构,来调节体内的正常免疫反应。如果该网络结构发生紊乱,则因侵害机体自身而将导致自身免疫性疾病如风湿性关节炎,系统性红斑狼疮和重症肌无力以及免疫抑制等疾病。机体内存在许多不同基因型并能产生抗体的B淋巴细胞克隆,由于遗传性的差异导致产生的抗体的多样性与不均一性,这种多样性固然与不同的外来抗原本身结构有关,但根据免疫网络学说,机体免疫系统是一个建立在识别自身抗原的基础上来识别外来的抗原的系统。如果外来抗原进入体内,首先能被具有细胞表面受体的免疫细胞克隆所识别,结合抗原后,被活化,分化和增殖,产生抗体以及产生效应细胞和记忆细胞,与此同时,机体内同时存在具有识别这种抗体的免疫细胞克隆,通过免疫细胞之间相互识别V区上的独特型决定簇引发调节机体的免疫反应。 “免疫网络学说”在承认细胞系选择学说的基础上,认为免疫应答并非仅由某个单一克隆细胞的激活而实现。独特型决定簇具有自身免疫原性,体内存在能识别自身独特型决定簇的淋巴细胞。机体接受外来抗原刺激时,能识别外来抗原的淋巴细胞克隆首先被激活,产生针对外来抗原的抗体Ab1,随后能识别某一个克隆独特型决定簇的第2个克隆被激活,产生抗独特型抗体Ab2,依次类推还可以有第3个Ab3,第4个Ab4……。这些克隆相互制约,相互连锁,形成一个闭合型、多层次级联网络。网络的主要作用是抑制抗体的产生,因为只有抑制才能保持机体的免疫自稳状态,使抗体维持在一定水平上。否则,抗体无休止地产生,反而会使机体患免疫病。免疫系统网络学说已经被实验所证明,有力地促进和指导了基础免疫学的研究和发展。独特型(Id)即位于抗体分子可变区的抗原决定簇,是位于抗体可变区内高变区的遗传标志。本质上,Id的差异是由抗体轻链可变区(V l)和抗体重链可变区(V b)内高变区氨基酸序列不同所致。这种氨基酸序列的差异也是抗体特异性的分子基础,不同特异性的抗体分子其独特型也不同。独特型由若干表位组成,称为独特位,它可刺激机体产生相应的抗体,即抗独特型抗体AId。许多实验表明,用抗Id抗体代替抗原免疫动物所产生的免疫应答,能够增强动物对原虫、病毒和细菌感染的抵抗力,作为免疫制剂或免疫调节剂来弥补现有疫苗的不足,或者作为免疫治疗剂治疗肿瘤、自身免疫性疾病,有的用于免疫诊断试剂来建立新的血清学方法。 在疫苗研究中的应用抗独特型抗体Ab2作为抗原的模拟物,可代替病原体,刺激机体产生与抗原特异性抗体具有同等免疫效应的抗体,诱导抗病原体的特异性免疫应答,由此制成的疫苗称为抗独特型疫苗,又称内影像疫苗。迄今为止,抗独特型疫苗主要应用于肿瘤免疫方面。如应用于结肠癌病人,可减缓病情发展、肿瘤的转移并延长病人存活。但与传统疫苗相比,Ab2的免疫原性较弱,因此抗独特型疫苗可与佐剂联用以提高免疫原性,根据不同肿瘤的特性可选择恰当的佐剂。在对结肠癌的研究中发现,抗独特型抗体疫苗与聚核苷酸CPG联用比与完全福氏佐剂CFA联用更能提高抗肿瘤的免疫应答;白细胞介素_6(IL_6)与抗独特型抗体的融合蛋白质可有效地提高体内抗恶性卵巢癌的体液免疫应答,因为IL_6是促进B细胞成熟,增强B细胞功能的细胞因子,也是浆细胞的必需生长因子。近年来,随着对单链可变

