土中 应 力 计 算

土中 应 力 计 算
土中 应 力 计 算

第2章 土中 应 力 计 算

自重应力:由土体重力引起的应力

附加应力:由于建筑物荷载在土中引起的应力 要求:

正确理解自重应力、附加应力、基底压力、基底附加压力的概念及影响因素。 掌握各种应力的计算公式、计算方法及分布规律。

第一节 土中应力状态

法向应力以压应力为正,拉应力为负;

剪应力以逆时针方向为正,顺时针方向为负。 σx 、σy 、σz ,τ

xy

yx

、τ

yz

zy

、τ

zx

xz

第二节 土中的自重应力

由土体重力引起的应力称为自重应力。一般是自土体形成之日起就产生于土中。 一、均质地基土的自重应力

土体在自身重力作用下任一竖直切面均是对称面,切面上都不存在切应力。因此只有竖向自重应力σc z ,其值等于单位面积上土柱体的重力W 。深度z 处土的自重应力为:

式中 γ为土的重度,kN/m 3 ;F 为土柱体的截面积m 2。 σcz 的分布:随深度z 线性增加,呈三角形分布。 二、成层地基土的自重应力

地基土通常为成层土。当地基为成层土体时,设各土层的厚度为h i ,重度为γi ,则在深度z 处土的自

地下水位以上的土层取天然重度γ,地下水位以下的土层取有效重度γ`

( γ` = γsat- γw)

γ

w=10kN/m3 三、土层中有不透水层时的自重应力

在地下水位以下,如果埋藏有不透水层(坚硬的粘土、基岩),该层面处的自重应力应按上覆土层的水土总重计算。 四、水平向自重应力

式中K 0为侧压力系数,也称静止土压力系数

例题 2-1某土层及其物理性质指标如图所示,地下水位在地表下1.0 m ,计算土中自重应力并绘出分布

a 点:

b 点:

c 点:

d 点:

例题 2-2某地基土层的地质剖面如图所示,计算各土层的自重应力并绘出分布 50m 处:

48m 处:

45m 顶:

45m 不透水层面:

43m 处:

【课堂讨论】

? 土的性质对自重应力有何影响?

? 地下水位的升降是否会引起土中自重应力的变化?如何影响?

作业1、

2

==h cz γσkpa

h cz 6.1816.1811=?==γσkpa

h h cz 4.271)108.18(6.182

211=?-+=+=γγσ

kpa

h h h cz 6.523)104.18(4.273

32211=?-+=++=γγγ

σ0==h cz γσkpa

h cz 3621811=?==γσ

h h cz 5.613)105.18(362211=?-+=+=γγσkpa

h h h w

w cz 5.913105.612211=?+=++=γγγσkpa

h h h h w w cz 5.1292195.913

32211=?+=+++=γγγγσ

第二节 基底压力的简化计算

建筑物荷载通过基础传递给地基的压力称基底压力,又称地基反力。

一、基底压力的分布

基底压力的分布规律主要取决于基础的刚度和地基的变形条件。对柔性基础,地基反力分布与上部荷载分布基本相同,如由土筑成的路堤,其自重引起的地基反力分布与路堤断面形状相同。对刚性基础,在外荷载作用下,开始时地基反力呈马鞍形分布;荷载较大时,边缘地基土产生塑性变形,边缘地基反力不再增加,使地基反力重新分布而呈抛物线分布,若外荷载继续增大,则地基反力会继续发展呈钟形分布。

(a )理想柔性基础 (b )路堤下地基反力分布

(a )马鞍形 (b )抛物线形 (c)钟形

二、基底压力的简化计算

实用上,通常将基底压力假设为线性分布情况按下列公式进行简化计算:

中心荷载作用下的基底压力:

偏心荷载作用下的基底压力:

F --荷载效应标准组合时,上部结构传至基础顶面的竖向力值.

G -基础自重及回填土总重,

式中l ,b 为基底平面的长边与短边尺寸。在l 方向偏心.

偏心荷载作用下的基底压力:

1)当 e

3)e >b/6 时,即荷载作用点在截面核心外,p min <0;基底地基反力出现拉力。此时基底与地基土局部脱开,使基底压力重新分布。根据偏心荷载与基底压力的平衡条件,得p max 为:

a 为竖向荷载作用点至最大压力边缘的距离a=b/2-e

(a )中心荷载下 (b )偏心荷载eb /6时

三、基底附加压力

? 基础通常是埋置在天然地面下一定深度的。由于天然土层在自重作用下的变形已经完成,故只有超出基底处原有自重应力的那部分应力才使地基产生附加变形,使地基产生附加变形的基底压力称为基底附加压力p 0。因此,基底附加压力是上部结构和基础传到基底压力与基底处原先存在于土中的自重应力之差,按

下式计算:

d-从天然地面算起的基础埋深。

例2-3:已知某基础的底面尺寸为3m ×2m ,基底中心处的偏心力矩Mk =147KN.m ,竖向力F k +G k =490kN,求基底压力。若已知基础埋深2.0米,γ=16kN/m3,计算基

底附加压力。 解:

3

G G m

/kN 20h A G ==γγd p p p cz 0γσ-=-=m

5.06

l m 3.010

49010147G F M

e 3

3k k k

=<=??=

+=2

k

k min

k max k m

/kN 67

.3267.130)3

3.061(2

3490)b

e 61(bl

G F p p =

?=

±+=

2

min k min 02

max k max 0m

/kN 67.021667.32d p p m /kN 67.9821667.130d p p =?-=-==?-=-=γγ

例2―4 某柱基础,作用在设计地面处的柱荷载、基础尺寸、埋深及地基条件如图示,计算基底压力和基底附加压力。 解

=G Ad G γkN 4833.25.30.320=???=G

F M

e +=

m 169.048310503.267105=+?+=

m

583.06

5

.36b ==

7.103kpa 3.188)5

.3169.061(0

.35.34831050)

b e 61(bl G F p p

min max

=

?+=

±+=3

2

12

211m

/kN 69.168

.05.18

.0185.116h h h h =+?+?=

+?+?=

γγγ2

min min 02

max max 0m

/kN 3.653.269.167.103d p p m /kN 9.1493.269.163.188d p p =?-=-==?-=-=γγ

第四节 土 中 附 加 应 力

1、土中附加应力是由建筑物荷载在地基内引起的应力。

2、由基底附加应力引起的地基中任一点的附加应力如何确定? 在计算地基中的附加应力时,一般均假定: ①基础刚度为零,即基底作用的是柔性荷载; ②地基是连续、均匀、各向同性的线性变形体。 ③地基是半无限空间弹性体 采用弹性力学解答。

