仿生机器人浅谈

仿生机器人浅谈
仿生机器人浅谈

仿生机器人浅谈

02320902 20090440 于苏显众所周知,自然界中的生物以其多彩多姿的形态!灵巧机敏的动作活跃于自然界,这中其人类灵巧的双手和可以直立行走的双足是最具灵活特性的。而非人生物的许多机能又是人类无法比拟的,如柔软的象鼻子,可以在任意管道中爬行的蛇,小巧的昆虫等。因此,自然界生物的运动行为和某些机能已成为机器人学者进行机器人设计!实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。

在人类发展的历史长河中,对仿生机械(器)的研究,都是多方面的,也就是既要发展模仿人的机器人,又要发展模仿其他生物的机械(器)。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。几年前,科技工作者为圣地亚哥市动物园制造电子机器鸟,它能模仿母兀鹰,准时给小兀鹰喂食;日本和俄罗斯制造了一种电子机器蟹,能进行深海控测,采集岩样,捕捉海底生物,进行海下电焊等作业。美国研制出一条名叫查理的机器金枪鱼,长1.32米,由2843个零件组成。通过摆动躯体和尾巴,能像真的鱼一样游动,速度为7.2千米/小时。可以利用它在海下连续工作数个月,由它测绘海洋地图和检测水下污染,也可以用它来拍摄生物,因为它模仿金枪鱼惟妙惟肖。

仿生机器人主要分为仿人类肢体机器人和仿非人生物机器人。仿人类肢体又可以分为仿人手臂和双足。仿非人的主要分为宏型和微型。仿人手臂型主要是研

究其自由度和多自由度的关节型机器人操作臂!多指灵巧手及手臂和灵巧手的组合。仿人双足型主要是研究双足步行机器人机构。宏型仿非人生物机器人主要是研究多足步行机器人(四足,六足,八足),蛇形机器人、水下鱼形机器人等,其体积结构较大。微型仿非人生物机器人主要是研究各类昆虫型机器人,如仿尺蠖虫行进方式的爬行机器人、微型机器狗、蟋蟀微机器人、蟑螂微机器人、蝗虫微机器人等。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,采用绳索或人造肌肉驱动。

仿生式体系结构的思想原理:从本质上来讲,慎思式智能、反应式智能以及分布式智能,都是对生物控制逻辑和推理方式的一种借鉴和仿生,但由于客观条件的限制和需求目的的局限,它们都只是从某一个角度和方向对生物智能的一种片面的、局部的模仿。本文的仿生式体系结构就是以前述的生物控制逻辑和行为推理为基础,充分借鉴基于慎思式智能、反应式智能和分布式智能等三种体系结构思想的优点与不足之处,针对目前机器人特别是未知环境下工作的移动机器人在控制体系结构方面所存在的缺点和问题,提出一种具有适应行为与进化能力的新的控制思想与理念。

借鉴分布式智能的思想,在控制体系结构中引人社会式行为控制层;

借鉴生物的自适应性思想,在控制体系结构中实现本代内的由慎思式行为层到反射式行为层的学习;

借鉴生物的自进化性思想,在控制体系结构中实现多代间的由反射式行为层向本能式行为层的进化(或退化)。

所以,仿生式体系结构共有四个行为控制层组成,即本能式行为控制层、反

射式行为控制层、慎思式行为控制层和社会式行为控制层,它们并行接收来自感知层的外部和内部信息,各自做出逻辑判断和反应,发出控制信息到末端执行层,通过竞争和协调来调节自身并适应外部环境,从而按照目标完成工作任务。

下面简单举一些例子来说明。

1.模仿大象鼻子的机器人手臂

这是根据大象鼻子的特点设计出来的新型仿生机器处理系统--“仿生操作助手”。“仿生操作助手”由德国工程公司费斯托公司研制,它可以平稳地搬运重负载,原理在于它的每一节椎骨可以通过气囊的压缩和充气进行扩展和收缩。

2.模仿壁虎的粘性机器人

如果没有吸盘,机器人如何在垂直、光滑的物体(如玻璃)表面攀爬呢?而使用吸盘速度很慢,效率很低。美国斯坦福大学机械工程学教授马克-库特科斯基研制了一种“粘性机器人”,其设计灵感就源自壁虎足垫上的小刚毛。壁虎足垫上长有数以百万计的小刚毛,小刚毛还拥有细微的分叉尖端,它们可以与物体表面的分子结合,产生强大的粘附力。这种粘附力可以帮助壁虎自由地在垂直、光滑的物体表面攀爬。