单克隆抗体药物研究新进展

单克隆抗体药物研究新进展 单克隆抗体药物,俗称“生物导弹”,是一种具备疾病治疗靶向性治疗的药物,该种药物针对一些对应疾病的治疗具备极强的治疗针对性,往往可以取得较为有效的治疗效果,其整体所占市场份额也比较大。该领域的药品已经慢慢成为一种治疗疾病的主流药物,随着相关研究人员的不断研究推进,其整体呈现一种不断拓宽化的发展。本文从单克隆抗体药物整体的市场情况、靶点及技术三个方面进行全面的研究探索。 标签:治疗性抗体;上市抗体药物;靶点;技术综述 抗体药物的第一次应用是于十九世纪,采用血清疗法针对患者进行相关治疗,在这个阶段人们对抗体药物的认知停留在使用有效的阶段;随着医疗实力的不断发展,直到1975年杂交瘤技术之后,才逐步实现了抗体的更为全面的认知及大规模量产的过程。现阶段随着社会的不断发展,疾病种类也越来越多,治疗起来也越来越麻烦,在这样一种大的背景下,单克隆抗体药物的全面研究和使用,有效的帮助患者进行疾病的靶向治疗和恢复。 一、抗体药物的市场情况 抗体药无是一种具备靶向性,能实现与靶抗原特异性结合来实现对疾病针对性治疗的药物,该种药物在进行使用的过程中,对患者的病症能做到针对性的治疗,具备治疗过程中的安全性治疗及快速准确性治疗。该种药物常常作用与一些恶性肿瘤及免疫性疾病的治疗。因为这些疾病都具备一定的治疗难度,故此药物的出现,可以有效的实现对症治疗,帮助患者进行相关疾病的缓解,因为这样的一种原因,导致在进行相关应用的过程中,该种药物得到了巨大的发展[1]。现阶段,单克隆抗体药物已经成为一种在市场上占据巨大份额的药物,其具备巨大的经济效益,同时帮助患者进行各种疾病的治疗和恢复,其整体已经成为针对疾病进行治疗的有效思路及理论。针对该种药物的扩展,主要是针对一些靶向性进行全面的研究,研究出新的靶点,制造出更多针对更多病症的单克隆抗体药物。 二、靶点研究进展 单克隆抗体药物具备一对一的治疗针对性,其靶点的把控是针对疾病治疗的重要点。世界范围之内,针对新靶点的研究如火如荼。针对热点靶点的研究,主要通过分析世界范围内患者的病症及发病几率进行全面的分类研究,研究出一些有效且具备普遍性的靶点,全面促进单克隆抗体药物的研究和发展。其现阶段世界主要研究靶点分以下几类。 (一)PD-1、PD-L1 PD-1是一种存在于T细胞表面的免疫抑制跨膜蛋白,主要针对癌症进行相关治疗,其主要作用有两点:1.针对慢性感染炎症进行相关限制;2.针对癌症中

