半导体材料

半导体材料
半导体材料

半导体

维基百科,自由的百科全书跳转到:导航, 搜索

汉漢▼

显示↓

在纯硅中掺入少许的硼(最外层有三个电子),就反而少了一个电子,而形成一个电洞(hole),这样就形成P型半导体少了一个带负电荷的电子,可视为多了一个正电荷)。

目录

[隐藏]

?1概观

?2半导体的能带结构

o 2.1能量-动量色散

?3载子的产生与复合

?4半导体的掺杂

o 4.1掺杂物

o 4.2载子浓度

o 4.3掺杂对半导体能带结构的影响

?5半导体材料的制造

?6应用

?7延伸阅读

o7.1材料

o7.2物理学

o7.3工业

?8参考资料

?9相关条目

?10外部链接

o10.1半导体行业网站

[

Diamantstruktur Diamantstruktur Zinkblendestruktur (Elementarzelle)

(Pauli exclusion principle),同一个量子态内不能有两个电子,已经被填满的能带无法导电,因为该能带内的所有量子态都已经被电子占据,所以半导体材料的传导带不会被电子占满,让电子可以在其中的量子态间移动。

费米-狄拉克分布。

在价带内的电子获得能量后便可跃升到传导带,而这便会在价带内留下一个空缺,也就是所谓的“电洞”(electron holes)。传导带中的电子和价带中的电洞都对电流传递有贡献,电洞本身不会移动,但是其它电子可以移动到这个电洞上面,等效于电洞本身往反方向移动。相对于带负电的电子,电洞的电性为正电。

由化学键结的观点来看,获得足够能量、进入传导带的电子也等于有足够能量可以打破电子与固体原子间的共价键(covalent bonds),而变成自由电子,进而对电流传导做出贡献。

半导体和导体之间有个显著的不同是半导体的电流传导同时来自电流与电洞的贡献,而导体的费米能阶(Fermi level)则已经在传导带内,因此电子不需要很大的能量即可找到空缺的量子态供其跳跃、造成电流传导。

固体材料内的电子能量分布遵循费米-狄拉克分布(Fermi-Dirac Distribution)。在绝对零度时,材料内电子的最高能量即为费米能阶,当温度高于绝对零度时,费米能阶为所有能阶中,被电子占据机率等于0.5的能阶。半导体材料内电子能量分布为温度的函数也使其导电特性受到温度很大的影响,当温度很低时,可以跳到传导带的电子较少,因此导电性也会变得较差。

[编辑]能量-动量色散

上述关于能带结构的内容为了简化,因此跳过了一个重要的现象,称为“能量的色散”(dispersion of energy)。同一个能带内之所以会有不同能量的量子态,原因是能带的电

子具有不同波向量(wave vector),或是k-向量。在量子力学中,k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-k relationship)。

硅的能带结构。对于间接能隙半导体而言,电子从传导带落至价带时,能量的释放牵涉到动量守衡,故大部分以声子的形式释放能量,发光效率不高。

能量-动量色散关系式能决定电子或电洞的“等效质量”(effective mass),以m*代表,公式如下:

等效质量可视为联系量子力学与古典力学的一个参数。这个参数对于半导体材料而言十分重要,例如它和电子或电洞的“迁移率”(electrons or holes mobility)有高度关联。电子或电洞的迁移率对于半导体元件的载子传输是相当基本的参数。

电子和电洞的等效质量不相等,这也造成了两者的迁移率不同,进而让N-通道和P-通道的MOSFET导电性不同。

砷化镓的能带结构。对于直接能隙半导体而言,电子从传导带落至价带时,能量的释放不必牵涉到动量守衡,故全部以光子的形式释放能量。

当离子化的辐射能量落在半导体时,可能会让价带中的电子吸收到足够能量而跃迁至传导带,并在价带中产生一个电洞,这种过程叫做“电子-电洞对的产生”(generation of electron-hole pair)。而其他够大的能量,如热能,也可以同样产生出电子-电洞对。

电子-电洞对则会经由复合(recombination)的过程而被消灭。根据能量守恒的观念,在传导带中的电子必须回到价带,将所得到的能量释放出来。能量释放的形式包括热能或辐射能,而这两种能量量子化后的表征分别是声子(phonon)以及光子(photon)。

对于处在稳态(steady state)的半导体而言,电子-电洞对的产生与复合速率是相等的。而在一个已给定的温度下,电子-电洞对的数量可由量子统计求得。量子力学处理此类问题时必须同时遵守能量以及动量守恒。

[编辑]半导体的掺杂

更多资料:掺杂(半导体)

半导体之所以能广泛应用在今日的数位世界中,凭借的就是其能借由在其晶格中植入杂质改变其电性,这个过程称之为掺杂(doping)。掺杂进入本质半导体(intrinsic semiconductor)的杂质浓度与极性皆会对半导体的导电特性产生很大的影响。而掺杂过的半导体则称为外质半导体(extrinsic semiconductor)。