3.机械蟑螂

科学家们发现,蟑螂在高速运动时,每次只有三条腿着地,一边两条,一边一条,循环反复,根据这个原理,仿生学家制造出机械蟑螂,它不仅每秒能够前进三米,而且平衡性非常好,能够适应各种恶劣环境,不远的将来,太空探索或排除地雷,就是它的用武之地。

4.机器梭子鱼

麻省理工学院的机器梭子鱼,是世界上第一个能够自由游动的机器鱼。它大部分是由玻璃纤维制成的,上覆一层钢丝网,最外面是一层合成弹力纤维。尾部由弹簧状的锥形玻璃纤维线圈制成,从而使这条机器梭子鱼既坚固又灵活。一台伺服电动机为这条机器鱼提供动力。

仿生机器人的主要研究问题包括以下五个方面:

1 建模问题

仿生机器人的运动具有高度的灵活性和适应性。其一般都是冗余度或超冗余度机器人,结构复杂,运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此,研究建模问题,实现机构的可控化是研究仿生机器人的关键问题之一。

2 控制优化问题

机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到整体大于组分之和,同时要研究高效优化的控制算法才能使系统具有实时处理能力。

3 信息融合问题

在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器。多传感器的信息融合技术是实现其具有一定智能的关键。信

息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境

的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。

4 机构设计问题

合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。

5 微传感和微驱动问题

微型仿生机器人有些已不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需

要解决一些工程上的问题,如动力源、驱动方式、传感集成控制以及同外界的通讯等。实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技

术。同时,在设计时必须考虑到尺寸效应、新材料、新、工艺等问题。

仿生机器人的发展趋势

一,随着先进制造技术的发展,工业机器人已从当初的上下料功能向高度柔性、高效率和精密装配功能转化。二,近年来,对移动机器人的研究到越来越多的重视,使机器人能够移动到固定式机器人无法达到的预定目标,完成设定的操作任务。包括步行机器人和爬行机器人等。仿生移动式机器人在工业、农业和国防上具有广泛的应用前景,它们能用于卫星探测、军事侦察、危险的废料处理以及农业生产中。三,向非制造业扩展是机器人发展的一个重要方向。在非制造业中的医疗、娱乐和社会福利等方面的仿生机器人有很好的发展前景:如用于外科

手术的多指手、仿生机器人玩具、老年人或卧床不起病人护理机器人和人工肢等。

自然界中生物体的多样性、复杂性和灵敏性是自然环境与亿万年时间磨砺的结果。人类在工程领域对生物的模仿或许在某个方面会超过生物体,但从总体上来说,在同一环境下,人类将只能逐步接近,而永远不能超越这些大自然的生灵。

仿生六足机器人中期报告

编号: 哈尔滨工业大学 大一年度项目中期检查报告 项目名称:仿生六足机器人 项目负责人:学号 联系电话:电子邮箱: 院系及专业:机电工程学院 指导教师:职称: 联系电话:电子邮箱: 院系及专业:机电工程学院 哈尔滨工业大学基础学部制表 填表日期:2014 年 6 月28 日

一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见 三、项目专家组意见

四、研究背景 1.研究现状 4.1国内研究现状 随着电子技术发展,计算机性能的提高,使多足步行机器人技术进入了基于计算机控制的发展阶段。其中有代表性的研究为1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE,图1所示,用于对南极的埃里伯斯火山进行了考察,其结构由2个独立的框架构成。这一阶段研究的重点在于机器人的运动机构的设计、机器人的步态生成与规划及传统的控制方法在机器人行走运动控制过程的应用。Boston Dynamics公司的Big Dog四足机器人用于为军队运输装备,其高3英尺,重165磅,可以以3.3英里的速度行进,其采用汽油动力。 图1 Adaptive Suspension Vehicle 图2 Odex1步行机器人 图3 MIT腿部实验室的四足和双足机器人图4 DANTE步行机器人 由于新的材料的发现、智能控制技术的发展、对步行机器人运动学、动力学高效建模方法的提出以及生物学知识的增长促使了步行机器人向模仿生物的方向发展。 4.2国外研究现状 我国步行机器人的研究开始较晚,真正开始是在上世纪80年代初。1980年,中国科学院长春光学精密机械研究所采用平行四边形和凸轮机构研制出一台八足螃蟹式步行机,主要用于海底探测

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

仿生机器人课程报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 仿生感知与先进机器人技术 课程报告(1) 报告题目:仿生机械的发展 院系:机电学院 班级: 姓名: 学号: 哈尔滨工业大学机电工程学院