一、竖向集中力P 作用下的地基附加应力

以集中力P 的作用点为原点,以P 的作用线为Z 轴建立起三轴坐标系(Oxyz),则M

α—集中力作用下土中附加应力系数,可由表查得。 附加应力在地基中的分布规律如图

集中力在地基中引起的附加应力是向深部、四周传播. 1.在集中力F作用线上,σz 随深度增加而递减; 2、在地面下水平面上,σz 向两侧逐渐减小;

3、在r >0的竖直线上,随z的增加,σz 从小增大,至一定深度后又随z的增

加而变小; 4、距离地面越远,附加应力分布的范围越广

当地基表面作用有几个集中力时,可分别算出各集中力在地基中引起的附加应力,然后根据应力叠加原理求出附加应力的总和。在实际工程中,建筑物荷载都是通过一定尺寸的基础传递给地基的。对于不同的基础形状和基础底面的压力分布,都可利用布氏公式,通过积分法或等代荷载法求得地基中任意点的附加应力值σz。具体求解时又分为空间和平面问题的附加应力。

若基础的长度与宽度之比l/b<10时,地基中的附加应力计算问题属于空间问题。

二、矩形面积受均布荷载作用下的附加应力计算

角点O下z深度处的附加应力σz可按下式计算。

式中αc—均布垂直荷载作用下矩形基底角点

下的竖向附加应力分布系数,由l/b、z/b

查表得到,l恒为基础长边,b为基础短边。

对于均布矩形荷载下的附加应力计算点不

位于角点下的情况,可利用上式以角点法求得。

角点法:通过O点将荷载面分成若干个矩形面积,

O点就必然是各个矩形的公共角点,然后再计算每个矩形角点下同一深度z处的

附加应力σz,并求其代数和。

1、O点在荷载面边缘:

2、O点在荷载面内:

3、O点在荷载面边缘外侧:

4、O点在荷载面角点外侧:

应用角点法时应注意的问题:

①划出的每一个矩形,都有一个角点为O 点;

②所有划出的各矩形面积的代数和,应等于原有受荷的面积; ③所划出的每一个矩形面积中,l 为长边,b 为短边。

例2-5 某矩形基础,长2.0 m ,宽1.0m,基底的附加压力为100 kPa ,如图所示,计算此矩形面积的角点A 、边点E 、中点O ,矩形面积外F 点和G 点下,深度z =2.0m处的附加应力。 (1)计算角点A 下的附加应力:

查得αc =0.1202

(2)计算边点E 下的附加应力

作辅助线IE ,将原来的矩形ABCD 划分为两个相等的小矩形EADI 和EBCI 。

查得αc =0.084

=2×0.0840×100=16.8 kPa

(3) 计算中点O 下的附加应力

作辅助线JK ,IE 将原来的矩形ABCD 划分为四个相等的小矩形OEAJ 、OJDI 、OICK 和OEBK 。

查得αc =0.0474

=4×0.0474×100≈19 kPa

(4) 计算矩形面积外F 点下的附加应力

作辅助线CH 、JF 、BG 和HG ,将原来的矩形ABCD 划分为两个相等的长矩形FHDJ 、FGAJ 和两个小矩形FHCK 、FGBK 。

查得αc1=0.0732

αc2=0.0270

=2×(0.0732-0.0270)×100≈

9.2 kPa

.20

.10.2b l ==0

.20

.10.2b z ==kpa

121001202.0p c A

z =?==ασ

.10

.10.1==b l 0

.20

.10.2==b z p

c E

z ασ

2=0

.25

.00.1==b l 0

.45

.00.2==b z p

c O

z ασ

4=5

5.05.2==b l 0

.45.00.2==b z 15

.05.0==b l 0

.45

.00.2==b z p

c c F

z )(221αασ

-?=

(5) 计算矩形面积外G 点下的附加应力

作辅助线CH 、BG 、HG ,将原来的矩形ABCD 划分为一个大矩形GHDA 和一个小矩形GHCB 。

查得αC1=0.1258

αc2=0.0474

=(0.1258-0.0474)×100≈7.8 kPa

.25.00.1==b l 0

.20.10.2==b z 5.20

.15.2==b l 0

.45

.00.2==b z p

c c zG

)(21αασ

-=

第四节 土 中 附 加 应 力

三、矩形面积受竖直三角形荷载作用 在矩形面积一边b 方向上作用着三角形分布的垂直荷载,另一边l 的荷载分布不变,最大荷载强度为p t 。

1、将荷载强度为零的角点1作为坐标原点,则三角形分布荷载角点1下的附加应力为:

2、三角形分布荷载最大边角点2下的附加应力为:

b 方向上作用着三角形分布的垂直荷载,另一边l 的荷载分布不变

例题 某方形基础边长为2.0m ,荷载及地基情况如图所示,试求A 点下2.0m 深处的附加应力。

(1)基底压力计算

(2)基底附加压力及分布 (3)荷载作用面积叠加 作辅助线BA ,使A 成为两个相等矩形的公共角点

(4)荷载分布图形的叠加

基底附加压力分布图形可分解为均布荷载(ABDE )和三角形荷载(CDE ) (5)A 点的附加压力计算

均布荷载:

