陆地气溶胶光学厚度反演原理与方法

陆地气溶胶光学厚度反演原理与方法
陆地气溶胶光学厚度反演原理与方法

陆地气溶胶光学厚度遥感监测原理与方法

大气气溶胶是由大气介质和混合于其中的固体或液体颗粒物共同组成的多相体系。粒子的直径多在10-3~102μm之间。气溶胶光学厚度指无云大气铅直气柱中气溶胶散射造成的消光程度,是大气遥感的重要指标,也是衡量大气污染的重要指标。

利用卫星遥感进行气溶胶监测主要有暗目标法(Kaufman et al,1988)、结构函数法(Tanré et al.,1988)、多角度偏振法(Herman et al,1997)等。目前环境一号卫星CCD相机和超光谱相机的波段设置条件下,暗目标法可得到较好的应用,同时环境一号卫星CCD相机的高空间分辨率,为结构函数法的应用提供了可能。由于环境一号卫星各相机的工作方式的(非偏振)限制,目前尚无法应用多角度偏振方法,环境一号后续星将加入偏振传感器。

1.暗目标法

在可见近红外波段,传感器接收到的信号,既是气溶胶光学厚度的函数,又是下垫面地表反射率的函数。当地表反射率很小时,卫星观测的辐射值主要是大气的贡献,能够提取大气气溶胶信息,暗目标法就是利用浓密植被地区红蓝波段的辐射值和气溶胶光学厚度的这种关系反演气溶胶光学厚度。

2.结构函数法

对于高反射率地区,地表反射率较大,传感器测量的辐射值主要是地表的贡献项,对气溶胶的变化不再敏感,这时使用基于地表反射率的方法反演气溶胶光学厚度非常困难。

结构函数法是早期研究陆地污染气溶胶采用的卫星遥感算法。该算法假设同一个地区一段时间内地表反射率是不变的,利用“清洁日”大气作为参考,反演“污染日”大气的气溶胶光学厚度。利用结构函数法可以反演城市地区的气溶胶分布状况。

3.多角度偏振方法

大气中的气溶胶和大气分子与入射太阳辐射相互作用,除了可以散射和吸收入射辐射,还可以使入射辐射发生偏振,卫星通过测量后向散射的偏振特性,可以得到气溶胶信息。利用偏振信息进行气溶胶反演,具有受地表影响小、能够反演气溶胶物理性质的优势。

地球物理反演理论

地球物理反演理论 一、解释下列概念 1.分辨矩阵 数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。它不是数据的函数, 而仅仅是数据核G (它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。 模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。 2.协方差 模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。其映射只是数据核和其广义逆的函数, 而与数据本身无关。 在地球物理反演问题中,许多问题属于混定形式。在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题: ()(1)(cov )u aspread R size m α+- 如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。 3.适定与不适定问题 适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。这三个要求中,只要有一个不满足,则称之为不适定问题 4.正则化 用一组与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。对于方程c Gm d =,若其是不稳定的,则可以表述为

多项式反演公式及其应用研究

摘要:在研究组合计数问题时,反演公式是个十分重要的工具.本文中笔者根据一般反演原理探讨 多项式(扩充二项式关系的多项式)反演公式,并应用它导出了几个组合恒等式. 关键词:指母函数;反演公式;组合恒等式 文[1]给出了二项式反演公式。以下,我们来研究多项式反演公式,首先研究较简单的三项式反演公式. 命题1 (三项式反演公式) .. 为了证明命题1,先证一类较广泛的三项式反演公式. 命题2 设是定义在非负整数集上的四个函数,且,那么,由 ,一切(1) 成立,就可推出 ,一切(2) 成立.这里,分别满足以下关系(见文[2]): = ,(3) = . (4) 反之,由(2)成立也可推出(1)成立. 证定义如下六个函数: ;; ;; ; . (符号“: =”意为“定义为”),由(3)与(4)易知, . 根据级数乘法的对角线法则及(1)可得 . (5) 因此: . (6) 由于中含项的系数为,而中含项的系数为 , 所以,一切 .此即(2)式.. 反之,由(2)可得(6),因而有(5).比较其中诸系数即得(1). 下面证(3),(4)类似可证. 给出 ,, 可知,(7)而 . 比较(7)的左边,得 = .亦即(3)成立.证毕 推论1 若是定义在上的二个函数,且为复常数,则 . 推论2 若是定义在上的二个函数,则 . 在命题2中令,,,应用(3)、(4)显见,(参见文[2]),得推论1.令,即得推论2.将推论2中的分别代之以,就得命题1. 命题3,设均是定义在非负整数集上的函数,且,则 这里满足以下关系: = .

