锡含量测定

锡含量测定
锡含量测定

直接碘量法测定锡

反应原理:

在盐酸溶液中,Sn 4+被铝片还原为Sn 2+,用碘酸钾标准溶液滴定,以淀粉为指示剂。由于Sn 2+不稳定,与空气接触氧化成Sn 4+所以在还原与滴定过程中要避免与空气接触。 其反应式如下:

++++=+234n 32n 3S Al S Al

O 3H + I + 3S n = 6H + IO + 3S n 2-+4+-3+2

一、锡水

(一)、试剂

1、饱和的碳酸氢钠溶液

2、盐酸

3、铝片

4、淀粉指示剂

5、0.1mol/L 碘酸钾标准溶液

(二)、测定方法

称取约1.0g 的试样置于500ml 锥形瓶中,加入100ml 盐酸和100ml 蒸馏水,在电炉上缓缓加热至剩余溶液约为100ml 时把电炉关闭,等溶液冷却至室温,加入2g 金属铝片,铝片溶解产生大气泡,盖上以饱和碳酸氢钠溶液的盖氏漏斗。溶液澄清,否则继续加热,使黑色消失。在二氧化碳的保护下置流水中冷却至室温,拿下盖氏漏斗时立即加入3ml 淀粉指示剂,用碘酸钾标准溶液滴定至溶液呈蓝色即为终点。

(三)、分析结果

锡含量W (%)100???=试样

m M c V Sn 式中:

V------样品消耗碘酸钾标准溶液的体积ml

C------碘酸钾标准溶液的浓度mol/L

M------锡摩尔质量g/mol [M(

35.59)]2

1=Sn m------样品质量g

二、锡泥

(一)试剂(同锡水)

(二)饱和的碳酸氢钠溶液

(三)盐酸

(四)铝片

(五)淀粉指示剂

(六)0.1mol/L 碘酸钾标准溶液

(七)测定方法

称取适量锡泥m 1放入烘箱烘干后,称其质量m 2。

粉碎后称取约0.2g 的试样置于500ml 锥形瓶中,加入100ml 盐酸和100ml 蒸馏水,在电炉上缓缓加热至剩余溶液约为100ml 时把电炉关闭,等溶液冷却至室温,加入2g 金属铝片,铝片溶解产生大气泡,盖上以饱和碳酸氢钠溶液的盖氏漏斗。溶液澄清,否则继续加热,使黑色消失。在二氧化碳的保护下置流水中冷却至室温,拿下盖氏漏斗时立即加入3ml 淀粉指示剂,用碘酸钾标准溶液滴定至溶液呈蓝色即为终点。

(八)分析结果

锡(干品)质量分数W (%)100???=试样

m M c V Sn 式中:

V------样品消耗碘酸钾标准溶液的体积ml

C------碘酸钾标准溶液的浓度mol/L

M------锡摩尔质量g/mol [M(

35.59)]21=Sn m------样品质量g

水分的质量分数(含水率)1221m m W -

= m 1-----烘干前锡泥的质量g

m 2-----烘干后锡泥的质量g

锡的质量分数(自然度))100

1((%)21W W W -

?= W (%)-----锡(干品)质量分数% 2W -----水分的质量分数%(含水率)

不同制剂中的黄芩苷含量测定方法与应用

不同制剂中的黄芩苷含量测定方法与应 用 (作者:___________单位: ___________邮编: ___________) 【关键词】黄芩黄芩苷化学分析含量测定 黄芩苷具有抗菌消炎、降压利尿等作用,是中药黄芩的主要有效成分之一。黄芩苷几乎不溶于水、乙醚、苯、氯仿,难溶于甲醇、乙醇、丙酮,微溶于热冰乙酸、碳酸氢钠,易溶于N,N二甲基甲酸胺、吡咯。本文仅就不同制剂中黄芩苷含量测定方法与应用,介绍如下。 1 方法与应用 陶涛等[1]用薄层紫外分光光度法测定双解口服液中黄芩苷的含量,用硅胶H作固定相,乙酸乙酯—丁酮—甲酸—水(5∶3∶1∶1)为展开剂,样品液直接点样,刮下斑点后用50%乙醇洗脱,同时做空白,在岛津UV2100,278 nm处测定其吸收度,标准曲线为Y=18.871X+0.437(r=0.9999),平均回收率为98.2%。该方法受主观因素影响较多,容易造成较大误差,重复性差已较少使用。

孟蕾蕾[2]用双波长紫外分光光度法测定小儿安金丸中黄芩苷含量,在以光束紫外可见分光光度计TU1901下测定,参比波长为250 nm,测定波长为278 nm,平均回收率为99.80%,RSD=1.23%,方法可靠。 颜耀东等[3]采用双波长薄层扫描法测定牛黄清胃丸中黄芩苷的含量,样品用甲醇提取,在聚酰胺板上用醋酸—乙醇(6∶1),2次展开分离后,在岛津CS930双波长薄层扫描仪中以LR=280 nm,XS=207 nm进行扫描测定,平均回收率为98.19%,RSD=1.47%。应用该方法测定牛黄清胃丸中黄芩苷含量,分离效果好,结果准确。 卢劲伟[4]采用双波长薄层扫描法对凉膈散中黄芩苷含量进行测定,样品用50%乙醇提取,在聚酸胺薄膜上用30%醋酸展开,在岛津CS930双波长薄层扫描仪中以测定波长KS=282 nm;参比波长KR=360 nm,平均回收率为98.9%,RSD=1.03%。本法对黄芩苷分离效果好,不用特殊处理就可将干扰成分与欲测成分分离,方法简便、灵敏。 王增理等[5]采用二阶导数差示脉冲法对药材黄芩中有效成分黄芩苷的含量进行了测定,扫描范围为-0.60~2.40 mg/mL,扫描速度为50 mV/s,电流灵敏度为50 tA/V,脉冲振幅为20mV,结果平均回收率为99.69%,RSD=0.57%,表明该法精密度较高。