)b

z

,

b l

(

、2t 1t 的函数载的附加应力系数为矩形面积三角形分布荷

-ααkpa

147kpa 273)2

1.061(2

2840)b

e 61(A

G F P max

min

=

?=

±

+=

kPa

P kPa

P 111218147237218273m in 0m ax 0

=?-==?-=F+G=840kN e=0.1m

KPa P P 111m in 00==0

.21

20.21

2==

==

b

z ,

b

l

三角形分布:

四、圆形面积受垂直均布荷载作用

设圆形基础半径为r 0,其上作用有均布荷载p 0。 1、圆心点

σz 可按下式计算:

2、圆心点O 下z 深度处的附加应力σz 可按下式计算:

平面问题的附加应力计算

当一定宽度的无限长条面积承受均布荷载时,在土中垂直于长度方向的任一截面附加应力分布均相同,这类问题称为平面问题。只要算出任一截面的附加应力,即可代表其他平行截面。

在实际工程中并没有无限长的荷载面积。研究表明,当基础的长宽比 l /b ≥10时,计算的地基附加应力值与按l /b=∞时的解相当接近。

故墙基、路基、挡土墙基础等均可按平面问题计算地基中的附加应力。

五、条形面积受均布竖向荷载

在土体表面分布宽度为b 的均布条形荷载P 0时,坐标原点O 取在条形面积中点,土中任一点的竖向应力可采用弹性理论中的弗拉曼公式在荷载分布宽度范围内

积分得到:

---条形面积均布荷载作用下

附加应力系数,由

查表得到 六、条形面积受三角形分布荷载

如图所示为条形基础是三角形分布的垂直荷载作用的情况,荷载最大值为p 0。将坐标原点取在条形面积中点,同样可以通过积分的方法求得附加应力为: —条形面积三角形分布荷载

作用下的附加应力系数,由 查取 1202.01=c αKPa

7.261202.011121

z =??=σ

KPa P P P t 126m in 0m ax 0=-=1

2/2/5.02/1/====b ,z b l 0745

.02=t αKPa

z 8.180745.012622

=??=σ

KPa zA 5.458.187.26=+=σ。

r z ,0

0的函数是

数圆心点下的附加应力系

-α。

r z ,0

r 的函数是

应力系数圆形荷载周边下的附加-α0

s

z z p ασ=s z αb

z m =b x

n =P

t z z α=σt

z αb x b

z

例:某条形基础,其荷载分布如图所示,计算G 点下深度为3m 处的附加应力。 解: 需对荷载分布图形进行分解计算,然后叠加 (1)均布荷载(ABDC )作用

(2)三角形分布荷载(ACG )作用

本章重点

? 竖向自重应力的计算

? 基底压力及基底附加压力的计算 ? 附加应力的计算

2

24

b x ==5

.123

b z ==55

.0s

z =αkPa 150P =13

3==16.0t z =α

力学计算题专项训练

力学计算题专项训练 1. 如图所示,劲度系数为k=100 N/m的轻弹簧A左端固定,甲、乙两滑块(视为质点)之间通过绳子夹着一个压缩弹簧B,甲刚好与桌子边缘对齐,乙与弹簧A的右端相距s0=0.95m,且m甲=3 kg,m乙=1 kg,桌子离地面的高度为h=1.25m.烧断绳子后,甲、乙落在地面上同一点,落地点与桌子边缘的水平距离为s=0.5m.O点右侧光滑,乙与O点左侧水平面动摩擦因数μ=0.2,重力加速度取g=10 m/s2,求: (1) 烧断绳子前弹簧B的弹性势能. (2) 乙滑块在水平桌面上运动过程中的最大加速度. 2. 如图所示,固定在地面上的光滑轨道AB、CD均是半径为R的1/4圆弧.一质量为m、上表面长也为R的小车静止在光滑水平面EF上,小车上表面与轨道AB、CD的末端B、C相切.一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动.当小车右端与壁CF接触前的瞬间,物体m恰好滑动到小车右端相对于小车静止,同时小车与CF相碰后立即停止运动但不粘连,物体则继续滑上轨道CD.求: (1) 物体滑上轨道CD前的瞬间速率. (2) 水平面EF的长度. (3) 当物体再从轨道CD滑下并滑上小车后,如果小车与壁BE相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端多远?

3. 如图所示,在水平轨道右侧安放半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l.水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.小物块A静止放置在弹簧右端,A与弹簧接触但不拴接;小物块B从轨道右侧以初速度v0冲上轨道,通过圆形轨道、水平轨道后与物块A发生对心碰撞且瞬间粘连,之后A、B一起压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.物块A、B均可视为质点.已知R=0.2m,l=1.0m,v0=6 m/s,物块A、B质量均为m=1 kg,与PQ段间的动摩擦因数均为μ=0.2,轨道其他部分摩擦不计.取g=10 m/s2.求: (1) 物块B与物块A碰撞前速度大小. (2) 物块B与物块A碰后返回到圆形轨道的高度. (3) 调节PQ段的长度l,B仍以v0从轨道右侧冲上轨道,当l满足什么条件时,A、B物块能返回圆形轨道且能沿轨道运动而不会脱离轨道? 4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m.平台上静止着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3kg,车面与平台的台面等高,车面左侧粗糙部分长度为L=0.8m,动摩擦因数为μ=0.2,右侧拴接一轻质弹簧,弹簧自然长度所在处车面光滑.点燃炸药后,A滑块到达圆轨道最高点时对轨道的压力大小恰好等于A滑块的重力,滑块B冲上小车.两滑块都可以看做质点,炸药的质量忽略不计,爆炸的时间 极短,爆炸后两个物块的速度方向在同一水平直线上,取g=10 m/s2.求: (1) 滑块在半圆轨道最低点对轨道的压力. (2) 炸药爆炸后滑块B的速度大小. (3) 滑块B滑上小车后的运动过程中弹簧的最大弹性势能.