[编辑]掺杂物

哪种材料适合作为某种半导体材料的掺杂物(dopant)需视两者的原子特性而定。一般而言,掺杂物依照其带给被掺杂材料的电荷正负被区分为施体(donor)与受体(acceptor)。施体原子带来的价电子(valence electrons)大多会与被掺杂的材料原子产生共价键,进而被束缚。而没有和被掺杂材料原子产生共价键的电子则会被施体原子微弱地束缚住,这个电子又称为施体电子。和本质半导体的价电子比起来,施体电子跃迁至传导带所需的能量较低,比较容易在半导体材料的晶格中移动,产生电流。虽然施体电子获得能量会跃迁至传导带,但并不会和本质半导体一样留下一个电洞,施体原子在失去了电子后只会固定在半导体材料的晶格中。因此这种因为掺杂而获得多余电子提供传导的半导体称为n型半导体(n-type semiconductor),n代表带负电荷的电子。

和施体相对的,受体原子进入半导体晶格后,因为其价电子数目比半导体原子的价电子数量少,等效上会带来一个的空位,这个多出的空位即可视为电洞。受体掺杂后的半导体称为p 型半导体(p-type semiconductor),p代表带正电荷的电洞。

以一个硅的本质半导体来说明掺杂的影响。硅有四个价电子,常用于硅的掺杂物有三价与五价的元素。当只有三个价电子的三价元素如硼(boron)掺杂至硅半导体中时,硼扮演的即是受体的角色,掺杂了硼的硅半导体就是p型半导体。反过来说,如果五价元素如磷(phosphorus)掺杂至硅半导体时,磷扮演施体的角色,掺杂磷的硅半导体成为n型半导体。

一个半导体材料有可能先后掺杂施体与受体,而如何决定此外质半导体为n型或p型必须视掺杂后的半导体中,受体带来的电洞浓度较高或是施体带来的电子浓度较高,亦即何者为此外质半导体的“多数载子”(majority carrier)。和多数载子相对的是少数载子(minority carrier)。对于半导体元件的操作原理分析而言,少数载子在半导体中的行为有着非常重要的地位。

[编辑]载子浓度

掺杂物浓度对于半导体最直接的影响在于其载子浓度。在热平衡的状态下,一个未经掺杂的本质半导体,电子与电洞的浓度相等,如下列公式所示:

n = p = n i

掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n接面(p-n junction)的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n接面后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的传导带或价带都会被弯曲以配合接面处的能带差异。

上述的效应可以用能带图(band diagram)来解释,如右图。在能带图里横轴代表位置,纵轴则是能量。图中也有费米能阶,半导体的本质费米能阶(intrinsic Fermi level)通常以E i来表示。在解释半导体元件的行为时,能带图是非常有用的工具。

[编辑]半导体材料的制造

为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位(dislocation)、双晶面(twins),或是堆栈错误(stacking fault)都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。

目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程(Czochralski process)。这种制程将一个单晶的晶种(seed)放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。

[编辑]应用

半导体器件可以通过结构和材料上的设计达到控制电流传输的目的,并以此为基础构建各种处理不同信号的电路。这是半导体在当前电子技术中广泛应用的原因

Contents

[hide ]

? 1 Explaining semiconductor energy bands ? 2 Energy bands and electrical conduction ? 3 Holes: electron absence as a charge carrier ?

4 Energy –momentum dispersion ?

5 Carrier generation and recombination ?

6 Semi-insulators ?

7 Doping o 7.1 Dopants o 7.2 Carrier concentration o 7.3 Effect on band structure ?

8 Preparation of semiconductor materials ?

9 See also ? 10 References ? 11 External links

[edit ] Explaining semiconductor energy bands

There are three popular ways to classify the electronic structure of a

crystal. ? Band structure

atoms - crystal - vacuum

In a single H-atom an electron resides in well known Putting two atoms together leads to delocalized orbits across two atoms, yielding a

This can be continued with more atoms. Note: This picture shows a metal, not an actual

Continuing to

add creates a crystal, which

may then be cut into a tape and fused together at the ends to allow circular For this

regular solid the band structure can be calculated

orbits. Note

that the

orbits are

called s,p,d

in order of

increasing

circular

current. covalent bond . Due to the Pauli exclusion principle , every state can contain only one

electron. semiconductor . currents. or measured.

Integrating over the k axis gives the bands of a semiconductor showing a full valence band and an empty conduction band. Generally stopping at the vacuum level is undesirable, because some people want to

calculate: photoemission

, inverse

photoemission

After the band structure is determined states can be combined to generate wave packets . As this is analogous to wave packages in free space, the results are similar.

An alternative

description , which does not really appreciate the strong Coulomb interaction, shoots free electrons into the crystal and looks at the scattering.

A third

alternative

description

uses strongly localized

unpaired

electrons in

chemical

bonds, which

looks almost

like a Mott

insulator .

[edit ] Energy bands and el ectrical conduction

Like in other solids, the electrons in semiconductors can have energies only within certain bands (ie. ranges of levels of energy) between the energy of the ground state, corresponding to electrons tightly bound to

the atomic nuclei of the material, and the free electron energy, which is the energy required for an electron to escape entirely from the material. The energy bands each correspond to a large number of discrete quantum states of the electrons, and most of the states with low energy (closer to the nucleus) are full, up to a particular band called the valence band. Semiconductors and insulators are distinguished from metals because the valence band in the semiconductor materials is nearly filled under usual operating conditions, thus causing more electrons to be available in the "conduction band," which is the band immediately above the valence band.

The ease with which electrons in a semiconductor can be excited from the valence band to the conduction band depends on the band gap between the bands, and it is the size of this energy bandgap that serves as an arbitrary dividing line (roughly 4 eV) between semiconductors and insulators.