抗体药物的研究现状和发展趋势

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以

单克隆抗体及其应用的研究进展

2009年第1期畜牧兽医科技信息国兽医科学,2007,37(1):29-32 [9]李余动,等.胶体金免疫层析法快速检测氯霉素残留[J].中国食品卫生杂志,2005,17(5):416-419 [10]张明,等.免疫胶体金法检测磺胺甲恶唑残留的研究[J].中国兽药 杂志,2006,40(4):17-24 [11]邓省亮,等.胶体金免疫层析法快速检测黄曲霉毒素B1的研究 [J].食品科学,2007,28(2):232-236 [12]Sun Xiulan,et al.Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J].International Journal of Food Microbiology ,2005,99(2):185-194 [13]赖卫华,等.应用胶体金试纸条快速检测赭曲霉毒素A 的研究[J]. 食品科学,2005,26(5):204-207 [14]Timo Klewitz,et al.Immunochromatographic assay for determina tion of botulinum neurotoxin type D[J].Sensors and Actuators B:Chemical,2006,113(2):582-589 1975年德国学者Kohler 和英国学者M ilstein 发明了杂交瘤技术。他们成功地将骨髓瘤细胞和产生抗体的B 淋巴细胞融合为杂交瘤细胞,这种合成的杂交瘤细胞稳定、有致瘤性、能产生抗体,其分泌的抗体是由识别一种抗原决定簇的细胞克隆所产生的均一性抗体,故称之为单克隆抗体(简称单抗)。自从鼠源单抗之后,单抗历经了鼠源性抗体、嵌合抗体、 人源化抗体、人源性抗体4个发展阶段。近年来随着分子生物学和细胞生物学的发展,单克隆抗体的应用已日益普及,单抗理论几乎应用到生物学研究的每一个区域。单克隆抗体制备技术的发展也就显得尤为重要。1 单克隆抗体的研究进展 1.1鼠源性单抗自单克隆抗体制备技术问世以来,制备单抗的一般程序基本相同,从超免疫的供体中即抗原免疫的小鼠,获取脾细胞,再与骨髓瘤细胞融合,最后对单个细胞进行克隆,培养出能分泌单抗的克隆细胞。目前生产的单抗大多是鼠源性的,但其在临床应用方面还存在着很大的弊端,主要是鼠源单抗与NK 等免疫细胞表面Fc 段受体亲和力弱,产生的抗体依赖性细胞介导的细胞毒作用(ADCC)作用较弱,而且它与人补体成分结合能力低,对肿瘤细胞的杀伤能力较弱,并且鼠源性抗体在人血循环中的半衰期短,它发挥AD-CC 作用的时间较短; 其次鼠单克隆抗体还具有免疫原性,使宿主易引起过敏反应。这样一方面降低了单抗的效价,另一方面又会给病人带来严重的后果。因此鼠源性单克隆抗体还应进一步改善才能广泛应用于临床。 1.2嵌合抗体抗体的恒定区是抗体分子结构中免疫原性 最强的部位,而决定抗体特异性的是抗体的可变区。从杂交瘤细胞分离出功能性可变区基因,与人Ig 恒定区的基因连 接,再插入适当表达载体,转染宿主细胞,表达人-鼠嵌合抗体。也就是将鼠源性单抗在保留其抗原结合活性的基础上,尽可能的去除鼠源化部分或代之以人源化片断,减少了鼠源性抗体的免疫原性,从而尽可能的减少单抗的异源性,同时保留了亲本抗体特异性结合抗原的能力。但是这种抗体仍保留了30%的鼠源性,可诱发人抗小鼠反应(HAM A)。 1.3人源化抗体由于嵌合抗体异源性仍然很大,因此需要对鼠源抗体进行人源化改造,进一步人源化的方法很多,主要是重构抗体和表面重塑技术。重构抗体就是互补决定区(complementarity determining region,CDR)移植,将鼠抗体的CDR 移植到人抗体的相应部位,这样人源化程度可达90%以上,目前该方法是人源化单抗最常用、最基本的方法。而表面重塑技术,即将鼠抗体框架区表面氨基酸的残基(surface amino acid residues,SAR)进行人源化改造。该方法是仅替换与人抗体SAR 差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选用与人抗体表面残基相似的氨基酸替换。 1.4人源性抗体虽然人源化抗体解决了鼠抗体的免疫原 性等问题,但生产人源化抗体仍有很大的困难;人源化过程需大量繁复、昂贵的电脑模拟,需取代不同的氨基酸以恢复选择性和亲和力,工作量非常大,并且它总还含有少量鼠源性成分。完全的人源性抗体才是用于治疗的理想抗体,目前它主要通过3种途径来研制:噬菌体抗体库技术、核糖体展示技术和转基因小鼠制备人源性抗体。1.4.1 噬菌体抗体库技术 噬菌体抗体库技术是迄今发展 最成熟、 应用最广泛的抗体库技术。其基本原理是将蛋白分子或肽段的基因克隆到丝状噬菌体的基因组DNA 中,与噬菌体的外壳蛋白形成融合蛋白,从而使该异源分子呈现于噬菌体表面。通过这种方式,形成了一个收藏上亿个以体外方式制得的不同抗体的基因数据库,使从任何真实的抗原中迅速分离高度相似的同族抗体成为可能。分离得到的抗体可用于 单克隆抗体及其应用的研究进展 孔 维1,杨文辉2 (1.东北农业大学动物医学院,哈尔滨150001;2.哈尔滨北方森林动物园,哈尔滨150300) 000000000000000000000000000000000000000000000000000000000000作者简介:孔维(1979~),湖南平江人,硕士研究生 专论与综述 9