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部力,而只是给出了主要的受力和力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

桩基础作业(承载力计算)-附答案

1.某灌注桩,桩径0.8d m =,桩长20l m =。从桩顶往下土层分布为: 0~2m 填土,30sik a q kP =;2~12m 淤泥,15sik a q kP =;12~14m 黏土,50sik a q kP =;14m 以下为密实粗砂层,80sik a q kP =,2600pk a q kP =,该层厚度大,桩未穿透。试计算单桩竖向极限承载力标准值。 【解】 uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ ()20.8302151050280426000.84 1583.41306.92890.3uk sk pk Q Q Q kN π π=+=???+?+?+?+??=+= 2.某钻孔灌注桩,桩径 1.0d m =,扩底直径 1.4D m =,扩底高度1.0m ,桩长 12.5l m =,桩端入中砂层持力层0.8m 。土层分布: 0~6m 黏土,40sik a q kP =;6~10.7m 粉土,44sik a q kP =; 10.7m 以下为中砂层,55sik a q kP =,1500pk a q kP =。试计算单桩竖向极限承载力标准值。 【解】 1.00.8d m m =>,属大直径桩。 大直径桩单桩极限承载力标准值的计算公式为: p pk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑ (扩底桩斜面及变截面以上d 2长度范围不计侧阻力) 大直径桩侧阻、端阻尺寸效应系数为: 桩侧黏性土和粉土:() 1/5 1/5(0.8/)0.81.00.956si d ψ=== 桩侧砂土和碎石类土:()1/3 1/3(0.8/)0.81.00.928si d ψ=== 桩底为砂土:() 1/3 1/3(0.8/)0.81.40.830p D ψ=== ()2 1.00.9564060.956440.831500 1.410581505253.3564 uk Q kN ππ =????+??+???=+= 3.某工程采用泥浆护壁钻孔灌注桩,桩径1.2m ,桩端进入中等风化岩1.0m ,中等风化岩岩体较完整,饱和单轴抗压强度标准值为41.5a MP ,桩顶以下土层参数

力学计算题部分解析

1、作如图所示多跨梁各段的受力图。 本题考核的知识点是物体的受力分析方法。 解:作AB段的受力图如图(a),作BC段的受力图如图(b) 取梁BC为研究对象。受主动力1F 作用。C处是可动铰支座,它的反力是垂直于支承面的C F ,指向假设垂直支承面向上;B处为铰链约束,它的约束力可用两个互相垂直的分力Bx F 、By F 表示,指向假设如图。 取梁AB为研究对象。A处是固定铰支座,它的反力可用Ax F 、Ay F 表示,指向假设如图;D处是可动铰支座,它的反力是垂直于支承面的D F ,指向假设向上;B处为铰链约 束,它的约束力是Bx F '、By F ',与作用在梁BC上的Bx F 、By F 是作用力与反作用力的关系,其指向不能再任意假定。 2、桥墩所受的力如图所示,求力系向O点简化的结果,并求合力作用点的位置。已知 kN F P 2740=,kN G 5280=,kN F Q 140=,kN F T 193=,m kN m ?=5125。 本题考核的知识点是平面一般力系的平衡方程和解题方法。本题是一个平面一般力系向向O点简化的问题。

解:坐标系如图 kN R X 333)140(193-=-+-=' kN R Y 8020)2740(5280-=-+-=' 主矢kN R R R Y X 9.802622='+'= ' 方向1.243338020tan =--=''= X Y R R α 主矩m kN M O ?=+?+?=106765125211937.10140 注意: ①主矢R '由力系中各力的矢量和确定,所以,主矢与简化中心的位置无关。对于给定的力系,选取不同的简化中心,所得主矢相同。 ②主矩由力系中各力对简化中心的矩的代数和确定,简化中心的位置不同,各点对其的矩不同,所以,主矩一般与简化中心的位置有关。 3、如图所示,简支梁中点受力P F 作用,已知kN F P 20=,求支座A和B的反力。 本题考核的知识点是平面力系的平衡方程和解题方法。本题是平面汇交力系的平衡。 解:见教材34页例1-12 本题与教材34页例1-12完全相同,这儿就不再附答案了。 注意:应首先画出受力图进行计算。 本题中简支梁所受的力组成一个平面汇交力系,利用平面汇交力系的平衡条件: 0=∑xi F ;0=∑yi F 计算出支座A、B的反力。 4、如图所示,试分析图示结构体系的几何组成。 本题考核的知识点是结构的几何组成分析方法。 解:铰结三角形124和铰结三角形235与基础这三刚片通过不在同一直线上的三个单铰1、2、3两两相连,组成几何不变体系,形成一个大刚片12345。刚片12345与刚片96之间通过三根即不完全平行也不相交与一点的的链杆相连,

材料力学-切应力计算

第四章弹性杆横截面上的切应力分析 § 4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力,又有切应力。但一般情况下,切应力 对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面 上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q。现分析距中性轴z为y的横线aa1 上的剪应力分布情况。根据剪应力成对定理,横线aa1两端的剪应力必与截面两侧边相切, 即与剪力F Q的方向一致。由于对称的关系,横线aa i中点处的剪应力也必与F Q的方向相同。 根据这三点剪应力的方向,可以设想aa i线上各点切应力的方向皆平行于剪力F Q。又因截面高度h大于宽度b,切应力的数值沿横线aa i不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj力F Q。 2)切应力沿截面宽度均匀分布。 图4-15 图4-16 基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b所示。梁的横截面尺寸如图4-16c所示,现欲求距中性 轴z为y的横线aa1处的切应力。过aa1用平行于中性层的纵截面aa2C1自dx微段中截出 一微块(图4-16d)。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力。微块左右侧面上正应力的合力分别为N1和N2,其中