In the picture of covalent bonds, an electron moves by hopping to a neighboring bond. Because of the Pauli exclusion principle it has to be lifted into the higher anti-bonding state of that bond. In the picture of delocalized states, for example in one dimension - that is in a nanowire, for every energy there is a state with electrons flowing in one direction and one state for the electrons flowing in the other. For a net current to flow some more states for one direction than for the other direction have to be occupied and for this energy is needed. For a metal this can be a very small energy while in the semiconductor the next higher states lie above the band gap. Often this is stated as: full bands do not contribute to the electrical conductivity. However, as the temperature of a semiconductor rises above absolute zero, there is more energy in the semiconductor to spend on lattice vibration and — more importantly for us — on lifting some electrons into an energy states of the conduction band. The current-carrying electrons in the conduction band are known as "free electrons", although they are often simply called "electrons" if context allows this usage to be clear.

Electrons excited to the conduction band also leave behind electron holes, or unoccupied states in the valence band. Both the conduction band electrons and the valence band holes contribute to electrical conductivity. The holes themselves don't actually move, but a neighboring electron can move to fill the hole, leaving a hole at the place it has just come from, and in this way the holes appear to move, and the holes behave as if they were actual positively charged particles.

One covalent bond between neighboring atoms in the solid is ten times stronger than the binding of the single electron to the atom, so freeing the electron does not imply destruction of the crystal structure.

[edit] Holes: electron absence as a charge carrier

The motion of holes, which was introduced for semiconductors, can also be applied to metals, where the Fermi level lies within the conduction band. With most metals the Hall effect reveals electrons to be the charge carriers, but some metals have a mostly filled conduction band, and the Hall effect reveals positive charge carriers, which are not the ion-cores, but holes. Contrast this to some conductors like solutions of salts, or plasma. In the case of a metal, only a small amount of energy is needed for the electrons to find other unoccupied states to move into, and hence for current to flow. Sometimes even in this case it may be said that a hole was left behind, to explain why the electron does not fall back to lower energies: It cannot find a hole. In the end in both materials electron-phonon scattering and defects are the dominant causes for resistance.

Fermi-Dirac distribution. States with energy ε below the Fermi energy, here μ, have higher probability n to be occupied, and those above are less likely to be occupied. Smearing of the distribution increases with temperature.

The energy distribution of the electrons determines which of the states are filled and which are empty. This distribution is described by Fermi-Dirac statistics. The distribution is characterized by the temperature of the electrons, and the Fermi energy or Fermi level. Under absolute zero conditions the Fermi energy can be thought of as the energy

up to which available electron states are occupied. At higher temperatures, the Fermi energy is the energy at which the probability of a state being occupied has fallen to 0.5.

The dependence of the electron energy distribution on temperature also explains why the conductivity of a semiconductor has a strong temperature dependency, as a semiconductor operating at lower temperatures will have fewer available free electrons and holes able to do the work.

[edit] Energy–momentum dispersion

In the preceding description an important fact is ignored for the sake of simplicity: the dispersion of the energy. The reason that the energies of the states are broadened into a band is that the energy depends on the value of the wave vector, or k-vector, of the electron. The k-vector, in quantum mechanics, is the representation of the momentum of a particle.

The dispersion relationship determines the effective mass, m*, of electrons or holes in the semiconductor, according to the formula:

[edit] Carrier generation and recombination

For more details on this topic, see Carrier generation and recombination.

When ionizing radiation strikes a semiconductor, it may excite an electron out of its energy level and consequently leave a hole. This process is known as electron–hole pair generation. Electron-hole pairs are constantly generated from thermal energy as well, in the absence of any external energy source.

Electron-hole pairs are also apt to recombine. Conservation of energy demands that these recombination events, in which an electron loses an amount of energy larger than the band gap, be accompanied by the emission of thermal energy (in the form of phonons) or radiation (in the form of photons).

In some states, the generation and recombination of electron–hole pairs are in equipoise. The number of electron-hole pairs in the steady state at a given temperature is determined by quantum statistical mechanics. The precise quantum mechanical mechanisms of generation and recombination are governed by conservation of energy and conservation of momentum.

As the probability that electrons and holes meet together is proportional to the product of their amounts, the product is in steady state nearly constant at a given temperature, providing that there is no significant electric field (which might "flush" carriers of both types, or move them from neighbour regions containing more of them to meet together) or externally driven pair generation. The product is a function of the temperature, as the probability of getting enough thermal energy to produce a pair increases with temperature, being approximately exp(?E

G / kT), where k is Boltzmann's constant, T is absolute temperature and E

G is band gap.

The probability of meeting is increased by carrier traps – impurities or dislocations which can trap an electron or hole and hold it until a pair is completed. Such carrier traps are sometimes purposely added to reduce the time needed to reach the steady state.

[edit] Semi-insulators

Some materials are classified as semi-insulators. These have electrical conductivity nearer to that of electrical insulators. Semi-insulators

find niche applications in micro-electronics, such as substrates for HEMT. An example of a common semi-insulator is gallium arsenide.[3]

[edit] Doping

For more details on this topic, see Doping (semiconductor).