抗体药物地研究现状和发展趋势

抗体药物的研究现状和发展趋势 一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分

人源化单克隆抗体的研究进展

论人源化单克隆抗体的研究进展 *** (生物工程一班生命科学学院 ***大学哈尔滨 150080) 摘要:自从单克隆抗体问世至今已广泛应用与临床治疗,然而鼠源性单克隆抗体在临床治疗中会产生人抗鼠抗体反应,从而使鼠源性单克隆抗体的应用受到极大限制。随着基因工程技术和抗体工程技术的迅速发展,人源性单克隆抗体开始快速发展而逐渐代替鼠源性单克隆抗体。本文将就人源化单克隆抗体的构建以及其在临床治疗方面的应用进行综述。 关键词:单克隆抗体人源化临床治疗 Theory humanized monoclonal antibody research progress *** (The 1st class of Bioengineering , College of Life Science, *** University, Harbin, 150080) Abstract: Since the advent of monoclonal antibody has been widely applied in clinical treatment, but the mouse source sex monoclonal antibodies in clinical treatment will produce people resistance to mouse antibody response, so that the rat source sex monoclonal antibody application are highly limited. Along with the genetic engineering technology and the rapid development of antibody engineering technology, humanized sex monoclonal antibody began to rapid development and gradually replaces the rat source sex monoclonal antibody. This paper will review humanized monoclonal antibody construction and the application of clinical treatment in this article. Keywords: monoclonal antibody humanized clinical treatment 1975年。Kohler和Milstein将小鼠骨髓瘤细胞和经免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞机能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术[1],此后单抗药物开始迅速发展并广泛应用于临床。1982年,Philip Karr 将第一株抗独特型单抗(anti- ld) 应用于B细胞淋巴瘤的临床治疗并取得成功[2],使得治疗性抗体的研究很快成为生物医药的热点,许多以单克隆抗体为研究对象的公司相继成立。然而,鼠源性单克隆抗体应用于人类有较强的免疫原性,能诱发人抗鼠抗体( Human ant-i mouse antibody, HAMA) 反应,引起强烈的免疫排斥反应[3],而且鼠源性单克隆抗体不能有效地激活人体的生物效应功能,因此限制了其临床应用。这使研究学者意识到研制鼠源性单克隆抗体人源化或完全的人源性抗体才有可能减少或避免HAMA反应并提高疗效。然而反复实验证明, 杂交瘤技术不能提供稳定分泌人抗体的细胞株。直到80年代末期,随着分子生物学研究的深入,在抗体基因工程研究领域相继出现了一

抗体药物制备技术研究进展

1 绪论 以细胞工程技术和基因工程技术为主体的抗体工程药物近年来取得了突破性进展,并成功应用于临床。一方面,随着功能基因组学与蛋白质组学的研究进展,将发现与确定越来越多新的与疾病相关的分子靶点,而与这一发展相适应的、具有高度特异性、针对疾病相关分子靶点的抗体药物将被陆续研制成功;另一方面,抗体药物用于癌症、心脑血管疾病、病毒感染以及类风湿性关节炎等疾病的治疗,受到了广泛关注。 2抗体药物发展的历史 200多年前,人们将白喉杆菌培养物上清液中分离到的可溶性毒素注入马体,发现得到的抗血清可以治疗白喉,这是第一个用抗体治疗疾病的例子。1891年,法国人Babes等用采自经狂犬病疫苗免疫的人或犬的全血治疗被疯狼严重咬伤的患者,这是抗狂犬病最早应用的例子[1]。1975年Kohler及Milstein建立了B淋巴细胞杂交瘤技术。该技术使人们通过细胞工程可以在体外定向地制备各种单克隆抗体(monoclonal anti-body,Mab),这是产生抗体的重大技术革命。1984年诞生了第一个基因工程抗体—人—鼠嵌合抗体。然而真正以基因工程操作的方式制备抗体却始于1989年底,英国剑桥的W inter小组与Scrips研究所的Lerner小组的创造性工作,他们利用PCR 技术克隆人的全部抗体基因,并重组于原核表达载体中,用标记抗原就可筛选到相应抗体,当时称为组合抗体库技术。20世纪90年代后,这一技术不断发展,陆续出现人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体等)、多价小分子抗体(双链抗体、三链抗体、微型抗体等)、融合蛋白抗体(免疫抗体、免疫黏连素等)及特殊类型抗体(双特异抗体、抗原化抗体、细胞内抗体等)[2]。近年来,发展的噬菌体抗体库技术及核糖体展示抗体库技术,更易于筛选高亲和力抗体和利用在体外进行的方法对抗体性状进行改造[3]。 3抗体药物的结构与功能特点 3.1抗体分子的结构 早在20世纪50年代末期,把电镜的观察结果结合Poler利Nisonoff的研究结果,导致了经典的免疫球蛋白单体的Y型结构模式[4]。现已得知,抗体分子单体的基