命题4(多项式反演公式) . 例应用反演公式可导出以下几个例子组合恒等式: 1、 =1,(8) 2、 = ,(9) 3、 = . (10) 参考文献: [1] [罗] I.TOMESCU著.组合学引论.清华大学应用数学系离散数学教研组译.高等教育出版社1985.7第1版. [2] 柯召魏万迪著.组合论(上册).科学出版社1981.10第1版

成像和反演简介

Imaging and inversion — Introduction 成像和反演——简介 地震成像和反演技术是用于将记录下来的地震波场转换为具有物理意义的易于分辨的地球内部的图像。相应方法经常应用在具有一定规模的浅层调查,通过表征矿物储层和油气勘探,气体封存,热液研究,由此对地壳、地幔、地核进行局部和全球的地震探测。相关方法正加强利用全波场和复杂的采集策略,和不同的工业分支一样,在学术界快速发展。 受启发于在2008年4月成功举行的欧洲地球物理学会年会上关于地震反演成像的研究进展,我们打算为地球物理组织这样一个特殊部分并且邀请论文描述相关理论,应用,及先进的成像/反演方案的好处。我们的宗旨就是回顾这些技术的理论及其在不同范围,不同地质背景内的应用。我们希望不仅能够促进那些为不同目标工作的不同团体传递知识和相互交流,而且能够鼓励那些改进了成像/反演和地层表征的新的具有独立规模的成像/反演技术的发展。 在2008年12月31日提交截止后,我们收到了60多篇论文,其中48篇论文被收录在这个附录中。其他的一些论文仍在修改中,将很有希望在以后一期的GEOPHYSICS上刊登。作者的比例大约是学术机构和工业一比一。论文主题十分广泛,涵盖了不同的方法技术和反演问题的不同方面,从钻孔研究到区域地壳调查,还有大量的论文对非盈利性的应用进行了描述。这些都反映出了这个研究领域的广泛兴趣,也表明了这特别的一期的最初目的已经成功的达到了。 我们已经把这些论文归为四个主要类别,分别为(1)深度成像,(2)旅行时间层析成像,(3)全波形反演,(4)创新方法。在每个类别中,我们也尝试根据论文的具体主题进行了分类,然而从某种角度讲,这些类别和整理是比较随意的,因为一些论文也很适合被分到其他类别中去。 通过观察深度成像论文,有着用叠前/深度方法逐渐替代叠后/时间算法的一般趋势。几乎没有论文对NMO/DMO工作流程相关的发展进行汇报,这可能是由于大多数成像/反演任务不得不处理地下界面逐渐增加的复杂构造。这一方面的最终目标是提高分辨率和成像质量。由此,很久以前曾提出利用特定的波场属