y 1dA 。 A * 由微块沿x 方向的平衡条件 这样,式(4-32)可写成 N 1 I dA A * My 1 dA Ms ; z A * I z (4-29) N 2 II dA (M dM)y 1dA A * A * I z (M dM)。 * ^n^Sz (4-30) 式中,A 为微块的侧面面积, (ii )为面积 A 中距中性轴为 y i 处的正应力, 将式 N 1 N 2 (4-29)和式(4-30)代入式 dM * nr S z bdx 0 4-31),得 bdx 0 dM S ; dx bI z (4-31) 因 F Q , dx ,故求得横截面上距中性轴为 y 处横线上各点的剪应力 * F Q S Z bn (4-32) 式(4-32)也适用于其它截面形式的梁。式中, F Q 为截面上的剪力; I z 为整个截面 对中性轴z 的惯性矩;b 为横截面在所求应力点处的宽度; S y 为面积A *对中性轴的静矩。 对于矩形截面梁(图4-17),可取dA bdy i ,于是 * S z y i dA A 2(h y 2) 电( h! y 2) 上式表明,沿截面高度剪应力 4-17 )。 按抛物线规律变化(图 在截面上、下边缘处,y= ± h , =0;在中性轴上,y=0, 2 切应力值最大,其值为 ■ 1 1 r 尸蛰 T *17 A" y 图 4-17 * S z 0,得

初中物理力学计算题

初中物理力学计算题

1、在高速公路上,一些司机为了降低营运成本,肆意超载,带来极大的危害.按照我国汽车工业的行业标准,载货车辆对地面的压强应控制在7×105Pa以内.有一辆自重2000kg的6轮汽车,已知该车在某次实际营运中装货10t,每个车轮与地面的接触面积为0.02m2.求: (1)这辆汽车对路面的压强是多少?是否超过行业标准? (2)如果要求该车运行时不超过规定的行业标准,这辆汽车最多装多少吨货?(设车轮与地面的接触面积不变)(计算中g取10N/kg)

2、(6分)如图l4所示,小明在跑步机 上锻炼身体.设他在跑步机上以5m/s 的速度匀速跑动30min,跑动的总动力 为40N.求: (1)他在这段时间内相当于跑了多少路程? (2)他在这段时间内做了多少功? (3)他做功的功率是多少? 3、(7分)磁悬浮列车是一种新型交通 工具,如图15所示.列车受到磁力作 用而浮起,使列车与轨道间的摩擦力减 小到零.上海磁悬浮列车线路长是

30km,单向运行时间440s. (1)求列车单向运行的平均速度是多少? (2)假设一节车厢总质量是20t,磁悬浮列车行驶时,强大的磁力使车厢匀速上升10mm, 图15 求上升过程中磁力对该车厢做的功是多少?(g 取10N/kg) 4、(6分)如图20所示是中国女子冰壶队参加2010年冬奥会时的一个情景。冰壶由花岗岩凿磨而成,质量约为19Kg,与冰道接触的底面积约为0.02m2,冰壶的体积约为8X10-3m3。(g 取10N/Kg) 求:(1)冰壶的密度 (2)冰壶对水平冰道的压强。

5、(6分)用如图18所示的滑轮组在20s内将重600N的物体从地面竖直提高4m,所用拉力是250N。在这个过程中,求: (1)有用功是多少? (2)拉力的功率是多少? (3)滑轮组机械效率是多少?

力学计算题

力学计算题(二) 1.(12分)如图所示,在竖直平面内有一条1/4圆弧形轨道AB ,其半径为1m ,B 点的切线方向恰好为水平方向.一个质量为2kg 的小物体,从轨道顶端A 点由静止开始沿轨道下滑,到达轨道末端B 点时的速度为4m/s ,然后做平抛运动,落到地面上的C 点。若轨道距地面的高度h 为5m (不计空气阻力,g=10m/s 2),求: (1)物体在AB 轨道克服阻力做的功; (2)物体在B 点对轨道的压力; (3)物体落地时的动能; (4)B 、C 两点间的水平距离. 2.如图所示,三个物体质量C B A m m m ==,物体A 与斜面间动摩擦因数为8 3,斜面体与水平地面间摩擦力足够大,物体C 距地面的高度为0. 8 m,斜面倾角为300.求: (1)若开始时系统处于静止状态,斜面体与水平地面之间有无摩擦力?如果有,求出这个摩擦力;如果没有,请说明理由. (2)若在系统静止时,去掉物体B ,求物体C 落地时的速度.

3.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑的水平转动轴上,杆和球在竖直面内转动,已知球B运动到最高点时,球B对杆恰好无作用力.求: (1)球B在最高点时,杆对水平轴的作用力大小. (2)球B转到最低点时,球A和球B对杆的作用力分别是多大?方向如何? 4.(20分)如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为2 =,物块飞离桌面后由P点沿切线 t x- 2 6t 落入圆轨道。g=10m/s2,求: (1)BP间的水平距离。 (2)判断m2能否沿圆轨道到达M点。 (3)释放后m2运动过程中克服摩擦力做的功

剪切应力计算

拉伸、压缩与剪切 1 基本概念及知识要点 1.1 基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2 轴向拉压的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力 F N ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴 力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 F A σ= N 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa 、Pa 。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 []F A σσ= ≤N 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。 4.胡克定律 线弹性范围内,杆的变形量与杆截面上的轴力F N 、杆的长度l 成正比,与截面尺寸A 成反比;或描述为线弹性范围内,应力应变成正比,即 F l l E E A σε?= =N 式中的E 称为材料的弹性模量,EA 称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3 材料在拉压时的力学性能 材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