仿生学及仿生机械学的由来 仿生学(Bionics)是模仿生物的特殊本领的一门科学。仿生学籍了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。1960年由美国的J.E.Steele 首先提出。 仿生学这个名词来源于希腊文“Bio”,意思是“生命”,字尾“nic”有“具有……的技术中利用这些原理,提供新的设计思想、工作原理和系统架构的技术科学。 仿生机械学是上世纪60年代初期出现的一门综合性的新兴边缘学科,它是生命科学与工程技术科学相互渗透、相互结合而形成的。包含着对生物现象进行力学研究,对生物的运动、动作进行工程分析,并把这些成果根据社会的要求付之实用化。 仿生学的研究方向 (1)生物材料力学和机械力学,是以骨或软组织(肌肉、皮肤等)作为对象,通过模型实验方法,测定其应力、变形特性,求出力的分布规律。还可根据骨骼、肌肉系统力学的研究,对骨和肌肉的相互作用等进行分析。另外,生物的形态研究也是一大热门。因为生物的形态经过亿万年的变化,往往已形成最佳结构,如人体骨骼系统具有最少材料、最大强度的构造形态,可以通过最优论的观点来学习模拟建造工程结构系统。 (2)生物流体力学,主要涉及生物的循环系统,关于血液动力学等的研究已有很长的历史,但仍有许许多多的问题尚未解决,特别是因为它的研究与心血管疾病关系十分密切,已成为一门倍受关注的学科。 (3)生物运动学,生物的运动十分复杂,因为它与骨骼和肌肉的力学现象、感觉反馈及中枢控制牵连在一起。虽然各种生物的运动或人体各种器官的运动测定与分析都是重要的基础研究,但在仿生机械学中,目前特别重视人体上肢运动及步行姿态的测定与分析,因为人体上肢运动机能非常复杂,而下肢运动分析对动力学研究十分典型。这对康复工程的研究也有很大的帮助。 (4)生物运动能量学,生物的形态是最优的,同样,节约能量消耗量也是生物的基本原理。从运动能量消耗最优性的特点对生物体的运动形态、结构和功能等进行分析、研究,特别是对有关能量的传递与变换的研究,是很有意义的。

六足仿生机器人实验室开放项目结项报告

淮北师范大学实验室开放项目
总结报告
基于 STC12C5A60S2 单片机的六足机器人

院: 物理与电子信息学院 韩润 陆家双
负 责 人:
小组成员: 史浩东 史良东 张莹莹 指导老师: 方 振 康强强 国

一 、项目重述
1.1 项目名称:智能六足机器人 1.2 项目背景及意义:
背景:在社会迅速发展的今天,单片机的的运用已经渗透到我们生活的每个 角落,也似乎很难找到哪个领域没有单片机的足迹。智能仪表、医疗器械,导弹的 导航装置, 智能监控、通讯与数据传输 ,工业自动化过程的实时控制和数据处理 , 广泛使用的各种智能 IC 卡, 汽车的安全保障系统, 动控制领域的机器人 , 数码像 机、电视机、全自动洗衣机的控制,电话机以及程控玩具、电子宠物等等,这些都 离不开单片机。 意义:单片机的学习、开发与应用将对于现代社会的发展,经济的繁荣,和提高 满足人类日益增长的物质文化需求有着至关重要的作用。 也成就了一批又一智能 化控制的工程师和科学家。科技越发达,智能化的东西就越多。学习单片机是社 会发展的必然需求,也是我们现代高级技工所必须要掌握的技能。
1.3 项目内容:
以 51 单片机为控制器的核心, 利用单片机内部中断产生 PWM 波控制舵机。 利用开环函数组成的动作组使六足做仿生动作,制作出了动作灵活、价格低廉以 及模块化结构的六足机器人。该机器人能够严格按三角步态进行行走,实现诸如 直线、转弯、躲避障碍物和追踪物体等行走功能。

二、方案简介
本项目可细分为控制部分、机械部分、恒流源部分、超声波检测部分。 控制部分采用 STC12C5A60S2 单片机为核心处理器。通过 PWM 波使舵机 转动,机械部分采取合理的机械构造,实现机器人在行走的情况下的平稳。恒流 源部分采取 LM7805 稳压芯片为单片机和舵机供电, 由于舵机在运转的过程中会 有较大的电流波动。 因此采用恒流电路进行恒流。超声波壁障采用超声波遇故障 反射的原理。实现对物体识别和规避。