The property of semiconductors that makes them most useful for constructing electronic devices is that their conductivity may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. Doped semiconductors are often referred to as extrinsic. By adding impurity to pure semiconductors, the electrical conductivity may be varied not only by the number of impurity atoms but also, by the type of impurity atom and the changes may be thousand folds and million folds. For example, 1 cm3 of a metal or semiconductor specimen has a number of atoms on the order of 1022. Since every atom in metal donates at least one free electron for conduction in metal, 1 cm3of metal contains free electrons on the order of 1022. At the temperature close to 20 °C , 1 cm3 of pure germanium contains about 4.2×1022atoms and 2.5×1013free electrons and 2.5×1013 holes (empty spaces in crystal lattice having positive charge) The addition of 0.001% of arsenic (an impurity) donates an extra 1017free electrons in the same volume and the electrical conductivity increases about 10,000 times."

[edit] Dopants

The materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron acceptors or donors. A donor atom that activates (that is, becomes incorporated into the crystal lattice) donates weakly-bound valence electrons to the material, creating excess negative charge carriers. These weakly-bound electrons can move about in the crystal lattice relatively freely and can facilitate conduction in the presence of an electric field. (The donor atoms introduce some states under, but very close to the conduction band edge. Electrons at these states can be easily excited to the conduction band, becoming free electrons, at room temperature.) Conversely, an activated acceptor produces a hole. Semiconductors doped with donor impurities are called n-type, while those doped with acceptor impurities are known as p-type. The n and p type designations indicate which charge carrier acts as the material's

majority carrier. The opposite carrier is called the minority carrier, which exists due to thermal excitation at a much lower concentration compared to the majority carrier.

For example, the pure semiconductor silicon has four valence electrons. In silicon, the most common dopants are IUPAC group 13 (commonly known as group III) and group 15 (commonly known as group V) elements. Group 13 elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. Group 15 elements have five valence electrons, which allows them to act as a donor. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in an n-type material.

[edit] Carrier concentration

The concentration of dopant introduced to an intrinsic semiconductor determines its concentration and indirectly affects many of its electrical properties. The most important factor that doping directly affects is the material's carrier concentration. In an intrinsic semiconductor under thermal equilibrium, the concentration of electrons and holes is equivalent. That is,

n = p = n i

If we have a non-intrinsic semiconductor in thermal equilibrium the relation becomes:

n0·p0 = (n i)2

Where n0is the concentration of conducting electrons, p0is the electron hole concentration, and n i is the material's intrinsic carrier concentration. Intrinsic carrier concentration varies between materials and is dependent on temperature. Silicon's n i, for example, is roughly 1.0×1010 cm?3 at 300 kelvin (room temperature).

In general, an increase in doping concentration affords an increase in conductivity due to the higher concentration of carriers available for conduction. Degenerately (very highly) doped semiconductors have conductivity levels comparable to metals and are often used in modern integrated circuits as a replacement for metal. Often superscript plus and minus symbols are used to denote relative doping concentration in semiconductors. For example, n+ denotes an n-type semiconductor with a high, often degenerate, doping concentration. Similarly, p- would indicate a very lightly doped p-type material. It is useful to note that

even degenerate levels of doping imply low concentrations of impurities with respect to the base semiconductor. In crystalline intrinsic silicon, there are approximately 5×1022atoms/cm3. Doping concentration for silicon semiconductors may range anywhere from 1013cm?3to 1018cm?3. Doping concentration above about 1018 cm?3 is considered degenerate at room temperature. Degenerately doped silicon contains a proportion of impurity to silicon in the order of parts per thousand. This proportion may be reduced to parts per billion in very lightly doped silicon. Typical concentration values fall somewhere in this range and are tailored to produce the desired properties in the device that the semiconductor is intended for.

[edit] Effect on band structure

Band diagram of a p+n junction. The band bending is a result of the positioning of the Fermi levels in the p+ and n sides.

Doping a semiconductor crystal introduces allowed energy states within the band gap but very close to the energy band that corresponds to the dopant type. In other words, donor impurities create states near the conduction band while acceptors create states near the valence band. The gap between these energy states and the nearest energy band is usually referred to as dopant-site bonding energy or E B and is relatively small. For example, the E B for boron in silicon bulk is 0.045 eV, compared with silicon's band gap of about 1.12 eV. Because E B is so small, it takes little energy to ionize the dopant atoms and create free carriers in the conduction or valence bands. Usually the thermal energy available at room temperature is sufficient to ionize most of the dopant.

Dopants also have the important effect of shifting the material's Fermi level towards the energy band that corresponds with the dopant with the greatest concentration. Since the Fermi level must remain constant in a system in thermodynamic equilibrium, stacking layers of materials with different properties leads to many useful electrical properties. For example, the p-n junction's properties are due to the energy band bending that happens as a result of lining up the Fermi levels in contacting regions of p-type and n-type material.

This effect is shown in a band diagram. The band diagram typically indicates the variation in the valence band and conduction band edges versus some spatial dimension, often denoted x. The Fermi energy is also usually indicated in the diagram. Sometimes the intrinsic Fermi energy, E

, which is the Fermi level in the absence of doping, is shown. These i

diagrams are useful in explaining the operation of many kinds of semiconductor devices.

[edit] Preparation of semiconductor materials

Semiconductors with predictable, reliable electronic properties are necessary for mass production. The level of chemical purity needed is extremely high because the presence of impurities even in very small proportions can have large effects on the properties of the material. A high degree of crystalline perfection is also required, since faults in crystal structure (such as dislocations, twins, and stacking faults) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal ingots between 100 mm and 300 mm (4-12 inches) in diameter which are grown as cylinders and sliced into wafers.