岩体力学计算题

计算题 四、岩石的强度特征 (1) 在劈裂法测定岩石单轴抗拉强度的试验中,采用的立方体岩石试件的边长为5cm ,一组平行试验得到的破坏荷载分别为16.7、17.2、17.0kN ,试求其抗拉强度。 解:由公式σt =2P t /πa 2=2×P t ×103/3.14×52×10-4=0.255P t (MPa) σt1=0.255×16.7=4.2585 σt2=0.255×17.2=4.386 σt3=0.255×17.0=4.335 则所求抗拉强度:σt ==(4.2585+4.386+4.335)/3=4.33MPa 。 试计算其抗拉强度。(K =0.96) 解:因为K =0.96,P t 、D 为上表数据,由公式σt =KI s =KP t /D 2代入上述数据依次得: σt =8.3、9.9、10.7、10.1、7.7、8.7、10.4、9.1。 求平均值有σt =9.4MPa 。 (3) 试导出倾斜板法抗剪强度试验的计算公式。 解: 如上图所示:根据平衡条件有: Σx=0 τ-P sin α/A -P f cos α/A =0

τ=P (sinα- f cosα)/A Σy=0 σ-P cosα-P f sinα=0 σ=P (cosα+ f sinα) 式中:P为压力机的总垂直力。 σ为作用在试件剪切面上的法向总压力。 τ为作用在试件剪切面上的切向总剪力。 f为压力机整板下面的滚珠的磨擦系数。 α为剪切面与水平面所成的角度。 则倾斜板法抗剪强度试验的计算公式为: σ=P(cosα+ f sinα)/A τ=P(sinα-f cosα)/A (4) 倾斜板法抗剪强度试验中,已知倾斜板的倾角α分别为30o、40o、50o、和60o,如果试样边长为5cm,据经验估计岩石的力学参数c=15kPa,φ=31o,试估计各级破坏荷载值。(f=0.01) 解:已知α分别为30o、40o、50o、和60o,c=15kPa,φ=31o,f=0.01, τ=σ tgφ+c σ=P(cosα+ f sinα)/A τ=P( sinα-f cosα)/A P( sinα-f cosα)/A= P(cosα+ f sinα) tgφ/A+c ( sinα-f cosα)= (cosα+ f sinα) tgφ+cA/P P=cA/[( sinα-f cosα)- (cosα+ f sinα) tgφ] 由上式,代入上述数据,计算得: P30=15(kN/mm2)×25×102(mm2)/[( sin30 - 0.01×cos30) - (cos30 + 0.01×sin30) tg31] αsinαcosα( sinα-f cosα)(cosα+ f sinα)(cosα+ f sinα) tgφ P 3 0 0.5 0.86602 5 0.49134 0.873751 0.525002 -111.4 4 0 0.64278 8 0.76604 4 0.635127 0.772522 0.464178 21.9363 8 5 0 0.76604 4 0.64278 8 0.759617 0.647788 0.38923 10.1245 6 6 0 0.86602 5 0.5 0.861025 0.5 0.30043 6.68932 (5) 试按威克尔(Wuerker)假定,分别导出σt、σc、c、φ的相互关系。 解:如图:

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态工作状态 基础所受的水平力H:66.2KN 22.5KN 基础所受的竖向力P:434KN 513KN 基础所受的倾覆力矩M:1683KN.m 1211KN.m 基础所受的扭矩Mk:0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: (注:n为桩根数,a为塔身宽) 带入数据得 单桩最大压力: Qik压=872.04KN 单桩最大拔力:Qik拔=-615.54KN 三、钻孔灌注桩承载力计算 1、土层分布情况: 层号 土层名称 土层厚度(m) 侧阻qsia(Kpa) 端阻qpa(Kpa) 抗拔系数λi 4 粉质粘土 0.95 22 / 0.75 5 粉质粘土 4.6 13 / 0.75 7 粉质粘土 5.6 16 /

0.75 8-1 砾砂 7.3 38 1000 0.6 8-2 粉质粘土 8.9 25 500 0.75 8-3 粗砂 4.68 30 600 0.6 8-4a 粉质粘土 4.05 32 750 0.75 桩顶标高取至基坑底标高,取至场地下10m处,从4号土层开始。 2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: 式中:Ra---单桩竖向承载力特征值; qpa,qsia---桩端端阻力,桩侧阻力特征值; Ap---桩底端横截面面积; up---桩身周边长度; li---第i层岩土层的厚度。 经计算:Ra=0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25×8.9+30×2.65)=2184.69KN>872.04KN满足要求。 单桩竖向抗拔承载力特征值计算公式: 式中:Ra,---单桩竖向承载力特征值; λi---桩周i层土抗拔承载力系数; Gpk ---单桩自重标准值(扣除地下水浮力) 经计算:Ra,=2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25

(完整版)岩石力学计算题

第2章 岩石物理力学性质 例:某岩样试件,测得密度为1.9kg/cm3,比重为2.69,含水量为29%。试求该岩样的孔隙比、孔隙率、饱和度和干容量。 解:孔隙比:83.019 .1) 29.01(69.21 ) 1(=-+= -+?= γ ωεd v 孔隙度:%3.45%10083.0183 .0%1001=?+=?+= v v n εε 饱和度:%9483 .0% 2969.2=?==εωG S r 干容重:)/(47.183 .0169.213cm g d =+=+?= εγ 例 某岩石通过三轴试验,求得其剪切强度c=10MPa ,φ=45°,试计算该岩石的单轴抗压强度和单轴抗拉强度。 解:由 例 大理岩的抗剪强度试验,当σ1n=6MPa, σ2n=10MPa ,τ1n=19.2MPa, τ2n=22MPa 。该岩石作三轴抗压强度试验时,当σa=0,则Rc=100MPa 。求侧压力 σa=6MPa 时,其三轴抗压强度等于多少? 解:(1)计算内摩擦角φ φστtg C n n 11+= (1) φστtg C n n 22+= (2) 联立求解: 021212219.2 0.735106 n n n n tg ττφφσσ--= ==?=-- (2)计算系数K : 7.335sin 135sin 1sin 1sin 10 =-+=-+=φφK (3)计算三轴抗压强度: 0100 3.7612.22C a S S K MPa σ=+=+?= 第3章 岩石本构关系与强度理论 例:已知岩石的应力状态如图,并已知岩石的内聚力为4MPa ,内摩擦角为35°。求: (1)各单元体莫尔应力圆,主应力大小和方向; (2)用莫尔库仑理论判断,岩石是否发生破坏