UCODE反演程序的原理及应用

第17卷第6期2010年11月 地学前缘(中国地质大学(北京);北京大学) Earth S cien ce Frontiers (Ch ina University of Geosciences(Beijing);Peking University)Vol.17No.6Nov.2010 收稿日期:2010-07-01;修回日期:2010-08-01基金项目:国家自然科学基金重点项目(50639090) 作者简介:夏 强(1982 ),男,博士研究生,地下水科学与工程专业,主要从事地下水数值模拟方面的研究。E -mail:qian gwa@https://www.360docs.net/doc/1d9397178.html, U CODE 反演程序的原理及应用 夏 强 1,2 , 万 力1, 王旭升1, E Poeter 2 1 中国地质大学(北京)水资源与环境学院,北京100083 2 科罗拉多矿业学院国际地下水模型中心,美国戈尔登80401 Xia Qiang 1,2, Wan Li 1, Wang Xusheng 1, E Po eter 2 1 S ch ool of W ater Resource s and E nv ir onme nt,Ch ina Unive rsity of Ge oscience s(B eij ing ),Beij ing 100083,China 2 International Gr ound W ate r M od eling Center ,Color ad o S chool of M ine s,Gold en,Colorad o 80401,US A Xia Qiang,Wan Li,Wang Xusheng,et al.Principles and applications of the inverse problem program:UC ODE.Earth Science Frontiers ,2010,17(6):147-151 Abstract:T his paper illustrates the sig nificance o f calibration fo r g r oundwater mo deling,and demo nstr ates that aut omated calibration techniques using inver se problem prog r am ar e super ior to manual tria-l and -er ro r meth -ods.T he w idely used U CODE is o ne of such pr og rams w hich o pt imizes the parameter v alues by Gauss -New ton methods.T he initial par ameter values play an impor tant ro le to ca librat ion.A synthetic transient model is co n -str ucted,and six numerical ex periments ar e perfo rmed to v erify t he practicability of U CODE prog ram.T he r e -sult s show that althoug h the initial v alues of parameter s w ould influence the pr ocedur e of calibr atio n,g iv en ap -pr opriat e v alues,U COD E co uld achieve the objective for optimizatio n.Key words:U CO DE;inv erse problem;g roundw ater;modeling 摘 要:对地下水模型进行反演是模拟过程中的一个必要步骤,使用反演程序自动校正模型可快速确定最佳拟合的参数值,分析参数对模拟结果的敏感性,比人工试算-调整法更为优越。U CO DE 是一款被广泛应用的地下水模型反演程序,它使用高斯牛顿法进行参数优化,反演结果对参数初值有一定的依赖性。通过建立假想的非稳定流模型,进行6组数值试验,验证了U CO DE 程序的实用性。尽管参数的初始取值会影响反演的进程,但只要取值适当,U CODE 就能实现优化参数的目的。关键词:U CO DE;反演;地下水;模拟 中图分类号:P 641 2 文献标志码:A 文章编号:1005-2321(2010)060147-05 在地下水系统的研究分析中,数值模拟正在被越来越广泛地使用。大多数的地下水模型都是分布式参数模型。从本质上讲,这些具有一定物理意义的数值模型其实是使用有限差或有限元的方法近似求解的[1]。建立数值模型之后,通常需要校正模型。校正模型的过程就是要调整输入模型的参数,直到模型输出的结果与野外观测数据达到一 定程度的拟合。 在实际应用中,从来不能很完善地定义模型输入参数。无论对参数进行了多少次测量,也无论对野外条件刻画得多么详尽,它们总是具有一定的不确定性。因为,模型中某些参数虽然是通过实际测量获取,但实测和模型之间尺度上的差异,还是可能导致模拟结果与观测数据较大的偏离。所以,我们

反演实验四

《地球物理反演概论》上机实验报告实验四:曲线拟合问题的共轭梯度法 姓名: 学号: 专业:地球物理学 指导教师:邵广周 完成时间:2017.12.26

一、实验内容 利用共轭梯度法实现下图所示的地震层析成像问题。 ???? ??????????????????????= ????????????? ? ??????????????????????????????????????? ?020******* 0000 000200020002100100100010010010001001001111000000000111000000000111987 6543 21m m m m m m m m m 二、实验要求 编制相应的程序,在计算机上实现共轭梯度算法。 三、算法原理 考虑二次最优化问题: 其中,A 为n n ?阶的对称正定矩阵,要求A 正定的目的是保证目标函数()X φ收敛且有唯一极小值。 我们可以通过计算目标函数的导数并令其等于零来求极小值,即 ()b AX X -=?φ 极小点处的X 满足: 0=-b AX 或b AX = 因此,求方程b AX =的解等效于求()X φ的极小值问题。 共轭梯度法解最优化问题是通过构造n 维向量基110,,,-n P P P 来实现的,即 0=j T i AP P j i ≠ 具有上述性质的向量则称它们是关于矩阵 A 相互共轭的向量。 X 可用向量基展开为如下形式: ()X b AX X X T T -= 2 1min φ