仿生机器人浅谈

仿生机器人浅谈 02320902 20090440 于苏显众所周知,自然界中的生物以其多彩多姿的形态!灵巧机敏的动作活跃于自然界,这中其人类灵巧的双手和可以直立行走的双足是最具灵活特性的。而非人生物的许多机能又是人类无法比拟的,如柔软的象鼻子,可以在任意管道中爬行的蛇,小巧的昆虫等。因此,自然界生物的运动行为和某些机能已成为机器人学者进行机器人设计!实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。 在人类发展的历史长河中,对仿生机械(器)的研究,都是多方面的,也就是既要发展模仿人的机器人,又要发展模仿其他生物的机械(器)。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。几年前,科技工作者为圣地亚哥市动物园制造电子机器鸟,它能模仿母兀鹰,准时给小兀鹰喂食;日本和俄罗斯制造了一种电子机器蟹,能进行深海控测,采集岩样,捕捉海底生物,进行海下电焊等作业。美国研制出一条名叫查理的机器金枪鱼,长1.32米,由2843个零件组成。通过摆动躯体和尾巴,能像真的鱼一样游动,速度为7.2千米/小时。可以利用它在海下连续工作数个月,由它测绘海洋地图和检测水下污染,也可以用它来拍摄生物,因为它模仿金枪鱼惟妙惟肖。 仿生机器人主要分为仿人类肢体机器人和仿非人生物机器人。仿人类肢体又可以分为仿人手臂和双足。仿非人的主要分为宏型和微型。仿人手臂型主要是研

究其自由度和多自由度的关节型机器人操作臂!多指灵巧手及手臂和灵巧手的组合。仿人双足型主要是研究双足步行机器人机构。宏型仿非人生物机器人主要是研究多足步行机器人(四足,六足,八足),蛇形机器人、水下鱼形机器人等,其体积结构较大。微型仿非人生物机器人主要是研究各类昆虫型机器人,如仿尺蠖虫行进方式的爬行机器人、微型机器狗、蟋蟀微机器人、蟑螂微机器人、蝗虫微机器人等。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,采用绳索或人造肌肉驱动。 仿生式体系结构的思想原理:从本质上来讲,慎思式智能、反应式智能以及分布式智能,都是对生物控制逻辑和推理方式的一种借鉴和仿生,但由于客观条件的限制和需求目的的局限,它们都只是从某一个角度和方向对生物智能的一种片面的、局部的模仿。本文的仿生式体系结构就是以前述的生物控制逻辑和行为推理为基础,充分借鉴基于慎思式智能、反应式智能和分布式智能等三种体系结构思想的优点与不足之处,针对目前机器人特别是未知环境下工作的移动机器人在控制体系结构方面所存在的缺点和问题,提出一种具有适应行为与进化能力的新的控制思想与理念。 借鉴分布式智能的思想,在控制体系结构中引人社会式行为控制层; 借鉴生物的自适应性思想,在控制体系结构中实现本代内的由慎思式行为层到反射式行为层的学习; 借鉴生物的自进化性思想,在控制体系结构中实现多代间的由反射式行为层向本能式行为层的进化(或退化)。 所以,仿生式体系结构共有四个行为控制层组成,即本能式行为控制层、反

仿生机器人的研究综述

仿生机器人的研究综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。 关键词:仿生机器人;机器人运动;发展趋势; Research review on bionic robot Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend. Key words: Bionic robot; robot movement; development trend; 1 机器人的研究现状 1.1 机器人国外研究现状 由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。 自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

能力风暴机器人结题报告

编号:201301143 哈尔滨工业大学 大一年度项目结题报告 越野避障机器人的研究项目名称: 项目负责人:学号: 联系电话:电子邮箱: 院系及专业: 指导教师:职称:

联系电话:电子邮箱: 院系及专业: 哈尔滨工业大学基础学部制表 填表日期:2014年7 月9日1 一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见