水质氨氮的测定

水质氨氮的测定 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 氨氮的测定方法主要有纳氏比色法、气相分子吸收法、苯酚——次氯酸盐(或水杨酸——次氯酸盐)比色法和电极法等。本节将主要介绍纳氏比色法和蒸馏——酸滴定法。 当水样带色或浑浊以及含有其他一些干扰物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法(加适量的硫酸锌于水样中,并加氢氧化钠使成碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊);对污染严重的水或工业废水,则用蒸馏法消除干扰(调节水样的pH值使在6.0-7.4的范围,加入适量氧化镁使成微碱性,蒸馏释放出的氨被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定法时,以硼酸溶液为吸收液;采用水杨酸——次氯酸盐比色法时,则以硫酸溶液为吸收液)。 本实验的主要目的: 1 掌握水样预处理的方法; 2 掌握氨氮的测定原理及测定方法的选择 3 掌握分光光度计的使用方法,学习标准系列的配制和标准曲线的制作 一、纳氏试剂光度法(A1) 1 实验原理 碘化汞和碘化钾与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。通常测量用410~425nm范围。 2 实验仪器 2.1 分光光度计 2.2 pH计 2.3 20mm比色皿 2.4 50mL比色管 1本方法与GB7479-87等效。

3 实验试剂 3.1 纳氏试剂:可任择以下两种方法中的一种配制。 3.1.1 称取20g碘化钾溶于约100ml水中,边搅拌边分次少量加入二氯化汞结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜。将上清液移入聚乙烯瓶中,密塞保存待用。 3.1.2 称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。 另称取7g碘化钾和10g碘化汞溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存待用。 3.2 酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100ml水中,加热煮沸以去除氨,放冷,定容100ml。 3.3 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 3.4 铵标准使用液:移取5.00ml铵标准贮备液(3.3)于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 4 实验步骤 4.1 标准曲线的制作 4.1.1 吸取0、0.50、1.00、3.00、 5.00、7.00和10.00ml铵标准使用液(3.4)于50ml 比色管中,加水至标线,加1.0ml酒石酸钾钠溶液(3.2),摇匀。加1.5ml纳氏试剂(3.1.1或3.1.2),混匀。放置10min后,在波长420nm出,用光程20mm比色皿,以水为参比,测量吸光度。 4.1.2 由测得的吸光度减去空白的吸光度后,得到校正吸光度,以氨氮含量(mg)对校正吸光度的统计回归标准曲线。 4.2 水样的测定 4.2.1 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml 比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。以下同标准曲线的制作(4.1)。 4.2.2 分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢

锡含量测定

直接碘量法测定锡 反应原理: 在盐酸溶液中,Sn 4+被铝片还原为Sn 2+,用碘酸钾标准溶液滴定,以淀粉为指示剂。由于Sn 2+不稳定,与空气接触氧化成Sn 4+所以在还原与滴定过程中要避免与空气接触。 其反应式如下: ++++=+234n 32n 3S Al S Al O 3H + I + 3S n = 6H + IO + 3S n 2-+4+-3+2 一、锡水 (一)、试剂 1、饱和的碳酸氢钠溶液 2、盐酸 3、铝片 4、淀粉指示剂 5、0.1mol/L 碘酸钾标准溶液 (二)、测定方法 称取约1.0g 的试样置于500ml 锥形瓶中,加入100ml 盐酸和100ml 蒸馏水,在电炉上缓缓加热至剩余溶液约为100ml 时把电炉关闭,等溶液冷却至室温,加入2g 金属铝片,铝片溶解产生大气泡,盖上以饱和碳酸氢钠溶液的盖氏漏斗。溶液澄清,否则继续加热,使黑色消失。在二氧化碳的保护下置流水中冷却至室温,拿下盖氏漏斗时立即加入3ml 淀粉指示剂,用碘酸钾标准溶液滴定至溶液呈蓝色即为终点。 (三)、分析结果 锡含量W (%)100???=试样 m M c V Sn 式中: V------样品消耗碘酸钾标准溶液的体积ml C------碘酸钾标准溶液的浓度mol/L M------锡摩尔质量g/mol [M( 35.59)]2 1=Sn m------样品质量g