Because of the required level of chemical purity and the perfection of the crystal structure which are needed to make semiconductor devices, special methods have been developed to produce the initial semiconductor material. A technique for achieving high purity includes growing the crystal using the Czochralski process. An additional step that can be used to further increase purity is known as zone refining. In zone refining, part of a solid crystal is melted. The impurities tend to concentrate in the melted region, while the desired material recrystalizes leaving the solid material more pure and with fewer crystalline faults.

In manufacturing semiconductor devices involving heterojunctions between different semiconductor materials, the lattice constant, which is the length of the repeating element of the crystal structure, is important for determining the compatibility of materials.

[edit] See also

半导体材料发展情况

实用标准文案 1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

半导体学科(精)

半导体学科 2001年度半导体学科共收到面上申请项目200项,其中,半导体材料39项(2000年57项),微电子学57项(2000年40项),半导体光电子学48项(2000年41项),半导体其他器件24项(2000年30项),半导体物理31项(2000年27项),半导体理化分析1项。微电子学的申请项目数较去年有较大增长,这与半导体学科“十五”优先资助领域的导向是一致的,其中很多项目都与SOC 相关;半导体材料的项目数虽有所减少,但考虑到相关领域国家重大基础研究项目(973)和自然科学基金委重大研究计划实施的影响,还是合理的。半导体光电子学近年来一直比较活跃,尽管也有相关的973项目和自然科学基金委重大研究计划项目分流,2001年的申请项目数仍较2000年有所增加。综合考虑,2001年半导体学科领域的基础研究的基金申请状况好于2000年。另外,由于在该领域内,我国落后先进国家较多,积累较少,基础较差,每年真正具有源头创新和突出前沿性的申请项目较少,因此,如何组织、提出更多创新性强的好项目,如何处理源头创新和跟踪性创新、知识创新和技术创新的关系,便成为摆在我们面前的问题。 近年来,国家加大了对微电子领域的支持力度,随着政策的倾斜和资金的不断投入,相信5年后相关产业会有长足的发展。为使这些投入得到相应回报,增强我国微电子产业可持续发展能力,使其在十几年后具备相当的自主发展能力,我们必须对相关的基础研究进行稳定的支持,提供宽松的环境,使其不断地增加积累,增强创新能力,服务于国家目标。因此在“十五”期间,学科将会开拓其他渠道,或利用增量部分适度向微电子学倾斜,尤其是SOC。2001年申请项目中,微电子学方面申请项目数的增多,也体现了这种需求。 信息科学的不断发展,对半导体科学的研究提出了更高的要求,从一定意义上讲,微电子学的实验室水平已经进入纳米电子学范畴。而纳米电子学、光电子学、自旋电子学、分子电子学、生物电子学和量子信息学等领域的相关研究正在蓬勃开展,相关新材料、新器件的探索不断取得成果,半导体光子和光电子集成技术也不断发展。这些研究的不断深入、彼此之间的交叉融合以及与微电子学的交叉融合,将会不断推动半导体科学的发展,进而为信息科学的持续发展提供源动力。

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体材料

半导体 维基百科,自由的百科全书跳转到:导航, 搜索 汉漢▼ 显示↓

在纯硅中掺入少许的硼(最外层有三个电子),就反而少了一个电子,而形成一个电洞(hole),这样就形成P型半导体少了一个带负电荷的电子,可视为多了一个正电荷)。 目录 [隐藏] ?1概观 ?2半导体的能带结构 o 2.1能量-动量色散 ?3载子的产生与复合 ?4半导体的掺杂 o 4.1掺杂物 o 4.2载子浓度 o 4.3掺杂对半导体能带结构的影响 ?5半导体材料的制造 ?6应用 ?7延伸阅读 o7.1材料 o7.2物理学 o7.3工业 ?8参考资料 ?9相关条目 ?10外部链接 o10.1半导体行业网站

[

Diamantstruktur Diamantstruktur Zinkblendestruktur (Elementarzelle)

(Pauli exclusion principle),同一个量子态内不能有两个电子,已经被填满的能带无法导电,因为该能带内的所有量子态都已经被电子占据,所以半导体材料的传导带不会被电子占满,让电子可以在其中的量子态间移动。 费米-狄拉克分布。 在价带内的电子获得能量后便可跃升到传导带,而这便会在价带内留下一个空缺,也就是所谓的“电洞”(electron holes)。传导带中的电子和价带中的电洞都对电流传递有贡献,电洞本身不会移动,但是其它电子可以移动到这个电洞上面,等效于电洞本身往反方向移动。相对于带负电的电子,电洞的电性为正电。 由化学键结的观点来看,获得足够能量、进入传导带的电子也等于有足够能量可以打破电子与固体原子间的共价键(covalent bonds),而变成自由电子,进而对电流传导做出贡献。 半导体和导体之间有个显著的不同是半导体的电流传导同时来自电流与电洞的贡献,而导体的费米能阶(Fermi level)则已经在传导带内,因此电子不需要很大的能量即可找到空缺的量子态供其跳跃、造成电流传导。 固体材料内的电子能量分布遵循费米-狄拉克分布(Fermi-Dirac Distribution)。在绝对零度时,材料内电子的最高能量即为费米能阶,当温度高于绝对零度时,费米能阶为所有能阶中,被电子占据机率等于0.5的能阶。半导体材料内电子能量分布为温度的函数也使其导电特性受到温度很大的影响,当温度很低时,可以跳到传导带的电子较少,因此导电性也会变得较差。 [编辑]能量-动量色散 上述关于能带结构的内容为了简化,因此跳过了一个重要的现象,称为“能量的色散”(dispersion of energy)。同一个能带内之所以会有不同能量的量子态,原因是能带的电