三、项目专家组意见 四、项目成果 1

摘要 自从我们小组确定了《越野避障机器人的研究》这一科创项目后,以小组合作的形式进行了为期一学期的学习,主要针对其中的控制系统进行测试与运行。我们学习了传感器的使用以及相关运动指令的编程,并达到了预期效果。目前,我们能初步的控制机器人使之按照预定程序有效避障,课题目标基本达成,并采用实例展示。 有效避障运动编程关键词:避障机器人 (一)课题背景 1.项目意义 自从1959年世界上诞生了第一台机器人以来,机器人技术取得了长足的进步和发展至今已发展成为一门综合性尖端科学。机器人技术的发展集成了多学科的发展成果,代表高技术的发展前沿,是一个国家高科技水平和工业自动化程度的重要标志和体现。 随着计算机技术和遥控技术的迅猛发展,机器人正向多功能、多领域、智能化方向发展,各种用途的机器人如仿生机器人,灭火机器人,越野机器人等已开始研发、生产、应用并取得了不错的效果。而在近期发生的一系列自然灾害中避障探路机器人更是发挥了重要的作用。作为越野机器人的一个重要分支,它是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统,能够在大范围运动,广泛的为人类承担各种任务,不只是搜救,更能完成深海地貌分析等多种任务。因此对越野机器人的避障技术研究无疑具有现实意义。 2.研究现状 随着计算机技术、传感器技术的发展和进步,避障探路机器人向实用化、智能化、系列化进军,日本、德国、美国都取得了各方面的先进研究成果。我国的研究从八五期间开始,至今在清华大学,哈尔滨工业大学,中科院自动化所,浙江大学等都取得了可喜的研究成果。目前,我国避障探路机器人的研究发展水平还和发达国家有一定的差距。 避障探路机器人的研究一直是一个重大的主题,它要求机器人必须能在具有障碍物的复杂环境中完成局部在线避障,需要解决三个重要问题:障碍物在空间的位置方向的精确检测;所获信息的分析和环境模型的建立;使机器人安全避障的策略。目前机器人的环境建模方法有以下几种: 可视图法(VGraph):由Nilsson在1968年提出的,其算法简单且能找到最短路径,但是由于其缺乏灵活性,在障碍物较多时,搜索时问将会很长并且要求障碍物的形状不能接近圆形,因此现在限制了其实际的应用。进而现在通常采用基于切线图法(Tangent Graph)和Voronoi法的改进可视图法。 栅格法(Grid):由W.E.Howden在1968年提出的,是目前研究较广泛的路径规划方法。其中栅格的大小影响着环境信息存储量的大小和时间的长短。栅格划

仿生机器人的应用及发展

仿生机器人的应用及发展 1、仿生机器人发展概述 首先,模仿某些昆虫而制造出来的机器人并非简单。比如,国外有的科学家观察发现,蚂蚁的大脑很小,视力极差,但它的导航能力高超:当蚂蚁发现食物源后回去召唤同伴时,是把这一食物的映像始终存储在它的大脑里,并利用大脑里的映像与眼前真实的景像相匹配的方法,循原路返回。科学家认为,模仿蚂蚁这一功能,可使机器人在陌生的环境中具有高超的探路能力。 其次,不论何时,对仿生机械(器)的研究,都是多方面的,也就是既要发展模仿人的机器人,又要发展模仿其他生物的机械(器)。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。 在机器人向智能机器人发展的时程中,就有人提出“反对机器人必须先会思考才能做事”的观点,并认为,用许多简单的机器人也可以完成复杂的任务。20世纪90年代初,美国麻省理工学院的教授布鲁克斯在学生的帮助下,制造出一批蚊型机器人,取名昆虫机器人,这些小东西的习惯和蟑螂十分相近。它们不会思考,只能按照人编制的程序动作。 几年前,科技工作者为圣地亚哥市动物园制造电子机器鸟,它能模仿母兀鹰,准时给小兀鹰喂食;日本和俄罗斯制造了一种电子机器蟹,能进行深海控测,采集岩样,捕捉海底生物,进行海下电焊等作业。美国研制出一条名叫查理的机器金枪鱼,长1.32米,由2843个零件组成。通过摆动躯体和尾巴,能像真的鱼一样游动,速度为7.2千米/小时。可以利用它在海下连续工作数个月,由它测绘海洋地图和检测水下污染,也可以用它来拍摄生物,因为它模仿金枪鱼惟妙惟肖。有的科学家正在设计金枪鱼潜艇,其实就是金枪鱼机器人,行驶速度可达20节,是名副其实的水下游动机器。它的灵活性远远高于现有的潜艇,几乎可以达到水下任何区域,由人遥控,它可轻而易举地进入海底深处的海沟和洞穴,悄悄地溜进敌方的港口,进行侦察而不被发觉。作为军用侦察和科学探索工具,其发展和应用的前景十分广阔。 同样,研究制造昆虫机器人,其前景也是非常美好的。例如,有人研制一种有弹性腿的机器昆虫,大小只有一张信用卡的1/3左右,可以像蟋蟀一样轻松地跳过障碍,一小时几乎可前进37米。这种机器昆虫最特殊的地方是突破了“牵动关节必须加发动机”的观念。发明家用的新方法是:由铅、锆、钛等金属条构成一个双压电晶片调节器。当充电时,调节器弯曲,充完电了它又弹回原状,反复充电,它就成了振动条。在振动条上装有昆虫肢体,振动条振动就成了机器昆虫

仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望 摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。 一、导言 代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。 基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。 现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具