单克隆抗体的制备及其应用研究进展

单克隆抗体的制备及其应用研究进展 燕珊珊 摘要:单克隆抗体技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。此外,抗体还可能执行除目前所具有之外的更多功能。本文将就单克隆抗体的制备及其应用研究进展进行论述。 关键词:单克隆抗体;基因工程;小鼠骨髓瘤细胞;细胞杂交瘤技术;噬菌体;临床应用 抗体是机体免疫系统的重要效应分子,从第一代多克隆抗体(polyclonalantibody,PcAb)到第二代单克隆抗体的成功制备,人们投入了大量的临床应用研究,对医学和生物学的发展发挥了巨大的作用。 单克隆抗体(monoclonal antibodies,mAbs)技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。目前,制备mAbs 的方法中比较成熟的主要有以下几种:1. 抗原特异性的B 淋巴细胞杂交瘤技术;2. 人-鼠嵌合抗体制备技术; 3.噬菌体展示技术获得的抗原特异性人源性抗体;4. 转基因小鼠制备的人mAbs;5.核糖体展示技术。

通过这些方法,我们利用相应抗原靶向构建治疗性抗体,从而达到预防、治疗疾病的目的,促进生物制药学的发展。以下主要是对抗体制备技术的发展及其应用研究进展进行综述。 1 鼠源性抗体 1975 年,Kohler 和Milstein[1] 将小鼠骨髓瘤细胞和经绵阳红细胞免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞既能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术。由免疫B细胞-浆细胞、瘤细胞融合形成的杂交瘤细胞系可分泌单一、特异性、纯化的抗体,且能在选择培养基中生长、无限增值、分裂,同时在选择培养基作用下,利用代谢缺陷补救机理筛选出同时具有两种细胞特征的细胞克隆。这种经过反复克隆而挑选出来的融合细胞所产生的抗体称为单克隆抗体(McAb)。它在分子结构、氨基酸序列以及特异性等方面都是一致的。淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等。至今,科学家们已经建立众多鼠源性mAbs 来诊断和治疗多种人类疾病。然而作为在人体内的应用,鼠源单抗尚存在一些问题。鼠源性抗体作为异种蛋白应用于人体可引起免疫反应,产生人抗鼠抗体(human anti-mouse antibody,HAMA)[2],很大程度上限制了mAbs 的临床应用。此外,鼠源性mAbs 不能与人类抗体FcRn 结合[3]。为了克服以上这些问题,近年,随着分子生物学的发展,人们已有可能通过抗体工程技术制备人-鼠嵌合抗体、人源化抗体或全人抗体。