二、锡泥 (一)试剂(同锡水) (二)饱和的碳酸氢钠溶液 (三)盐酸 (四)铝片 (五)淀粉指示剂 (六)0.1mol/L 碘酸钾标准溶液 (七)测定方法 称取适量锡泥m 1放入烘箱烘干后,称其质量m 2。 粉碎后称取约0.2g 的试样置于500ml 锥形瓶中,加入100ml 盐酸和100ml 蒸馏水,在电炉上缓缓加热至剩余溶液约为100ml 时把电炉关闭,等溶液冷却至室温,加入2g 金属铝片,铝片溶解产生大气泡,盖上以饱和碳酸氢钠溶液的盖氏漏斗。溶液澄清,否则继续加热,使黑色消失。在二氧化碳的保护下置流水中冷却至室温,拿下盖氏漏斗时立即加入3ml 淀粉指示剂,用碘酸钾标准溶液滴定至溶液呈蓝色即为终点。 (八)分析结果 锡(干品)质量分数W (%)100???=试样 m M c V Sn 式中: V------样品消耗碘酸钾标准溶液的体积ml C------碘酸钾标准溶液的浓度mol/L M------锡摩尔质量g/mol [M( 35.59)]21=Sn m------样品质量g 水分的质量分数(含水率)1221m m W - = m 1-----烘干前锡泥的质量g m 2-----烘干后锡泥的质量g 锡的质量分数(自然度))100 1((%)21W W W - ?= W (%)-----锡(干品)质量分数% 2W -----水分的质量分数%(含水率)

电子产品中的锡须现象与危害

电子产品中的锡须现象与危害 关键字:锡须电子行业电子连接器电器短路 背景 在政府法规和市场的共同推动下,全球电子行业已经进入无铅电子时代1,2。未能及时转到无铅电子的公司将为国际市场所淘汰。为了适应这个趋势,许多电子元件制造商用纯锡和含锡量很高的无铅合金取代铅合金进行表面处理。制造商是根据它们的价格、耐腐蚀性以及它们与含铅焊料和无铅焊料的兼容性作出这个选择的。使用不含铅的锡进行表面处理的缺点是会形成锡须。 什么是锡须? 晶须是一种头发状的晶体,它能从固体表面自然的生长出来,也称为“固有晶须”。晶须在很多金属上生长,最常见的是在锡、镉、锌、锑、铟等金属上生长。甚至有时锡铅合金上也会生长晶须,但发生概率较小。晶须很少出现在铅、铁、银、金、镍等金属上面。一般来说,晶须现象容易出现在相当软和延展性好的材料上,特别是低熔点金属。锡的晶须简称锡须,它是一种单晶体结构,导电。锡须可以呈现各种形态,如直线形、弯曲、扭结甚至环形等,其截面常呈现不规则的形状,外表面有不规则的条纹,就像是从不规则形状的模具中挤压出来的一样。大多数的锡须在其根部存在着凹坑。 锡须的产生和成长机理 (1)内部应力型锡晶须产生和生长的机理 对这些锡晶须现象机理的解析正在逐步展开。关于锡晶须产生的机理有以表面氧化为驱动力的转移论和Sn原子通过晶界扩散作为锡晶须而生长的再结晶理论。还有在Sn镀层中,来自基底材料的Cu扩散,形成金属间化合物,施加在Sn镀层上的压缩应力成了锡晶须生长的驱动力。还有人认为因为与Sn镀层的主配向呈不同配向而产生锡晶须。锡晶须经氧化膜的裂纹而生长,该成长可用棱镜形转移图说明。这些锡晶须的产生机理与外部应力型锡晶须不同,但是由扩散和氧化等加给Sn系镀膜上压力的事实,意味着它就是锡晶须产生和成长的原因。这些内部应力型锡晶须,因扩散和氧化是主要原因,所以在较长时间内锡晶须有成长的特性。 (2)外部应力型锡晶须产生和成长的机理 外部应力型锡晶须的特征是众所周知的,即由加在Sn系镀膜上过大的外部应力造成的,它导致锡晶须明显快速地成长。有报告认为,锡晶须的形成与受三维压缩应力和结晶粒径等的扩散蠕动现象有关。该报告中根据纳米强化法所得的Sn镀层硬度和蠕变指数,模拟加给sn系镀膜上长时间的应力分布。研究结果认为,与JEITA观察到的锡晶须生长相对照,其结果非常一致。 锡须的危害 锡晶须能够造成电气短路,也可能挣脱成碎片,造成机械或者其它电气问题。在该行业中,锡晶须造成的破坏性损害以十亿美元计。时至今日,对于锡晶须生长的确切过程,人们仍未完全理解。过去数十年所使用Sn/Pb作为标准镀覆材料,就是因为铅的加入能抑制晶须的形成。而在无铅化的今天,抑制锡晶须的形成又变成了人们必须重新面对的课题。 在电子行业急于应对RoHS的多数是电子连接器制造商,他们主要是把Sn-Cu镀层用在连接器引脚上,从2002年开始逐渐向市场推销自己的产品。但到了2003年就暴露出了锡晶须的问题,不单是连接器,其它电子产品的可靠性也受到威胁,锡晶须成为整个电子行业关注的大课题。大量小型化的家用电器应用电子连接器最多,尤其是引脚间距窄更容易受到锡晶须造成的短路障害。根据这些问题,本着解析锡晶须现象和规范锡晶须试验方法的目的,JEITA于2003年组织了电子连接器的锡晶须研究计划。从这个计划的调查结果中得知:主要发生在电子连接器上的锡晶须现象,是加在引脚连接部位等镀层上的机械外部应力造成的。R.M.Fisher在1954年的研究中,曾得出“当sn镀层被施加机械的外部应力时,锡晶须的成长被加速”的结论。同时也指出,锡晶须产生和成长的主要原因是当初镀层的内部应力所致。基于此,为了对尚未产生锡晶须问题的锡晶须进行评价,曾采用在无外部应力负荷的状态下进行高温高湿试验和温度循环试验等方法。后来,s.M.Arnold于1966年发表了“在sn中含Pb达1%以上,就可起到抑制锡晶须”的报告。这一发现,使对锡晶须有抑制作用的Sn—Pb镀层在电子产品中得到广泛的应用,同时也使得对锡晶须的产生和成长现象及其它的机理的剖析大多都没有完成,这一切也是再次引发研究锡晶须问题的较大原因。