∑-==1 n i i i P X α 因此 ()?? ? ??-??? ????? ??=∑∑∑-=-=-=10101021n i i i T n i i i T n i i i P b P A P X αααφ 上式可写为: ()?? ? ??-=∑∑∑-=-=-=1 0101021n i i i T n i n j i T i j i P b AP P X αααφ 由于向量关于A 相互正交,上式可简化为: ()?? ? ??-=∑∑-=-=1 010221n i i i T n i i T i i P b AP P X ααφ 上式表明()X ?由n 项组成,且每一项彼此独立。因此只要保证第i 项的系数 i α使该项最小,从而使各项之和达到最小,第i 项为: i T i i T i i P b AP P αα22- 上式关于i α求导,并令导数等于零,可得使第i 项最小的最优系数i α,即 i T i i T i AP P P b =α 因此,只要我们知道关于A 共轭的一组向量基,则()X φ的最优化问题就非常容易。那么,如何构造一组共轭向量呢? 共轭梯度算法实际上是通过迭代生成一系列解向量i X ,残差量i i AX b r -=和共轭向量基i P 。算法从00=X ,00=r ,00r P =,0 00 00AP P r r T T =α开始迭代。 假设前k 次迭代已得到解向量k X X X ,,,10 ,残差向量k r r r ,,,10 ,向量基k P P P ,,,10 和最优系数k 1 0ααα,,, 。并假设这1+k 个向量i P 关于A 共轭,向量i r 相互正交,且0=j T i P r j i ≠ 令 k k k k k k k k AP r r P X X αα-=+=++11

反演原理及公式介绍工科

第一章反演理论 第一节基本概念 一.反演和正演 1.反演 反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。 有反演,还有正演。要正确理解反演问题,还要知道正演的概念。 2.正演 正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。在地震勘探中,正演的一个重要应用就是制作合成地震记录。 3.例子 考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz 正演:给定a和b,求不同深度z的对应温度T(z) 反演:已经在不同点z测得T(z),求a和b。 二.反演问题描述和公式表达的几个重要问题 1.应用哪种参数化方式——离散的还是连续的? 2.地球物理数据的性质是什么?观测中的误差是什么? 3.问题能不能作为数学问题提出,如果能够,它是不是适定的? 4.对问题有无物理约束? 5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解? 6.问题是线性的还是非线性的? 7.问题是欠定的、超定的、还是适定的? 8.什么是问题的最好解法? 9.解的置信界限是什么?能否用其它方法来评价? 第二节反演的数学基础

一.解超定线性反问题 1.简单线性回归 可利用最小平方法确定参数a 、b 使误差的平方和最小。 ??? ? ???∑-∑∑∑-∑=-=∑∑-=2 2)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为: bx a y +=? (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。 2.非约束最小平方法反演——广义矩阵方法 由前面讨论可知,参数估计的最小平方方法用矩阵公式表示,所得到的算法等价于一个或多个模型参数的一个或多个数据集反演,步骤为: 问题定义→矩阵公式→最小平方解 线性问题采用广义矩阵形式 d=Gm (1-2-3) 对于精确的数据模型,参数m 为 m=G -1d (1-2-4) 但是由于试验误差,实际数据将不能精确拟合获得,故采用最小平方法求解。解的矩阵表示式为 d G G G m T T 1][?-= (1-2-5) 上式具体计算时可用奇异值分解方法 G=U ∧V T 最后,得 m ?=(G T G )-1G T d=V ∧-1U T d (1-2-6)

反演公式

概率(2)导学案 课题:反演公式 课型:新授 执笔: 审核: 使用时间: 一、学习目标 1、 了解反演公式 2、 会使用反演公式 二、重点难点 1、 反演公式推导 2、 反演公式的应用 三、学习内容 1、反演公式: 设全集Ω中基本事件数为n ,A 中基本事件数为μ,易知P (A )=n μ .设想Ω的面积S=1,则A 的面积= n μ?S=n μ = P (A ) .即随即事件的概率可以以维恩图18-2的面积表示.这样由图18-2上集合之间的上述关系,可得 ()()P A B P A B ?=?,()()P A B P A B ?=? 当随机事件A 、B 独立时,它们的对立事件A 、B 也独立,因此从(18-2-3)的第一式可得 ()()()()P A B P A B P A P B ??=?; 当随机事件A 、B 互斥时,它们的对立事件A 、B 也互斥,因此从(18-2-3)的第二式又可得 ()()()()()P AB P A B P A B P A P B =?=?=+. 四、探究分析 1、甲、乙两位射手独立地向目标射击,其命中率分别是12和1 3 ,求他们都击中目标的概率. 方法总结: 2、已知甲机床所生产的废品率为0.04,乙机床所生产的废品率0.05.从它们制造的产品中各抽取1件,求以下事件的概率: (1)两件都是废品; (2)两件都是正品; (3)两件中至多有1件废品; (4)两件中至少有1件废品的概率; (5)两件中 恰有1件废品. 方法总结: 图18-2