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体材料(纯题目)

半导体材料 码字较快,题目有问题自行修改 一、绪论 1、如何区分半导体、金属和绝缘体 2、半导体材料的五大特征,每个特征的基本含义 负电阻温度系数:随着温度的升高,电阻值下降。 光电导效应:指由辐射引起被照射材料电导率改变的一种物理现象。 整流效应:某些硫化物的电导 3、半导体有哪些主要的分类方式 二、半导体材料基本特性 1、本征半导体、P型、N型半导体 2、PN结、阻挡层、空间电荷区、耗尽层 Pn结:通过扩散作用,将p型和n型半导体制作在一块半导体基片上,交界面产生的空间电荷区就是pn结空间电荷区:在pn结中,,由于电子的扩散运动和内电厂导致的漂移运动,使pn结中间部位产生的一个很薄的电荷区 3、价带、导带、禁带、允带、满带 4、多子、少子 5、直接跃迁与间接跃迁 直接跃迁:价带的电子跃迁到导带时,只要求能量的改变,而电子的准动量不变化间接跃迁:价带的电子跃迁到导带时,不仅要求电子能量改变,准动量也要变化 6、电导率、迁移率 7、霍尔效应 8、与光作用的形式 三、元素半导体 1、作为半导体,列举硅的两个主要应用领域 2、硅和锗(zhe)是直接带隙还是间接带隙 3、如何得到N型和P型的硅 4、根据结晶特点,硅可以分为哪几类 5、最常用的高纯化学提纯方法是什么,及其工艺流程 6、硅物理提纯的原理是什么。(其中涉及的各种概念,如结晶驱动力、分凝系数、固溶体、正常固溶) 7、多晶硅如何制备

8、单晶硅生长方法有哪些,其中最主流的方法是什么 9、与硅相比,锗主要有哪些特点 10、锗的应用 四、化合物半导体 1、Ⅲ-Ⅴ族化合物中,被研究最多的是什么 GaAs GaP 2、宽带隙半导体主要有哪几种化合物 ZnO Sic GaN AlN 3、砷化镓晶体结构、物理特性、优势及应用 闪锌矿结构,熔点1238度密度5.32g/cm3 ,工作效率和速度快具有更宽的温度特性具有良好的抗辐射能力, 应用:发光二极管无线通讯 4、ZnO,SiC,GaN单晶生长中各自难度是什么 ZnO熔点高,有强烈的极性析晶特性,高温易挥发。SiC没有熔点,在1800度升华为气态,C在Si熔体的溶解度非常小。GaN熔点高达2700度,但在1000度会分解用提拉法和熔盐法很难生长。 5、ZnO半导体最重要的特性是什么 能带隙和激子束缚能较大,带边发射在紫外区,非常适合作为白光LED的激发光源材料 6、ZnO的生长方法有哪些 助熔剂法水热法气相传输法坩埚下降法 7、SiC和GaN各自的特性,举例说明其应用 SiC禁带宽度大,高临界电厂,高热导率,高电子迁移速度,抗辐射,热稳性定好应用:高频率功率器件,大功率器件,高温器件GaN 高频特性,高温特性,电子漂移饱和速度高介电常数小,热导性好,耐酸耐碱难腐蚀应用:GaN基蓝光LED GaN基蓝光LD,紫外探测器 8、SiC和GaN各采用什么方法生长 SiC:PVT法GaN:氢化物气相外延法,高压溶液法,液相助熔剂法 五、太阳能电池制备工艺简介 1、太阳能电池的工作原理是什么 晶片收光后,pn结中N型半导体的空穴往P型移动,而P型中的电子往N型区移动,从而形成从N型区到P 型区的电流,从而形成电势差,形成了电流 2、太阳能电池的基本制备工艺流程 去除损伤层,表面绒面化,发射区扩散,边缘结刻蚀,PECVD沉积SiN,丝网印刷正背面电极浆料,共烧形成金属接触,电池片测试 3、画出单晶硅太阳能电池结构示意图 4、为什么要进行表面绒化处理 绒面具有受光面积大,反射率低的特点,从而提高电池的光电转换效率 5、减反膜的成分是什么,主要起什么作用 氮化硅,具有较高的折射率,能起到较好的减反射效果

半导体材料硅基本性质

半导体材料硅的基本性质 一.半导体材料 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂

质称为受主。如硼、铝就是硅的受主。 图(a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图所示。 二.硅的基本性质 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。 性质符号单位硅(Si) 原子序数Z 14 原子量M 原子密度个/cm3 ×1022 晶体结构金刚石型 晶格常数 a ? 熔点Tm ℃1420 密度(固/液) ρg/ cm3 介电常数ε0 个/ cm3×1010本征载流子浓度n i 本征电阻率ρi Ω·cm ×105

半导体材料的分类及应用

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具, 极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器, 无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表, 在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定, 易发挥; 灰Sn 在室温下转变为白Sn, 已金属; B、C 的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。 表1 具有半导体性质的元素