总黄酮、多酚含量的测定

燕麦总黄酮含量的测定 一、仪器 紫外-可见分光光度计、分析天平、低速离心机、超声波提取器、恒温水浴锅、粉碎机、pH计、10mL容量瓶15个、10mL具塞试管、100mL烧瓶、10mL离心管10个、试管架2个 二、药品 芦丁标准品40mg、无水乙醇1000mL、亚硝酸钠500g、硝酸铝500g、NaOH 500g 三、实验步骤 (一)、样品处理及总黄酮的提取 1. 将样品籽粒分别称取 2.5 g置于小信封里,80℃烘干24 h。 2. 研成粉末,称取500±2 mg样品于10 mL离心管中,使样品位于试管底部(重复3次)。 3. 每管加4 mL 60%乙醇,放水浴锅60℃浸提2 h。6000 r/min离心10 min,离心后取上清液于10 mL容量瓶中。 4. 再向离心管中加4 mL的60%乙醇,放水浴锅60℃浸提1 h。6000 r/min离心10 min,离心后取上清液于相应的10 mL容量瓶中。60%乙醇定容至10 mL,待测。 (二)、标准曲线绘制 1. 精确量取浓度200 μg/mL芦丁标准溶液0、0.2、0.4、0.8、1.2、1.6、 2.0 mL 分别置于10 mL容量瓶中。 2. 向容量瓶中分别加60%乙醇5、4.8、4.6、4.2、 3.8、3.4、3.0 mL。 3. 然后加5%亚硝酸钠0.3 mL,摇匀,静置6 min。 4. 再加10%硝酸铝0.3 mL,摇匀,静置6 min。 5. 加4%氢氧化钠4.0 mL,用60%的乙醇定容至刻度,摇匀,静置12 min。 6. 于510 nm波长下测定吸光度,并以芦丁标准浓度值为纵坐标,以吸光度为横坐标,绘制标准曲线。 (三)、样品提取液总黄酮含量的测定 准确吸取总黄酮提取液2.0 mL于10 mL容量瓶中,按二的方法测定吸光度,

文献综述:有机锡含量测定

有机锡含量测定 前言 有机锡有机锡化合物(organoti ncom pounds)通常有一烃基锡、二烃基锡、三烃基锡和四烃基锡化合物四种类型。通式为R-SnX4-。,式中R代表烃基团,可为烷基或苯基等;n表)9<烃基数(。为l一4);X可以为无机或有机酸根,或氟、氯、溴、碘、氧等。本类化合物多为油状液体或固体,具有腐败的青草气味和强烈的刺激性。密度空气大,常温下易挥发。不溶或难溶于水,易溶于有机溶剂。可经呼吸道、消化道和皮肤吸收进入机体,但三苯基锡不易透过无损皮肤。主要经肾脏和消化道排出,有的可经呼吸道、唾液、乳汁排出。在农业上用作杀虫剂、杀真菌剂、除草剂,在工业上用作电缆、油漆、造纸、木材、纺织品等的防腐三甲基锡(t rim eth yl t i n,TM T)化合物大多为液态,有异味。曾被用作化学消毒剂和真菌、细菌、昆虫的杀灭剂。近年来,甲基锡作为无铅塑料稳定剂的代用品得到广泛使用,二甲基氯化锡是主要成分,本身并无神经毒性,三甲基锡是主要的杂质之一。三甲基锡受热时易挥发,在合成及使用甲基锡稳定剂过程中,均可发生中. 早在19世纪中叶人们就已经发现了有机锡化合物,它最初是由格式试剂与锡的氯化物反应制备的,后来又发现了金属锡与卤代氢直接反应制备有机锡化合物的方法,并替代了前者为主要的合成方法. 20世纪40年代,各类有机锡化合物的合成与应用得到了迅速发展。有机锡化合物在工农业中的广泛应用却是最近几十年的事情,其产量逐年递增,从1965年的5千吨,到1985年即达到4万吨,5001年侧突破了20万吨.其用途日益广泛,目前大约有2/3的有机锡产品用于非毒性方面,其他的则用于生物杀伤剂.同时,一些在环境中的有机锡化合物也对环境造成了污染,环境中的有机锡通过食物链进入人体,其对人体的健康的影响尚需进一步研究. 近20年来,环境中有机锡的污染问题时有发生,有机锡化合物已成为引起世界各国政府和环境保护组织普遍关注的环境污染物,许多国家已将其列入优先污染控制的“黑名单”。 有机锡化合物是锡和碳元素直接结合所形成的金属有机化合物。通式为R nS nX(4-n)(R为烷基或芳香基,X为无机或有机酸根、卤素等,n可以从1到4,简称单、二、三和四有机锡化合物)。根据R的不同可分为烷基锡化合物和芳香基化合物两类。其基本结构有一取代体、二取代体、三取代体和四取代体(指R的数目)。