仿生机器人报告-仿生扑翼UUV

仿生扑翼UUV研究现状分析 摘要 本文对一种新型扑翼UUV的研究现状做了分析。首先简要介绍扑翼UUV的产生背景和应用前景,然后对扑翼UUV进行了流体动力学分析、推进性能分析并对基于CPG的扑翼UUV运动控制方法进行了分析。通过流体动力学分析得到了关于扑翼UUV攻角和翼型对推进性能的影响,推进性能分析则得到了扑动频率、拍动幅度和翻转幅度对推进性能的影响。基于CPG的运动控制方法将CPG引入到UUV 的控制中,简化了控制参数,可实现扑翼UUV的节律运动和转弯运动。 关键词:仿生扑翼UUV 流体动力学推进性能 CPG

1绪论 1.1仿生扑翼UUV产生背景 无人水下航行器(Unmanned Undersea Vehicle)的研究工作开始于20世纪中期,进入21世纪以来,由于人类对海洋资源开发、海洋环境研究的重视以及海洋在军事领域的重要作用,水下探测器的研究越来越受到重视。在过去的十年中,全世界大约有60个UUV研制计划,并建造了大约200个UUV(大部分为实验用),但是随着技术的成熟和近海工业发展的需要,商业用途的UUV也开始出现,并且在不断地发展和壮大。 然而,以往的UUV均是以传统的螺旋桨做为推进动力。在自然界中,有一类依靠扑翼游动的生物如海龟、企鹅等,他们的运动方式效率较高,而且机动灵活。仿生扑翼UUV是近几年提出的一种利用仿生扑翼作为推动力的新型UUV,正是以海龟等扑翼游动生物为仿生对象,依靠扑翼推进结构为其提供动力实现整个UUV 在水下的各种运动,包括上浮、下潜、转弯等,具有推进效率高、稳定性强、机动性及操纵性好等优点。 1.2仿生扑翼UUV的特点 仿生扑翼UUV的仿生对象是依靠扑翼进行运动的动物,他们具有爆发力强、机动性高、稳定性好等特点,对于游动和姿态的控制能力是目前任何水下设备无法模拟的。与传统的螺旋桨推进方式相比,水下扑翼UUV具有以下特点: ●良好的运动性能:仿生扑翼推进器可提高水下航行器的起动、加速和转向性 能,在低速条件下保持高机动性和稳定性。 ●流体性能更完善:海洋生物通过扑翼的划动产生推进力,具有更理想的流体 力学性能。 ●能源利用率高:仿生扑翼推进器可以大大节省能量,提高能源利用率,延长 航行器的水下作业时间。 ●噪声小:仿生扑翼推进器运行期间的噪音比螺旋桨运行期间的噪音要低得 多,不易被对方声纳发现或识别,有利于突防,具有重要的军事价值。 ●推进器和舵的统一:仿生扑翼推进器的应用将改变目前螺旋桨和舵机系统分 开,功能单一,结构庞大,机构复杂的情况,实现桨一舵功能的合二为一。 ●可采用多种驱动方式:仿生扑翼推进器可采用机械驱动,也可以采用液压驱 动和气压驱动,以及混合驱动方式;对于微小型水下运动装置,可采用形状记忆合金、人造合成肌肉以及压电陶瓷等多种驱动元件。 1.3仿生扑翼UUV的用途 由于仿生扑翼UUV较传统UUV的优势,其用途更加广泛。

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

仿生机器人的研究现状及其发展方向

学号1210111188 论文题目仿生机器人的研究进展及发展趋势学生姓名颛孙鹏 院别机械工程学院 专业班级12机自(3)班 指导教师周妍

仿生机器人的研究进展及其发展趋势 摘要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注。主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望。 关键词:仿生机器人;研究现状;发展方向 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实。随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员。 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人。仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动。 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑。以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压。由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展。鱼类在水下的行进速度很快,金枪鱼速度可达105km/h,而人类最快的潜艇速度只有84km/h。所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象。仿鱼推进器效率可达到70%~90%,与水的相对速度比螺旋桨推进器小得多,有效地解决了噪音问题。美国麻省理工学院和日本都研制出了仿鱼机器人。在国内,中科院沈阳自动化研究所和北京航空航天大学机器人研究所已研制了机器鱼样机。

浅谈仿生机器人的发展

《学科前沿》论文 浅谈仿生机器人的发展 机器人技术作为一门新兴学科,在工业飞速发展的今天扮演着非常重要的作用,而其发展与机械电子、机电一体化、控制原理等多学科的发展息息相关。仿生机器人作为机器人领域的一大分支,可以说是本世纪一个不可忽视的领域,也将是机器人日后发展的大方向。 仿生学是20世纪60年代出现的一门综合性边缘学科,它由生命科学与工程技术科学相互渗透、相互结合而成。它在精密雷达、水中