切应力计算

一、简介 一般情况下横力作用弯曲时,梁横截面上既有正应力σ又有切应力τ 图9-146 直梁横力弯曲时横截面上的剪力F S与相应的切应力之间有如下静力学关系 图9-147 从竖直平面内弯曲的矩形截面梁可以判明:弯曲切应力τ在横截面上不可能是均匀的 若在横截面上均匀分布而上下边缘处在与边缘垂直的方向上有切应力τ,那么按切应力互等定理,在梁的顶面和底面就有切应力τ',这与梁自由表面上不可能有任何应力相矛盾 图9-148

至于不在横截面上下边缘处的切应力τ,因为与之互等的切应力τ'在梁的纵截面上,它作为纵截面上切向分布内力的集度,当然可以存在 图9-149 事实上,木梁横力弯曲时的剪切破坏就发生在纵截面上(木材的顺纹抗剪强度远低于横纹抗剪抗度) 直梁弯曲切应力的分析也是从分析与中性层平行的纵截面上的切应力τ'入手的 一般情况下,梁的强度由正应力控制,但有些情况下必须考虑切应力的影响,并按切应力进行强度校核 例如在截面上有较大剪力F s作用而弯矩较小,梁的跨度短而截面较高,组合截面梁的腹板较薄等情况下都必须考虑切应力 二、几个具体截面的切应力计算 设梁的横截面为矩形,b为宽度,h为高度,且h>b,F s为横截面剪力 图9-150 对切应力分布做如下假设 1)横截面上任一点切应力方向均与剪力F s平行 2)距中性轴相等远处切应力大小相等 求:横截面上任一点的切应力 剪应力公式 F s为横截面上的剪力

I z为横截面对中性轴y的惯性矩 b为横截面的宽度 为切应力所在y处横线以外部分横截面面积对中性轴的静矩 横截面面积对中性轴的静矩为 图9-151 将静矩代入切应力计算公式得矩形横截面上切应力 τ矩形截面高度(y轴)按2次抛物线规律变化 图9-152

计算力学复习题答案

计算力学试题答案 1. 有限单元法和经典Ritz 法的主要区别是什么? 答:经典Ritz 法是在整个区域内假设未知函数,适用于边界几何形状简单的情形;有限单元法是将整个区域离散,分散成若干个单元,在单元上假设未知函数。有限单元法是单元一级的Ritz 法。 2、单元刚度矩阵和整体刚度矩阵各有什么特征?刚度矩阵[K ]奇异有何物理意义?在 求解问题时如何消除奇异性? 答:单元刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷平面图形相似、弹性矩阵D 、厚度t 相同的单元,e K 相同⑸e K 的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两列,其位置与结点位置对应。 整体刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷稀疏性⑸非零元素呈带状分布。 []K 的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。 为消除[]K 的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 3. 列式说明乘大数法引入给定位移边界条件的原理? 答:设:j j a a =,则将 jj jj k k α= j jj j P k a α= 即: 修改后的第j 个方程为 112222j j jj j j n n jj j k a k a k a k a k a αα++++ += 由于 得 jj j jj j k a k a αα≈ 所以 j j a a ≈ 对于多个给定位移()12,, ,l j c c c =时,则按序将每个给定位移都作上述修正,得到全部进行修正 后的K 和P ,然后解方程即可得到包括给定位移在内的全部结点位移值。 4. 何为等参数单元?为什么要引入等参数单元? 答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参数单元。 借助于等参数单元可以对于一般的任意几何形状的工程问题和物理问题方便地进行有限元离散,其优点有:对单元形状的适应性强;单元特性矩阵的积分求解方便(积分限标准化);便于编制通用化程序。 5、对于平面4节点(线性)和8节点(二次)矩形单元,为了得到精确的刚度矩阵, 需要多少个Gauss 积分点?说明理由。 1112 1121121222222212 2212222222j n j n j j jj j n j jj j n n nj n n n n k k k k a P k k k k a P k k k k a k a k k k k a P αα???????????????????????????? =? ????? ?????? ??????? ??????????????? ? ?15 10α≈0 () ij jj k i j k α≈≠ () jj ij k k i j α>>≠

剪切力的计算方法

第3章剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件 m-面)发生相对错动(图3-1b)。的变形主要表现为沿着与外力作用线平行的剪切面(n 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m-假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F(图3-1c)的作用。Q F称为剪力,根据平衡方程∑=0 F Q=。 Y,可求得F 剪切破坏时,构件将沿剪切面(如图3-la所示的n m-面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为 A F b b 2= τ