总黄酮、多酚含量的测定

总黄酮含量的测定 一、仪器 紫外-可见分光光度计、分析天平、低速离心机、超声波提取器、恒温水浴锅、粉碎机、pH计、10mL容量瓶15个、10mL具塞试管、100mL烧瓶、10mL离心管10个、试管架2个 二、药品 芦丁标准品40mg、无水乙醇1000mL、亚硝酸钠500g、硝酸铝500g、NaOH 500g 三、实验步骤 (一)、标准曲线绘制 1. 芦丁标准品40mg置于称量瓶中80℃烘干至恒重,取烘干后的20mg芦丁标准品用水定容至100mL,得200μg/mL芦丁标准贮备液,精确量取上述浓度芦丁标准贮备溶液0、0.2、0.4、0.8、1.2、1.6、 2.0 mL分别置于10 mL具塞试管中。 2. 向具塞试管中分别加60%乙醇5、4.8、4.6、4.2、 3.8、3.4、3.0 mL。 3. 然后加5%亚硝酸钠0.3 mL,摇匀,静置6 min。 4. 再加10%硝酸铝0.3 mL,摇匀,静置6 min。 5. 加4%氢氧化钠4.0 mL,用60%的乙醇定容至刻度,摇匀,静置12 min。 6. 于510 nm波长下测定吸光度,并以芦丁标准浓度值为横坐标,以吸光度为纵坐标,绘制标准曲线。研究表明芦丁标准品含量在0~0.5mg 范围内与吸光度具有良好的线性关系。 (二)、样品处理及总黄酮的提取(以60%乙醇提取为例) 1. 将样品在80℃烘干24 h,粉碎后过80目筛置于干燥器中备用。 2. 称取500±2 mg样品于25 mL具塞三角瓶中,使样品位于三角瓶底部(重复3次)。 3. 每瓶加4 mL 60%乙醇,放超声波提取器提取2 h。提取液转至10 mL具塞离心管中。 4. 再向具塞三角瓶中加4 mL的60%乙醇,放超声波提取器提取1 h,提取液转至相应10 mL具塞离心管中,6000 r/min离心10 min,离心后取上清液于相应

乙二醇溶液冰点测定实验报告

乙二醇溶液的冰点测定实验

一、实验目的:测定不同浓度的乙二醇溶液的冰点 二、仪器试剂:乙二醇(分析纯),高低温试验箱,电子天平,100ml容量 瓶,量筒 三、实验步骤: 1、配置溶液:用100ml量筒分别量取25ml,30ml,40ml,50ml,55ml的乙 二醇(分析纯),用100ml的容量瓶定容。配置成体积浓度分别为25%,30%,40%,50%,55%的乙二醇溶液。 2、用电子天平称量配置溶液的质量。结果如下表: 浓度(体积) 质量/g 25% 103.4270 30% 103.9378 40% 105.2428 50% 54.2414 55% 106.8160 3、通过查阅资料可知不同浓度的乙二醇溶液冰点如下表: 体积分数,%冰点/℃体积分数,%冰点/℃体积分数,%冰点/℃ 0.00.027.7-14.141.5-26.4 4.4-1.428.7-14.842.5-27.5 8.9-3.229.6-15.443.5-28.8 13.6-5.430.6-16.244.5-29.8 18.1-7.831.6-17.045.5-31.1 19.2-8.432.6-17.946.5-32.6 20.1-8.933.5-18.647.6-33.8 21.0-9.534.5-19.448.6-35.1 22.0-10.235.5-20.349.6-36.4 22.9-10.736.5-21.350.6-37.9 23.9-11.437.5-22.351.6-39.3 24.8-12.038.5-23.252.7-41.1 25.8-12.739.5-24.353.7-42.6 26.7-13.340.5-25.354.7-44.2 4、将几种溶液置于高低温试验箱中,以上表中的冰点为依据,分别在不同温 度下维持一段时间,观察现象。

氨氮的测定纳氏试剂法

实验4 水中氨氮的测定(纳氏试剂比色法) HJ535-2009代替GB 7479-87 一.实验目的 1. 了解水中氨氮的测定意义。 2. 掌握水中氨氮的测定方法和原理。 二.实验原理 氮是蛋白质、核酸、酶、维生素等有机物中的重要组分。纯净天然水体中的含氮物质是很少的,水体中含氮物质的主要来源是生活污水和某些工业废水。当含氮有机物进入水体后,由于微生物和氧的作用,可以逐步分解或氧化为无机氨(NH 3)、铵(NH 4+)、亚硝酸 盐(NO 2-)和最终产物(NO 3-)。 氨和铵中的氮称为氨氮(Ammonia nitrogen 简称NH 3-N )。水中氨氮的含量在一定程度 上反映了含氮有机物的污染情况。在污水综合排放标准(GB8978-1996)和地表水环境质量标准(GB3838-2002)中,氨氮都是重要的监测指标。 以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420 nm 处测量吸光度。 氨氮与纳氏试剂反应生成棕色胶态化合物, 干扰及消除:水样中含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时会产生干扰,含有此类物质时要作适当处理,以消除对测定的影响。 若样品中存在余氯,可加入适量的硫代硫酸钠溶液去除,用淀粉-碘化钾试纸检验余氯是否除尽。在显色时加入适量的酒石酸钾钠溶液,可消除钙镁等金属离子的干扰。若水样