课堂训练 1、俗话说:三个臭皮匠抵个诸葛亮.假设三个“臭皮匠”各自解决某问题的概率为1 2 ,那么此问 题被他们一起解决的概率是多少? 2、用6个相同的元件组成一个系统,各元件能否正常工作是相互独立的,各元件正常工作的概率p=0.999,那么由图18-5和图18-6表示的两个系统中,哪一个可靠性大?课后作业 1、某人投篮的命中率为60%.现连投两球,求: (1)两球都进的概率; (2)一球也投不进的概率; (3)至多投进一球的概率; (4)至少投进一球的概率; (5)只投进一球的概率. 2、甲、乙、丙3人独立破译密码的概率分别是 1 4 , 1 3 , 1 2 ,求他们协作破译密码的概率. 3、在总数为100件的产品中,混有5件次品.任意抽取3件检查,能抽到次品的概率是多少?教学后记 2 图18-5 图18-6

地球物理反演理论

地球物理反演理论

————————————————————————————————作者: ————————————————————————————————日期:

地球物理反演理论 一、解释下列概念 1.分辨矩阵 数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。它不是数据的函数, 而仅仅是数据核G(它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。 模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。 2.协方差 模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。其映射只是数据核和其广义逆的函数, 而与数据本身无关。 在地球物理反演问题中,许多问题属于混定形式。在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题: ()(1)(cov )u aspread R size m α+- 如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。 3.适定与不适定问题 适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。这三个要求中,只要有一个不满足,则称之为不适定问题 4.正则化

反演技术原理

反演技术 前言 一. 反演的概念、目的 二. 反演的发展历史及趋势 三. 反演的基本方法 四. 地震反演难题的解决方案 五. 反演的实质 六. 反演的基本流程 七. AVO反演处理简介 地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,

必须与地震资料相结合进行综合分析才能取得良好效果。 地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测? 这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO 分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,为提高油田最终采收率起到了积极的作用,因此地震技术被列为二十一世纪石油工业发展的首要技术,相信地震资料特殊处理技术(地震资料反演技术、地震属性分析技术、AVO分析技术)也必将在我国油田勘探、开发中起到越来越重要的作用。 一. 反演的概念、目的 地震资料反演技术就是充分利用测井、钻井、地质资料提供的丰富的构造、层位、岩性等信息,从常规的地震剖面推导出地下地层的波阻抗、密度、速度、孔隙度、渗透率、沙泥岩百分比、压力等信息。那么如何理解这个概念?还是让我们看看什么是正演吧! 1.正演的概念 如果我们已知地下的地质模型,它的地震响应如何?通过模拟野外地震采集,得到单炮记录,再通过速度分析、动校正、叠加、偏移得到合成剖面这一过程就是正演。

反演方法综述

几种常用的反演方法综述 一、稀疏脉冲反演(C onstrained Sparse Spike Inversion) 1、原理: ①首先假设地下地层的波阻抗模型所对应的反射系数序列模型是稀疏的,即由起主导作用的强反射系数序列和具有高斯背景的弱反射系数序列叠加而成。 ②将地震记录与子波进行稀疏脉冲反褶积得到地层反射系数,一般是使用最大似然反褶积求得一具有稀疏特性的反射系数序列Ri。 根据①的假设可以导出最小目标函数: R(K)为第一个采样点的反射系数,M 为反射层数, N为噪音变量的平方根,L 为采样 总数,? 根据目标函数,对每一道,从上到下推测反射系数的位置点,判断反射系数的幅值大小。如此反复迭代修改每个反射系数的位置和幅度,使最后的修改误差最小符合似然比值的判别标准即可,这样就完成了一道的反褶积,得到该道的反射系数的分布。 ③通过最大似然反演导出波阻抗Zi 反演公式为Zi=Zi-1*[(Ri+1)/Ri]. 具体的计算方法是稀疏脉冲序列每次建立的反射系数为一个脉冲,然后在地震资料中提取子波与初始反射系数进行褶积,得到一个初始合成地震记录,并用此合成地震记录与实际地震纪录作对比得到他们之间的残差,利用这个残差的大小来修改反射序列中脉冲的个数再次进行褶积运算,得到新的合成地震记录,再与实际地震资料对比,就这样循环迭代,直到残差达到最小,最后得到一个与实际地震资料达到最佳逼近的合成地震记录,获得宽频带的反射系数。