声纳、导弹制导等许多应用领域中都功不可没。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、军事侦察攻击、水下地下管道、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展.未来的机器人将在人类不能或难以到达的已知或未知环境里为人类工作。人们要求机器人不仅适应原来结构化的、已知的环境,更要适应未来发展中的非结构化的、未知的环。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。这一应用已经成为机器人研究领域的热点之一,势必推动机器人研究的蓬勃展。 自然界生物的运动行为和某些机能已成为机器人学者进行机器 人设计、实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现。仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人 系统。仿生机器人的类型很多,按其模仿特性分为仿人类肢体和仿非人生物两大类。由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。仿人型步行机器人是目前机器人技术的前沿课题,是具有挑战性的技术难题之一。日本本田公司和大阪大学联合推出的P2和P9型仿人步行机器人代表了当今世界的最高水平。仿非人生物机器人的研究近二十年来一直是一个非常活跃的

仿生六足机器人研究报告学士学位论文

项目研究报告 ——小型仿生六足探测机器人 一、课题背景: 仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。 不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。 二、项目创新点: 作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。 简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。 三、研究内容: 1.仿生学原理分析: 仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

仿生机器人的机构设计及运动仿真

前言 随着仿生学与机器人技术的飞速发展,仿生机器人已日益成为机器人领域的研究热点。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用[3]。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、海洋探索、水下洞穴探索、军事侦察、军事攻击、军事防御、水下地下管道探测与维修、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展,未来的机器人将在人类不能或难以到达的已知或未知环境里工作。人们要求机器人不仅要适应原来结构化的、己知的环境,更要适应未来发展中的非结构化的、未知的环境。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。 本文结合当前仿生机器人的研究现状与未来发展方向,以慧鱼机器人模型为平台制作对机械本体结构、传动系统,控制系统的软件编程进行了系统设计及介绍。现对研究和实验当中取得的主要成果总结如下: 1.通过对甲虫六条腿的结构与功能的研究,设计了六足仿生机器人的足的结构,实现了机器人的结构仿生。 2.在对仿生模型的结构仿生与运动仿生分析的基础上,确定了采用慧鱼ROBO接口板作为控制器。 3.利用慧鱼ROBO接口板实现了电机和微动的控制,从而对机器人进行运动控制。 4.根据三角步态原理,设计了前进、后退以及转弯等不同运动状态。并对机器人进行了运动分析,得出了一般的结论。 5.以慧鱼公司开发的编程软件:ROBO PRO,对机器人进行软件编程,使它按规定的路线运动,实现对其运动的控制。 本次毕业设计的目的和意义是综合运用大学四年里所学到的基础理论知识达到设计目的并提高自己分析问题和解决问题的能力,提高机械控制系统设计、操纵机构的设计能力及运用PRO/E设计软件的建模能力,并增强自身的动手能力与计算机编程能力。 本课题的研究前景十分广阔。例如,可以通过对海蟹的研究,进行仿生设计,制造出海陆两用的仿生机器人,建立基于环境适应行为的智能运动控制策略。在此基础上,为未来智能化近海两栖作战新概念武器结构设计与分析提供新方法。 对于跟踪国际先进军事技术,建立新型作战武器有重要意义。同时,开展对海的

仿生爬虫机器人实验指导书

工业机器人基础 实验指导书及试验报告 实验名称 系别 专业 班级 姓名 指导教师 年月日

仿生爬虫机器人实验 一、实验目的 多足爬行机器人是一种典型的仿生机器人。这类机器人使用多条腿交替地移动来完成爬行,通常采用仿生的结构和运动步态。在本实践中,我们将搭建一个较复杂的,每条腿都有2 个自由度,一共具有9个自由度(头部有 1 自由度)的仿生机械爬虫。 了解: 多足类仿生概念和进一步了解四足机器人运动步态规划的相关知识; 熟悉: 9 自由度的仿生机器爬虫; 掌握: 掌握“创意之星”机器人套件的搭建和装配技巧,尤其是如何使用螺栓、螺母 进行连接,如何提高组装机器人的结构刚度;在UP-MRcommander 软件中,熟悉舵机的控制,写入动作程序,让仿生机器爬虫运动起来; 二、“创意之星”实验设备介绍 “创意之星”结构件介绍 “创意之星”机器人套件提供了400 多个结构部件,其中包括以下几大类: 1)I 型结构件,共有4 种、40 个,都是白色,聚碳酸酯(PC)材质,结构特点是长条状,具有多个标准孔,零件边缘有加强肋。零件以大孔的数量命名。 2)L 型结构件,字母L 形状,共有6 种,54 个,都是白色,聚碳酸酯(PC)材质,结构特点是字母“L”状,具有多个标准孔,零件边缘内侧有加强肋。零件以两侧的大孔数量命名。 3)U 型结构件共有7 种,70 个,都是橙色,聚碳酸酯(PC)材质,结构特点是字母“U”状,具有多个标准孔,零件边缘内侧有加强肋。零件以三侧面的大孔数量命名。4)V 型结构件,共有2 种,20 个。白色,聚碳酸酯(PC)材质,结构特点是字母“V”状,具有多个标准孔,零件边缘内侧有加强肋。零件以两侧的大孔数量命名。 5)舵机支撑构件,共有2 种,20 个。白色,聚碳酸酯(PC)材质,结构特点是字母“V”状,具有多个标准孔: 以上各件依次如下图所示: 6)基础构件,共有3 种,4个; 7)机械手组件共有5 种,18 个。这部分零件是组装机械手爪专用的零件;