浑浊或有颜色时可用预蒸馏法或絮凝沉淀法处理。 三. 仪器与试剂 1.尤尼柯WFJ7200型可见分光光度计,具20mm比色皿。 2.纳氏试剂(碘化汞-碘化钾-氢氧化钠(HgI2-KI-NaOH)溶液): 称取 16.0g氢氧化钠(NaOH),溶于50ml水中,冷却至室温。称取7.0g碘化钾(KI) 和10.0g碘化汞(HgI 2 ),溶于水中,然后将此溶液在搅拌下,缓慢加入到上述50ml氢氧化钠溶液中,用水稀释至100ml。贮于聚乙烯瓶内,用橡皮塞或聚乙烯盖子盖紧,于暗处存放,有效期1年。 3.酒石酸钾钠溶液:称取50.0g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以驱除氨,充分冷却后稀释至100ml。 4.氨氮标准贮备溶液(1000μg/ml):称取3.8190g氯化铵(NH4Cl,优级纯,在100~105℃干燥2h),溶于无氨水中,移入1000ml容量瓶中,稀释至刻度,摇匀。可在2~5℃保存1个月。 5.氨氮标准工作溶液(10μg/mL):吸10.00ml氨氮标准贮备溶液于1000ml容量瓶内,用无氨水稀释至刻度,摇匀。临用前配制。 以下为水样需预处理时所需试剂 6. 硫代硫酸钠溶液(3.5g/L):称取3.5g硫代硫酸钠(Na 2S 2 O 3 )溶于水中,稀释至1000ml。 7. 硫酸锌溶液(100g/L):称取10.0g硫酸锌(ZnSO 4·7H 2 O)溶于水中,稀释至100ml。

锡的测定

碘酸钾滴定法测定锡量 添加时间:【2006-5-25 23:45:09】阅读次数:【1961】 中华人民共和国国家标准 锡铅焊料化学分析方法 碘酸钾滴定法测定锡量 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1 主题内容与适用范围 本标准规定了锡铅焊料中锡含量的测定方法。 本标准适用于锡铅焊料中锡含量的测定。测定范围:1.00%~95%。 2 引用标准 GB 1.4 标准化工作导则化学分析方法标准编写规定 GB 1467 冶金产品化学分析方法标准的总则及一般规定 GB 4103.1 铅基合金化学分析方法碘量法测定锡量 3 方法原理 试料用硫酸和硫酸氢钾分解。在盐酸溶液中,用铁粉和铝片将四价锡还原为二价锡。以淀粉作指示剂,用碘酸钾标准滴定溶液滴定至试液呈浅蓝色为终点。 4 试剂和材料 4.1 还原铁粉。 4.2 铝片(纯度99.5%以上)。 4.3 硫酸氢钾。 4.4 氯化钠。 4.5硫酸(ρ1.84g/mL)。 4.6 盐酸(1+1)。 4.7 锡标准溶液:称取0.4000g纯金属锡(99.99%),置于250mL烧杯中,加入60mL盐酸(ρ1.19g/mL),加热使其完全溶解,冷却至室温,用盐酸(1+9)将溶液移入500mL容量瓶中并稀释至刻度,混匀。

碘酸钾滴定法测定锡量 添加时间:【2006-5-25 23:45:09】阅读次数:【1961】 中华人民共和国国家标准 锡铅焊料化学分析方法 碘酸钾滴定法测定锡量 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1 主题内容与适用范围 本标准规定了锡铅焊料中锡含量的测定方法。 本标准适用于锡铅焊料中锡含量的测定。测定范围:1.00%~95%。 2 引用标准 GB 1.4 标准化工作导则化学分析方法标准编写规定 GB 1467 冶金产品化学分析方法标准的总则及一般规定 GB 4103.1 铅基合金化学分析方法碘量法测定锡量 3 方法原理 试料用硫酸和硫酸氢钾分解。在盐酸溶液中,用铁粉和铝片将四价锡还原为二价锡。以淀粉作指示剂,用碘酸钾标准滴定溶液滴定至试液呈浅蓝色为终点。 4 试剂和材料