周期ⅢA ⅣA ⅤA ⅥA ⅦA B C S i P S Ge As S e S n Sb Te I Se 曾广泛地用作光电池和整流器, 晶体管发明后,Ge 迅速地兴起, 但很快又被性能更好的Si 所取代。现在Se 在非晶半导体器件领域还保留一席之地, Ge 在若干种分立元件( 低压、低频、中功率晶体管以及光电探测器等) 中还被应用, 而Si 则一直是半导体工作的主导材料, 这种情况预计到下个世纪初也不会改变。Si 能成为主角的原因是: 含量极其丰富( 占地壳的27%) , 提纯与结晶方便; 禁带宽度1. 12eV, 比Ge 的0. 66eV 大, 因而Si 器件工作温度高; 更重要的是SiO2 膜的纯化和掩蔽作用, 纯化作用使器件的稳定性与可靠性大为提高,掩蔽作用使器件的制和实现了平面工艺, 从而实现了大规模自动化的工业生产和集成化, 使半导体分立器件和集成电路以其低廉的价格和卓越的性能迅速取代了电子管, 微电子学取代了真空电子学, 微电子工程成为当代产业中的一支生力军。据报导, 1995 年世界半导体器件销售额为1464 亿美元, 硅片销费量约为30. 0 亿平方英寸, 1996 年市场规模为1851 亿美元, 增长了26. 4%, 消费硅片则达33. 46 亿平方英寸。 硅材料分为多晶硅, 单晶硅和非晶硅。单晶硅分为直拉单晶硅( CZ) 、区熔单晶硅( FZ) 和外延单晶硅片( EPI) 。其中, CZ 单晶

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

Ⅲ族氮化物半导体材料

Ⅲ族氮化物半导体材料 Zhe Chuan Feng Taiwan University ,ChinaⅢ-Nitride SemiconductorMaterials2006 ,428pp.Hardcover USDl20.00ISBN 1-86094-636-4Imperial College Press Ⅲ族氮化物半导体材料(Al ,In,Ga)N,(包括GaN、InN 、AlN 、InGaN 、AlGaN 和AIlnGaN 等)是性能优良、适宜制作 半导体光电子和电子器件的材料。用这种材料研究发展的高 功率、高亮度的蓝-绿-白发光管和蓝光激光器以及其他电子 器件和光电子器件近几年来均有很大突破,有的已形成了产 业。预期在本世纪内氮化物基的发光管有可能置换传统的钨 丝灯,这在照明领域是一次革命,将会极大地影响人们的生 活。 此书共有12 章,每章作者均是该领域的专家。全书内 容包括了Ⅲ-N 科学和技术的基础和各个重要的方面,主要内容有:1 Ⅲ族氮化物材料的氢化物汽相外延; 2 Ⅲ族氮化物材料外延的平面MOVPE 技术;3 GaN 和相关材料外延 的紧耦合喷头MOCVD 技术;4 Ⅲ-N 材料的分子束外延; 5 非极性GaN 薄膜和异质结的生长和特性; 6 InN 的高压CVD 生长、适时和非原位持性; 7 对InN 新的认识;8

AlxGal-xN 合金(x=O-1) 的生长和光/电特性;9 MOCVD lnGaN/GaN 量子阱结构的光学研究;1O 掺SiInGaN/GaN 量子阱结构的簇状纳米结构和光学特性;11 Ⅲ族氮化物的微结构和纳米结构;12 稀释氮化物半导体研究的新进展。 此书介绍了Ⅲ族氮化物材料的一些重要性能和关键生 长技术,指出了21 世纪以来Ⅲ族氮化物半导体的最新进展 和还有待研究解决的问题。适合从事Ⅲ族氮化物领域的研 究、教学、工程技术人员以及研究生、大学生阅读和参考。 孔梅影,研究员 (中国科学院半导体研究所) Kong Meiying ,Professor (Institute of Semiconductors , the Chinese Academy of Sciences)

半导体材料的发展简史

半导体材料的发展简史 半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

半导体材料有哪些

半导体材料有哪些 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 什么是半导体材料_常见半导体材料有哪些 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。 硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~ 99.9999999%)的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种

半导体材料发展史

1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。 在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。 前言 自从有人类以来,已经过了上百万年的岁月。社会的进步可以用当时人类使用的器物来代表,从远古的石器时代、到铜器,再进步到铁器时代。现今,以硅为原料的电子元件产值,则超过了以钢为原料的产值,人类的历史因而正式进入了一个新的时代,也就是硅的时代。硅所代表的正是半导体元件,包括记忆元件、微处理机、逻辑元件、光电元件与侦测器等等在内,举凡电视、电话、电脑、电冰箱、汽车,这些半导体元件无时无刻都在为我们服务。 硅是地壳中最常见的元素,许多石头的主要成分都是二氧化硅,然而,经过数百道制程做出的积体电路,其价值可达上万美金;把石头变成硅晶片的过程是一项点石成金的成就,也是近代科学的奇蹟! 在日本,有人把半导体比喻为工业社会的稻米,是近代社会一日不可或缺的。在国防上,惟有扎实的电子工业基础,才有强大的国防能力,1991年的波斯湾战争中,美国已经把新一代电子武器发挥得淋漓尽致。从1970年代以来,美国与日本间发生多次贸易摩擦,但最后在许多项目美国都妥协了,但是为了半导体,双方均不肯轻易让步,最后两国政府慎重其事地签订了协议,足证对此事的重视程度,这是因为半导体工业发展的成败,关系着国家的命脉,不可不慎。在台湾,半导体工业是新竹科学园区的主要支柱,半导体公司也是最赚钱的企业,台湾如果要成为明日的科技硅岛,半导体工业是我们必经的途径。 半导体的起源 在二十世纪的近代科学,特别是量子力学发展知道金属材料拥有良好的导电与导热特性,而