仿生机器人关键技术

仿生机器人关键技术 “仿生机器人”是指模仿生物、从事生物特点工作的机器人。,涉及到机械设计、计算机、传感器、自动控制、人机交互、仿生学等多个学科。因此,机器人领域中需要研究的问题非常多。主要研究问题包括以下五个方面: 1 建模问题 仿生机器人的运动具有高度的灵活性和适应性。其一般都是冗余度或超冗余度机器人,结构复杂,运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此,研究建模问题,实现机构的可控化是研究仿生机器人的关键问题之一。 2 控制优化问题 机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到整体大于组分之和,同时要研究高效优化的控制算法才能使系统具有实时处理能力。 3 信息融合问题 在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器。多传感器的信息融合技术是实现其具有一定智能的关键。信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。 4 机构设计问题 合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。 5 微传感和微驱动问题 微型仿生机器人有些已不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题,如动力源、驱动方式、传感集成控制以及同外界的通讯等。实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技术。同时,在设计时必须考虑到尺寸效应、新材料、新、工艺等问题。

类人形机器人项目总体设计报告

类人型机器人项目 总体设计报告 编制单位: 作者: 版本: 发布日期:

审核人:批准人:

目录 1.引言 (1) 1.1背景 (1) 1.2定义 (2) 1.2.1专门术语的定义 (2) 1.2.2外文首字母组词的原词组 (2) 1.3参考资料 (3) 2.总体设计 (3) 2.1开发与运行环境 (3) 2.1.1系统硬件运行环境 (3) 2.1.2系统软件运行环境 (4) 2.2硬件功能描述 (4) 2.3硬件结构(如图2所示) (4) 3.硬件模块设计 (4) 3.1机器人套件 (5) 3.1.1舵机 (5) 3.1.2机器人合金零件 (7) 3.2舵机控制器电路 (7) 4.嵌入式软件设计 (8) 4.1流程逻辑 (8)

4.1.1程序流程图 (8) 4.1.2程序流程图简述 (9) 4.2算法 (9) 4.2.1主要计算方法 (9) 4.2.2源程序说明 (10) 5.系统调试与总结 (13) 5.1系统调试 (13) 5.1.1单个舵机的研究和控制 (13) 5.1.2单个舵机的研究和控制 (15) 5.1.3机器人下肢运动的动作分解及实现 (15) 5.2总结 (16) 5.2.1总结一(作者:王刚) (16) 5.2.2总结二(作者:赵爱芳) (19) 5.2.3总结三(作者:刘丹) (24) 5.2.4总结四(作者:张瑞娜) (24) 附录一系统源程序 (32)

1.引言 类人型机器人是现在机器人研究领域的一个热点,无论是SONY公司不断更新的“阿西莫”机器人,还是每年在机器人世界杯上不断推陈出新的足球机器人,大家都把目光聚焦于更加拟人化的类人型双足行走机器人。 基于双足平台的机器人要正常工作首先需要能够平稳的行走,而双足步行是步行方式中自动化程度最高、最为复杂的动态系统。它具有支撑面积小、支撑面的形状随时间变化较大,质心的相对位置高的特点,是最复杂、控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类进行协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 目前对双足行走机构的研究主要基于仿生学原理与动态控制原理,SONY公司的“阿西莫”主要基于仿生学原理,这种研究方式也是类人型机器人舞蹈比赛与人形组机器人足球比赛中常见的控制方式,因为这种控制方法容易上手,能够从最简单的步伐控制开始了解类人型机器人控制的基本原理。 1.1背景 本小组以类人型机器人为课题,着重研究类人型机器人的结构与控制原理,掌握舵机的控制方式,掌握双足步行机器人步伐调整原理。 项目初期主要以上海英集斯公司的8自由度双足步行机器人为研究平台,以最基本的对单个舵机结构的研究及运动控制为起点,从而从每一个关节开始了解类人型机器人的组成,逐步过渡到多个舵机的

相关文档
最新文档