离子色谱测定乙二醇氯离子含量

离子色谱测定一、二、三乙二醇中无机氯的含量 2012-11-13 建立了一种测定一、二、三乙二醇中无机氯含量的离子色谱方法。将样品用二次去离子水以1:1的比例进行稀释,以3.6mmol/L的碳酸钠作为淋洗液,经阴离子交换色谱柱进行分离,采用电导检测器测定氯离子。结果表明:氯离子含量在0.02~0.4mg/kg范围内,方法的线性关系良好(相关系数为0.9999),加标回收率在97.0%~102.8%之间,方法的日内相对标准偏差小于2%,日间相对标准偏差小于3%。方法简便、稳定性好,可实现对一、二、三乙二醇中无机氯含量的快速和准确测定。 关键词:离子色谱法;一、二、三乙二醇;氯离子 乙二醇(ethyleneglycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG,乙二醇存在三个种类:乙二醇(MEG)、二乙二醇(DEG)和三乙二醇(TEG)。乙二醇用于配制发动机的抗冻剂,还用于工业冷量的输送,一般称呼为载冷剂。抗冻剂和载冷剂中过量的氯离子存在会对设备产生腐蚀而使之发生渗漏,影响发动机及工业设备的寿命,因此有必要对乙二醇中的氯离子含量进行测定,实现对乙二醇进行质量控制。 1实验部分 1.1仪器与试剂 离子色谱仪;超纯水机; 移液管1mL和2mL,一次性1mL注射器,50mL容量瓶,100mL容量瓶。 Na2CO3基准试剂,,NaOH优级纯,NaCl基准试剂。 1.2色谱条件 阴离子分析柱(4×250mm)及其WY-AG-1保护柱(4×50mm),电导检测器,阴离子抑制器,抑制电流40mA,淋洗液:3.6mmol/LNa2CO3溶液,流速0.8mL/min,样品环100μL,柱温45℃,检测

(完整版)黄芩苷提取

项目一天然植物有效成分提取 子项目一、黄芩根中黄芩苷的提取 1、【项目目的】 (1)掌握黄芩苷不同提取工艺和操作要点,不同工艺对产品得率和品质的影响; (2)通过黄芩苷含量检测,掌握定性、定量方法在黄酮类物质检测中的应用;(3)通过对黄芩苷的单因素和正交实验优化,掌握正交方法在植物有效成分提取中的应用; (4)通过黄芩苷的提取工艺优化实训,掌握黄酮类物质提取的一般规律。 2、【项目任务】 (1)通过查阅文献,掌握水提法、醇提法在黄芩苷提取中的基本原理; (2)查阅文献设计不同的黄芩苷提取工艺,并结合正交实验进行黄芩苷的提取工艺优化,得到提取得率最大化; (3)查阅文献并结合黄芩苷国标检测方法,对提取中黄芩苷含量进行准确测定; (4)总结黄芩苷提取工艺各环节具体参数,得出最佳工艺条件,并分析存在的问题,各小组以PPT形式作出整体汇报。 3、【项目要求】 (1)能够全面准确采用单因素实验对可能影响提取得率的因素进行测定分析,同时确定主要影响因素; (2)在单因素的基础上进行正交分析,确定合适的因素和水平设计正交实验;(3)通过正交分析确定最佳提取工艺条件 4、【项目背景】 (1)黄芩及黄芩苷简介 黄芩(Scutellaria baicalensis Georgi )具有清热燥湿、泻火解毒、止血安胎等功效。其主要成分黄芩苷(Baicalin)是从黄芩根中提取分离出来的一种黄酮

类化合物,具有抑菌、利尿、抗炎、抗变态及解痉作用,且具有较强的抗癌反应等生理效能。黄芩苷还能吸收紫外线,清除氧自由基,同时,又能抑制黑色素的生成,是一种很好的功能性美容化妆品原料,具有较高的开发利用前景。 黄芩化学成分研究逐渐为药学和化学工作者所重视,目前,国内对黄芩苷提取工艺的研究有较多报道,其提取方法主要有温浸法、煎煮法、微波法、超滤法等,但如何提高黄芩苷收率和纯度一直是实际生产中存在的问题,缺乏对整个工艺条件进行全面研究,因此,有必要对影响黄芩苷提取工艺及其影响因素作一全面探讨。 A、水提法 黄芩粉碎为20-40目,提取2次,物料比为10和5倍,时间为60 min和30 min,分离方式为先用双层细滤布过滤再离心分离,60℃用盐酸调 pH 2—3,再70℃保温60 min,静置3 h,蒸馏水分离洗涤两次,干燥得黄芩苷粗品,测量黄芩苷的含量,计算提取率。 工艺流程 原料选择→粉碎→煎煮→过滤→离心→调节Ph值→保温→静置→洗涤→粗制品→加蒸馏水溶解→调节Ph值→加乙醇→调节Ph值→冷却→过滤→干燥→成品。 B、回流提取法 黄酮苷类(如羟基黄酮、双黄酮、橙酮、查耳酮等)一般可用丙酮、醋酸乙酯、乙醇、水或某些极性较大的混合溶剂进行提取。其中用得最多的是甲醇一水(1:1)或甲醇。乙醇和甲醇是最常用的黄酮类化合物提取溶剂,高浓度的醇(如90%、95%)宜于提取甙元,60%左右浓度的乙醇或甲醇水溶液适宜于提取甙类物质。可以采用一定浓度的醇溶剂提取,测量黄芩苷的含量,计算提取率。