半导体材料 考试复习

(一)简述利用三氯氢硅氢还原法制备高纯硅的基本流程 答:1.通常把95%-99%纯度的硅称为粗硅或工业硅。它是用石英砂与焦炭在碳电极的电弧炉中还原制得的,其反应为SiO2+C—→Si+CO2,这样制得的工业硅纯度约为97% 2.利用西门子法对工业硅进一步提纯,具体步骤如下: a.SiHCl3的制备。工业硅经过酸洗、粉碎,将符合粒度要求的硅粉送入干燥炉内,经热氮气流干燥后,将硅粉送入沸腾炉,并从炉底部通入适量的干燥HCl,进行 SiHCl3的合成,其反应为Si+3HC l====SiHCl3+H2+309.2KJ/mol 。除了合成产生 SiHCl3外,还有可能产生一定量的SiCl4和SiH2Cl2,以及其他多种杂质的氯化物。 b.SiHCl3的提纯。利用精馏提纯法可以把SiHCl3的纯度提到9个‘9’以上。精馏提纯是利用混合液中各组分的沸点不同来达到分离各组分的目的,经过多次 交换来达到几乎完全分离各组分的提纯方法。 c.SiHCl3的还原。精馏所得的纯SiHCl3与高纯H2按一定比例送入还原炉中,在 1100o C左右温度下发生还原反应,制得高纯多晶硅SiHCl3+H2——→Si+3HCl 3.经过上述过程制得的高纯多晶硅的纯度在5个‘9’左右,通常用其残留的B、P含量 表示,称为基硼、基磷量。 (二)GeCl4法制备高纯锗的基本流程 答:1.采用水法将锗矿石进行富集,得到含锗为3-5%的锗精矿。 2.采用GeCl4法对锗精矿进行提纯: a.GeCl4的制备用盐酸与锗精矿作用制得GeCl4,GeO2+4HCl=== GeCl4+2H2O b.GeCl4的提纯采用萃取提纯法,利用其他杂质的氯化物与GeCl4在盐酸中的溶 解度的差异,萃取分离。GeCl4在较浓的盐酸中几乎不溶解,而其他杂质的氯化物的溶解度 达200-300g/L。 c.GeCl4的水解提纯后的GeCl4通过水解,制取GeO2,其反应式为GeCl4+(2+n)H2O====GeO2·n H2O +4HCl+Q. 此反应式可逆的,所以,水解时加水量要控制在GeCl4: H2O=1:6.5 d.GeO2氢还原上面制得的纯GeO2用氢气还原制取高纯锗,其反应为GeO2+2H2====Ge+2H2O。必须注意防止中间产物GeO在700o C以上因显著挥发而损失,所 以还原温度一般控制在650o C左右。GeO2完全被还原的标志是尾气中无水雾。 3.化学提纯后的锗一般将温度升至1000—1100o C将锗粉熔化铸成锗锭。 (三)名词解释:平衡分凝系数 答:杂质在固液两相间浓度存在差异,在温度为T L ,固液两相平衡时,固相A中杂 质B(溶质)的浓度Cs和液相中的杂质浓度C L通常是不同的,由此引入一个物理量,即 K0=Cs/C L式中K0为杂质B在材料A中的平衡系数。一般情况下,K0<1,杂质在液相中浓度高,固相中浓度低。 (四)简述区熔提纯的基本原理; 答:(1)区熔提纯就是利用分凝现象将物料局部熔化形成狭窄的熔区,并令其沿锭长从 一段缓慢地移动到另一端,重复多次使杂质尽量被集中在尾部或者头部,进而达到使中部材 料被提纯的技术。 (2)由于存在分凝现象,正常凝固后锭条中的杂质分布不再是均匀的,会出现三种情况:(a)对于K<1的杂质,其浓度越接近尾部越大,向尾部集中; (b)对于K>1的杂质,其浓度越接近头部越大,向头部集中; (c)对于K≈1的杂质,基本保持原有的均匀分布方式,区熔提纯效果不大。 (3)在实际区熔提纯材料时,除了考虑材料提纯的程度,同时还必须看它的经济效益,即 生产效率,费用等。为此应该了解哪些因素影响提纯效果,怎样处理好他们之间的矛盾关系。(五)名词解释:NTD技术 答:①NTD技术就是中子嬗变掺杂技术, ②通常硅是由Si28(占92.21%),Si29(占4.7%) Si30(占3.09%)三种同位素组成。将高纯区 熔硅单晶放入原子反应堆中进行中子辐射,使Si30激活嬗变为P31起施主作用进行 掺杂,其反应:Si30+中子—→P31+βˉ ③受辐照的硅单晶取出后,需要在800-850o C下退火1h左右,以消除辐照造成的损伤。 此外,还应存放一段时间(约2个月)以降低放射性。

相关文档
最新文档