图1 稀疏脉冲反演每次建立反射序列为一个脉冲,增加脉冲进行循环迭代约束稀疏脉冲反演采用的是一个快速约束趋势的反演算法,约束条件主要是波阻抗趋势和地质控制,而波阻抗趋势又是由解释层位和断层来控制的,从而可以把地质模式融入进去得到一个宽带的结果,恢复地质信息中缺少的低频和高频成分。 约束稀疏脉冲反演的最小误差函数是: 第二项为原始地震道与合成地震道的均方差的总和; 第三项为趋势协调的补偿 i 是地震道样点号;di是原始地震道;Si是合成地震记录;ri 为地震道采样 点的反射系数;ti是波阻抗趋势;Zi是地震道采样点的波阻抗值,介于井约束的 最大和最小波阻抗之间;ɑ是趋势最小匹配加权因子,一般情况下ɑ=1;p、q是L 模 因子,一般情况下p =1,q=2是调节或平衡因子,与信噪比大小有关。 根据目标函数,我们可以看出:在约束稀疏脉冲反演中,反射系数的稀疏、原始地震道 与合成记录的残差最小这两项是相互矛盾的。?值的大小反映了合成地震道与实际地震道匹 配程度的好坏。若?值太大,着重强调残差最小,即过于追求合成地震记录与原始地震记 录的吻合程度,导致会把一些噪音当作有效信息出现在反演剖面中,同时,由于反射系数的

反演常用方法

稀疏脉冲法 包括最大似然反褶积、L1范数反褶积、最小熵反褶积、最大熵反褶积、同态反褶积等,稀疏脉冲反演是基于脉冲反褶积基础上的递推反演方法,其基本假设是地层的强反射系数是稀疏分布的。从地震道中根据稀疏的原则提取反射系数,与子波褶积后生成合成地震记录;利用合成地震记录与原始地震道残差的大小修改参与褶积的反射系数个数,再作合成地震记录;如此迭代,最终得到一个能最佳逼近原始地震道的反射系数序列。该方法适用于井数较少的地区,其主要优点是能够获得宽频带的反射系数,较好地解决地震反演的多解性问题,从而使反演结果更趋于真实。 约束稀疏脉冲反演采用一个快速的趋势约束脉冲反演算法,用解释层位和井约束控制波阻抗的趋势和幅值范围,脉冲算法产生了宽带结果,恢复了缺失的低频和高频成分;同时,再加入根据井的波阻抗的趋势约束。约束稀疏脉冲反演最小误差函数是J=∑(ri)p+λq∑(di-si)q++α2∑(ti-Zi)2(1) 式中:ri为样点的反射系数;zi为样点的波阻抗;di是原始地震道;si 是合成地震道;Zi介于井约束的最大和最小波阻抗之间;ti是用户提供的波阻抗趋势;α为趋势最小匹配加权因子;p,q为L模因子;i是地震道样点序号;λ为数据不匹配加权因子。 如果从最大似然反褶积中求反射系数r(t),则在上述过程中为了得到可靠的反射系数估计值,可以单独输入波阻抗信息作为约束条件,从而求得最合理的波阻抗模型 Z(t)=Z(t-1)(1+r(t))/(1-r(t))(2) 稀疏脉冲法假设反射系数是稀疏的、离散的,利用测井资料可以得到井旁道的准确反射系数,通过上述反褶积方法,在测井资料、地质模型的约束下,逐道递推子波、反射系数,从而反演出波阻抗、速度等数据。 常规递推法与稀疏脉冲反演法主要是利用反褶积方法来恢复反射系数序列,由经过标定的反射系数序列递推出相对波阻抗,然后加上从声波测井和地质模型中得到的低频分量,最终得到反演波阻抗。这两类方法的主要缺陷是选择可靠低频信息较为困难,由反射系数递推波阻抗过程中误差积累快,当反射系数存在较大误差时,递推出来的波阻抗剖面会面貌全非。 此外,经过反褶积处理的结果,并不代表真正的反射系数序列,

相关文档
最新文档