单克隆抗体的研究进展

单克隆抗体的研究进展 姓名:学号: 摘要:1976年德国学者Kohler和英国学者Milstein创建杂交瘤技术而使鼠源单克隆抗体被广泛用于生物学和医学研究领域,建立了治疗性抗体的第一个飞跃。自此抗体分子成为了生物及医学领域中用途最为广泛的蛋白质分子。随着对抗体的理化性质以及对免疫球蛋白分子结构与功能的阐明应用DNA重组技术和抗体库技术对鼠单抗进行人源化改造,先后出现了嵌合抗体、人源化抗体和全人抗体,它们从不同方面补充了鼠单抗临床应用的缺陷,使抗体制备技术得到了全新发展。 关键词:单克隆抗体;鼠单抗;人源化 鼠源性单克隆抗体开始了多克隆抗体走向单克隆抗体的新时代。与多克隆抗体相比,单克隆抗体具有特异性高、效价高、纯度高、理化性状均一、重复性强、成本低并可大量生产等无可比拟的优点。目前比较成熟的制备方法有(1)抗原特异性的B淋巴细胞杂交瘤技术;(2)人–鼠嵌合抗体制备技术;(3)噬菌体展示技术获得的抗原特异性人源性抗体;(4)转基因小鼠制备的人mAbs;(5)核糖体展示技术。随着对各类抗体结构和氨基酸序列及其变异的种属和功能之间关系的深入了解,而能够利用抗体工程技术对抗体结构进行改造从而达到预防、治疗疾病的目的,促进生物学及医学的发展。一下主要是对抗体制备技术的及其应用研究进展进行综述。 1杂交瘤技术 杂交瘤的制备是制备抗原特异性的单克隆抗体,所以融合一方必须是经过抗原免疫的B细胞,通常选用被免疫动物的脾细胞,脾淋巴细胞的主要特征是抗体分泌功能。融合细胞另一方则要求在培养条件下的永生性,只有肿瘤细胞才是具备这一条件,所以选择同一体系的骨髓瘤细胞,因多发性骨髓瘤是B细胞系恶性肿瘤,其特点是稳定易培养、自身不分泌免疫球蛋白及细胞因子、融合率高、是次黄嘌呤鸟嘌呤核苷酸转移酶(HGPRT)和胸腺嘧啶激酶(TK)的缺陷性,是理想的脾细胞融合对象。再用HAT培养基筛选只有能长期生存与繁殖的是具有亲带双方遗传性能的融合细胞。 杂交瘤技术操作主要流程示意图

抗体药物的研究现状和发展趋势

抗体药物得研究现状与发展趋势 一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病得治疗拥有很长历史。但整个抗体药物得发展却并非一帆风顺,而就是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病得早期被动免疫治疗。虽然具有一定得疗效,但异源性蛋白引起得较强得人体免疫反应限制了这类药物得应用,因而逐渐被抗生素类药物所代替。第二代抗体药物就是利用杂交瘤技术制备得单克隆抗体及其衍生物。单克隆抗体由于具有良好得均一性与高度得特异性,因而在实验研究与疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗就是在1982年,美国斯坦福医学中心Levy等人利用制备得抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大得期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时得抗排斥反应。此时抗体药物得研制与应用达到了顶点。随着使用单抗进行治疗得病例数得增加,鼠单抗用于人体得毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们得热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物得研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体与人源抗体。 近年来,随着免疫学与分子生物学技术得发展以及抗体基因结构得阐明,DNA 重组技术开始用于抗体得改造,人们可以根据需要对以往得鼠抗体进行相应得改造以消除抗体应用不利性状或增加新得生物学功能,还可用新得技术重新制备各种形式得重组抗体。抗体药物得研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术得改造,可以降低甚至消除人体对抗体得排斥反应;②基因工程抗体得分子量较小,可以部分降低抗体得鼠源性,更有利于穿透血管壁,进入病灶得核心部位;③根据治疗得需要,制备新型抗体;④可以采用原核细胞、真核细胞与植物等多种表达形式,大量表达