单桩水平承载力计算

600 单桩水平承载力: ZH-600 600.1 基本资料 600.1.1 工程名称: 工程一 600.1.2 桩型:预应力混凝土管桩; 桩顶约束情况:铰接 600.1.3 管桩的编号 PHC-AB600(110),圆桩直径 d = 600mm ,管桩的壁厚 t = 110mm ; 纵向钢筋的根数、直径为 13φ10.7; 桩身配筋率 ρg = 0.826% 600.1.4 桩身混凝土强度等级 C80, f t = 2.218N/mm E c = 37969N/mm 纵向钢筋净保护层厚度 c = 25mm ; 钢筋弹性模量 E s = 200000N/mm 600.1.5 桩顶允许水平位移 x 0a = 10mm ; 桩侧土水平抗力系数的比例系数 m = 10MN/m 4 ; 桩的入土长度 h = 28m 600.2 计算结果 600.2.1 桩身换算截面受拉边缘的截面模量 W 0 600.2.1.1 扣除保护层厚度的桩直径 d 0 = d - 2c = 600-2*25 = 550mm 600.2.1.2 钢筋弹性模量与混凝土弹性模量的比值 αE = E s / E c = 200000/37969 = 5.2675 600.2.1.3 预应力混凝土管桩的内径 d 1 = d - 2t = 600-2*110 = 380mm 600.2.1.4 W 0 = π·[(d 4 - d 14) / d] / 32 + π·d·(αE - 1)·ρg ·d 02 / 16 = π*[(0.64-0.384)/0.6]/32+π*0.6*(5.2675-1)*0.00826*0.552/16 = 0.019051m 600.2.2 桩身抗弯刚度 EI 600.2.2.1 桩身换算截面惯性矩 I 0 = W 0·d 0 / 2 = 0.01905*0.55/2 = 0.0052390m 4 600.2.2.2 EI = 0.85E c ·I 0 = 0.85*37969*1000*0.005239 = 169079kN · m 600.2.3 桩的水平变形系数 α 按桩基规范式 5.7.5 确定: α = (m ·b 0 / EI)1/5 600.2.3.1 圆形桩当直径 d ≤ 1m 时 b 0 = 0.9(1.5d + 0.5) = 0.9*(1.5*0.6+0.5) = 1.260m 600.2.3.2 α = (m ·b 0 / EI)1/5 = (10000*1.26/169079)0.2 = 0.5949(1/m) 600.2.4 桩顶水平位移系数 νx 600.2.4.1 桩的换算埋深 αh = 0.5949*28 = 16.66m 600.2.4.2 查桩基规范表 5.7.2,桩顶水平位移系数 νx = 2.441 600.2.5 单桩水平承载力特征值按桩基规范式 5.7.2-2 确定: R ha = 0.75α3·EI·x 0a / νx 600.2.5.1 R ha = 0.75*0.59493*169079*0.01/2.441 = 109.4kN 600.2.5.2 验算地震作用桩基的水平承载力时,R haE = 1.25R ha = 136.7kN 9#,10#楼,查电算信息风荷载作用下基底剪力为Vx=1158kn,Vy=2077kn,地震作用下基底剪力为Vx=2292kn,Vy=3001kn.故由地震下控制。工程桩总桩数为64根。则作用于基桩顶处的水平力H ik 为3001/64=47kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力). 2,3#楼,查电算信息风荷载作用下基底剪力为Vx=1098kn,Vy=1560kn,地震作用下基底剪力为Vx=2121kn,Vy=2048kn.故由地震下控制。工程桩总桩数为55根。则作用于基桩顶处的水平力H ik 为2121/55=39kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力). 500 单桩水平承载力: ZH-500 500.1 基本资料 500.1.1 工程名称: 工程一 500.1.2 桩型:预应力混凝土管桩; 桩顶约束情况:铰接 500.1.3 管桩的编号 PHC-AB500(100),圆桩直径 d = 500mm ,管桩的壁厚 t = 100mm ; 纵向钢筋的根数、直径为 10φ10.7; 桩身配筋率 ρg = 0.877% 500.1.4 桩身混凝土强度等级 C80, f t = 2.218N/mm E c = 37969N/mm 纵向钢筋净保护层厚度 c = 25mm ; 钢筋弹性模量 E s = 200000N/mm 500.1.5 桩顶允许水平位移 x 0a = 10mm ; 桩侧土水平抗力系数的比例系数 m = 10MN/m 4 ; 桩的入土长度 h = 28m 500.2 计算结果 500.2.1 桩身换算截面受拉边缘的截面模量 W 0 500.2.1.1 扣除保护层厚度的桩直径 d 0 = d - 2c = 500-2*25 = 450mm 500.2.1.2 钢筋弹性模量与混凝土弹性模量的比值 αE = E s / E c = 200000/37969 = 5.2675 500.2.1.3 预应力混凝土管桩的内径 d 1 = d - 2t = 500-2*100 = 300mm 500.2.1.4 W 0 = π·[(d 4 - d 14) / d] / 32 + π·d·(αE - 1)·ρg ·d 02 / 16 = π*[(0.54-0.34)/0.5]/32+π*0.5*(5.2675-1)*0.00877*0.452/16 = 0.011425m 500.2.2 桩身抗弯刚度 EI 500.2.2.1 桩身换算截面惯性矩 I 0 = W 0·d 0 / 2 = 0.01143*0.45/2 = 0.0025707m 4 500.2.2.2 EI = 0.85E c ·I 0 = 0.85*37969*1000*0.0025707 = 82965kN · m 500.2.3 桩的水平变形系数 α 按桩基规范式 5.7.5 确定: α = (m ·b 0 / EI)1/5 500.2.3.1 圆形桩当直径 d ≤ 1m 时 b 0 = 0.9(1.5d + 0.5) = 0.9*(1.5*0.5+0.5) = 1.125m 500.2.3.2 α = (m ·b 0 / EI)1/5 = (10000*1.125/82965)0.2 = 0.6706(1/m) 500.2.4 桩顶水平位移系数 νx 500.2.4.1 桩的换算埋深 αh = 0.6706*28 = 18.78m 500.2.4.2 查桩基规范表 5.7.2,桩顶水平位移系数 νx = 2.441 500.2.5 单桩水平承载力特征值按桩基规范式 5.7.2-2 确定: R ha = 0.75α3·EI·x 0a / νx 500.2.5.1 R ha = 0.75*0.67063*82965*0.01/2.441 = 76.9kN 500.2.5.2 验算地震作用桩基的水平承载力时,R haE = 1.25R ha = 96.1kN 1#楼,查电算信息风荷载作用下基底剪力为Vx=955.5kn,Vy=3962.8kn,地震作用下基底剪力为Vx=4150.33kn,Vy=5372.60kn.故由地震下控制。工程桩总桩数为135根。则作用于基桩顶处的水平力H ik 为5372.60/135=39.8kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力). 4#楼,查电算信息风荷载作用下基底剪力为Vx=895.6kn,Vy=1853.1kn,地震作用下基底剪力为 Vx=2005.43kn,Vy=2587.28kn.故由地震下控制。工程桩总桩数为66根。则作用于基桩顶处的水平力H ik 为2587.28/66=39.2kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力).