综述-单克隆抗体的研究报告进展

单克隆抗体的研究进展 摘要:单克隆抗体近年来发展迅速,并广泛应用于医学,生物学,免疫学等多种学科。单抗药物可用于治疗肿瘤、病毒性感染、心血管病以及其它疾病,尤其是用于治疗肿瘤,已显示出良好的前景。本文参阅近10年国外相关文献,并进行整理,综述单克隆抗体的研究进展,着重阐述用于治疗肿瘤的单克隆抗体应用中存在的问题、解决方法以及研究的展望。 关键词:单克隆抗体;抗肿瘤药物;治疗 单抗药物治疗疾病具有明确的靶向性,作用机制明确,因而具有起效快、疗效好、副作用小等优点。尤其是对肿瘤的治疗,能克服化疗药物不能有效区分正常细胞和肿瘤细胞、副作用大等缺点。同时,单克隆抗体体积小,能更有效地透入肿瘤;分子小、消除快、累积毒性小;所携带的弹头脱离后,可较快被清除;循环中免疫靶向结合物对靶细胞的竞争作用小;半衰期短;穿透性好;能穿过血脑屏障,因而还可以作为新一代靶向载体。与化学药物、毒素、放射性核素、生物因子、基因、分化诱导剂、光敏剂、酶等物质构成单克隆抗体靶向药物,把杀伤肿瘤细胞的活性物质特异的输送到肿瘤部位,利用单抗对肿瘤表面相关抗原或特定的受体特异性识别,从而把药物直接导向肿瘤细胞,提高药物疗效,降低药物对循环系统及其他部位的毒性[1]。 1作用机制 目前,单抗的作用机制并不十分明确,通过研究,目前认为有阻断作用、信号传导作用以及靶向作用等三种作用机制[1]。 1.1阻断作用 现用于临床的大部分未偶联单抗主要用于自身免疫和免疫抑制,是通过阻断和调节作用完成的。几乎在所有的单抗应用中,通常是通过阻断免疫系统的一种重要的胞桨或受体-配体相互作用而实现的。另一种相类似的阻断活性可能存在于单抗的抗病毒感染中,通过阻断和抵消病原体的进入和扩散表现出对机体的防御功能,短期给予单抗后可取得长期疗效。肿瘤细胞生长、扩增和分化,需要各种生长因子的持续性刺激,而这些生长因子也参与肿瘤的侵润、转移和血管生成,单克隆抗体与其受体结合,可抑制配体-受体的相互作用,从而使得这些肿瘤细胞得不到生长因子的刺激而自行死亡。贝伐单抗通过结合VEGF受体,阻断VEGR与受体的结合,抑制皮细胞增殖或者血管生成,抑制病灶转移[2]。 1.2信号传导作用 许多抗癌单抗是通过恢复效应因子,直接启动信号机制而获得细胞毒效应的。对Trastuzumab而言,单抗结合可诱导一系列在肿瘤生长控制中起作用的信号传递,该抗原是生长因子受体家族的一个成员,能

抗体药物的研究现状和发展趋势分析报告

抗体药物的研究现状和发展趋势分析报告

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy 等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,

也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分降低抗体的鼠源性,更有利于穿透血管壁,进入病灶的核心部位; ③根据治疗的需要,制备新型抗体;④可以采用原核细胞、真核细胞和植物等多种表达形式,大量表达抗体分子,大大降低了生产成本。 自从1984年第一个基因工程抗体人-鼠嵌合抗体诞生以来,新型基因工程抗体不断出现,如人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体、超变区多肽等)、多价小分子抗体(双链抗体,三链抗体,微型抗体)、某些特殊类型抗体(双特异抗体、抗原化抗体、细胞内抗体、催化抗体、免疫脂质体)及抗体融合蛋白(免疫毒素、免疫粘连素)等。另外,用于制备新型抗体的噬菌体抗体库技术成为继杂交瘤技术之后生命科学研究中又一突破性进展。采用噬菌体抗体库技术筛选抗体不必进行动物免疫,易于制备稀有抗原的抗体、筛选全人源性抗体和高亲和力抗体。同时也将抗体工程的研究推向了一个新的高潮。在噬菌体抗体库基础上,近几年又发展了核糖体展示抗体库技术。利用核糖体展示技术筛选抗体的整个过程均在体外进

海水鱼病多联抗独特型抗体

海水鱼病多联抗独特型抗体 疫苗 西安斯凯达生物制品有限公司 2016.6

产品简介

改革开放以来,我国海水养殖渔业发展迅速,至今海水鱼每年养殖量约6 0亿尾,随着养殖量扩大,鱼病也逐年严重。每年因病害造成损失上百亿元。 国内对海水养殖病防治主要依靠化学药和抗生素,这些药物过多使用,造成耐药和药物残留及毒副作用,疫苗已成为海水养殖疾病防治领域研究与开发的主流产品。至今国内未见商品化的海水鱼疫苗问世,也未见国外疫苗引入的报道,为此我们和第四军医大学合作,在海洋863和现代农业863计划基金资助下,对海水鱼病的防治进行研究,先后研究出鱼病多联诊断试剂,鱼病多联单克隆抗体治疗制剂和鱼病多联抗独特型抗体疫苗。其中抗独特型抗体疫苗2004年获国家发明专利证书,2006年获国家农业部一类新兽药证书。 海水鱼病多联抗独特型抗体疫苗是由三种海水鱼重要病菌:溶藻弧菌、鳗弧菌、迟缓爱德华菌的抗独特型抗体混合而成的海水鱼病多联抗独特型单克隆抗体疫苗,用以接种免疫养殖海水鱼,以预防养殖海水鱼这三种重要流行病的爆发。

技术原理

免疫学界公认,抗体和抗原的结合位称为独特位,认为抗体的独特位和与其进行免疫结合的抗原表位,其空间构形是互补的,所以称独特位为抗原表位的内影像。如果用抗体再去接种免疫机体时,抗体的独特位能刺激机体产生抗独特位的抗体,这种抗体称为抗独特型抗体。 抗独特型抗体的结合位点的空间结构和独特位是互补的,而和原来的抗原表位的空间结构是相类似的,它具有抗原表位的功能,能刺激机体产生抗原表位的抗体。如果抗原是病原体,病原体的抗独特型抗体就能取代病原体起到疫苗的作用。 技术原理 免疫小鼠 免疫小鼠 免疫小鼠 抗原表位 抗独特型抗体 独特位 抗体 抗体 抗独特型抗体产生原理

抗体选择题(新)

1. 关于轻链的叙述,哪项是错误的 (A) A、Ig根据V L抗原特异性不同分为两个型 B、Ig的轻链均相同 C、轻链有两型 D、同一个天然Ig分子上两条轻链的型总是相同的 E、人血清中各类Ig所含κ链和λ链的比例约为2:1 2. 免疫球蛋白的结构是由 (D) A、二条相同的重链组成 B、二条多肽链组成 C、以J链连接的一条轻链和一条重链组成 D、二硫键连接的二条相同重链和二条相同轻链组成 E、二硫键连接的一条重链和一条轻连组成 3. 将免疫球蛋白分为两型的根据是 (A) A、轻连恒定区抗原性不同 B、重链恒定区抗原性不同 C、重链可变区抗原性不同 D、轻链可变区抗原性不同 E、超(高)变区抗原性不同 4. 抗体与抗原决定簇互补结合的部位是 (C) A、V H B、C L、C H C、V H、V L中的CDR(HVR) D、V L中的CDR E、Fc段 5. 抗原和抗体特异结合的部位在 (B) A、V H B、V L和V H C、C L和C H D、Fc段 E、C H 6. IgG与FcR结合的功能区是 (D) A、C H2 B、C H1 C、铰链区 D、C H3 E、V H、V L 7. IgG (C) A、在胚胎期即可合成 B、有CH4功能区 C、能通过胎盘 D、B细胞表面抗原识别受体属此类 E、天然血型抗体属此类 8 .铰链区位于 (A)

A、C H1与C H2之间 B、V H与C H1之间 C、C H2与C H3之间 D、C H3与C H4之间 E、V H与C H之间 9. 关于Ig分泌片的特性哪项是错误的? (E) A、以非共价键方式连接两个Ig分子单体 B、由上皮细胞合成和分泌 C、分泌片的功能是保护IgA及介导IgA的转运 D、分泌片与IgA的形成无密切关系 E、主要存在于血清中 10. 人类个体发育过程中,最早合成的免疫球蛋白是 (C) A、IgA B、IgG C、IgM D、IgD E、IgE 11. 免疫球蛋白产生的顺序是 (B) A、IgA-IgG-IgM B、IgM-IgG-IgA C、IgG-IgM-IgA D、IgM-IgA-IgG E、IgA-IgM-IgG 12 .与抗原结合后活化补体能力最强的Ig分子是 (D) A、IgD B、IgG C、IgA D、IgM E、IgE 13. IgG分子中与补体结合的部位存在于 (A) A、C H2 B、C H1 C、C H3 D、C H4 E、V H 14. 能激活补体又能与SPA结合的Ig是 (C) A、IgD B、IgA C、IgG D、IgM E、IgE 15. 合成分泌抗体的细胞是 (A) A、浆细胞

相关文档
最新文档