食品中锡的测定

食品中锡的测定 氢化物原子荧光光谱法 1原理:试样经消化后,在硼氢化钠的作用下生成锡的氢化物(SnH4),并由载气带入原子化器中进行原子化,在锡空心阴极灯的照射下,基态锡原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与锡含量成正比,与标准系列溶液比较定量。2试剂和材料 注:除特别注明外,本方法所使用试剂均为分析纯,水为GB/T 6682规定的二级水。 2.1 试剂 2.1.1 硫酸(H2SO4):优级纯。 2.1.2 硝酸(HNO3):优级纯。 2.1.3 高氯酸(HClO4):优级纯。 2.1.4 硫脲(CH4N2S)。 2.1.5 抗坏血酸(C6H8O6)。 2.1.6 硼氢化钠(NaBH4)。 2.1.7 氢氧化钠(NaOH)。 2.2.2 3.2 试剂配制 2.2.1 硝酸高氯酸混合溶液(4+1):量取400 mL硝酸和100 mL高氯酸,混匀。 2.2.2 硫酸溶液(1+9):量取100 mL硫酸倒入900 mL水中,混匀。 2.2.3 硫脲(150 g/L)+抗坏血酸(150 g/L)混合溶液:分别称取15.0 g硫脲和15.0 g抗坏血酸溶于水中,并稀释至100 mL,置于棕色瓶中避光保存或临用时配制。 2.2.4 氢氧化钠溶液(5.0 g/L):称取氢氧化钠5.0 g溶于1000 mL水中。 2.2.5 硼氢化钠溶液(7.0 g/L):称取7.0 g硼氢化钠,溶于氢氧化钠溶液中,临用时配制。 2.3 标准品 金属锡(Sn)标准品,纯度为99.99%或经国家认证并授予标准物质证书的标准物质。 2.4 标准溶液的配制 2.4.1 锡标准溶液(1.0 mg/mL):准确称取0.1 g(精确到0.0001 g)金属锡标准品,置于小

总黄酮含量测定方案

总黄酮含量测定 一样品溶液的制备 70%乙醇溶液,料液比1﹕8 ,80度下回流2h。取10g样品放入圆底烧 瓶中加入80ml 70%乙醇溶液回流2h,抽滤定容至100ml备用。使用时先离心再用70%乙醇稀释10倍做样品溶液。 二芦丁标准品的配置 精密称取芦丁2mg,加无水乙醇定容至10ml。制得浓度为0.2mg/ml芦 丁标准品溶液。 三显色方法的确定 1 扫描原液分别取芦丁溶液和样品溶液各1ml,加无水乙醇定容至25ml,空白对照,全波扫描。 2硝酸铝显色法分别取芦丁对照品溶液和样品溶液各5ml,加5%亚硝酸 钠溶液(1.25g亚硝酸溶于无水乙醇中定容到25ml容量瓶中) 1ml, 摇匀,放置6min,加10%硝酸铝溶液(4,4014g硝酸铝.九水溶于无水乙醇中定容到25ml 容量瓶中) 1ml,摇匀,放置6min,加4%氢氧化钠试液(2g氢氧化钠溶于无水乙醇中定容到50ml容量瓶中)10ml, 再加无水乙醇定容至25ml,摇匀,放置15min,空白对照,全波扫描bb 。 3氯化铝显色法分别取芦丁对照溶液和样品溶液各5ml ,加1%的氯化 铝溶液(1g氯化铝溶于无水乙醇中定容到100ml容量瓶中)10ml,摇匀放置10min,空白对照,全波扫描。 4 氢氧化钾显色法分别取芦丁对照品溶液和样品溶液各5ml,加3ml10% 氢氧化钾溶液(2.5g氢氧化钾溶于无水乙醇中定容到25ml容量瓶中), 充分摇匀显色5min后,用无水乙醇定容至25ml, 摇匀,空白对照,全波 扫描。 四显色条件的确定 五标准曲线的绘制 分别取1ml,2ml,3ml,4ml,5ml,6ml芦丁对照品溶液,按所选的显色方法测定吸光度,绘制标准曲线。 六精密度实验 按标准曲线绘制方法,分别准确量取1.0ml芦丁标准液5份,按所选显色剂和所确定的最优显色条件在所选波长下测定吸光度。

水质氨氮的测定纳氏试剂分光光度法HJ

精心整理 1.范围 1.1 本方法规定了用纳氏试剂分光光度法测定水中的氨氮。 1.2 本方法适用于地下水、地表水、生活污水和工业废水中氨氮的测定。 1.3 当水样体积为50mL,使用20mm比色皿时,本方法检出限为0.025mg/L,测定下限为0.10mg/L, 测定上限为2.0mg/L(均以N计)。 2.参考标准 水质氨氮的测定纳氏试剂分光光度法HJ535-2009 3.职责 4. 5. 5.1 5.2 6.试剂 6.1制备6.1 6.1.2蒸馏法:在1000mL的蒸馏水中,加0.1mL硫酸(ρ=1.84g/mL),在全玻璃蒸馏器中重蒸 馏,弃去前50mL馏出液,然后将约800mL馏出液收集在带有磨口玻璃塞的玻璃瓶内。每升 馏出液加10g强酸性阳离子交换树脂(氢型)。 6.2 盐酸,ρ(HCl)=1.18g/mL。 6.3 硫酸,ρ(H2SO4)=1.84g/mL。 6.4 无水乙醇 6.5 轻质氧化镁(MgO):不含碳酸盐,在500℃下加热氧化镁,以除去碳酸盐。

6.6 氢氧化钠(NaOH) 6.7 可溶性淀粉 6.8 碘化钾(KI) 6.9 碘化汞(HgI) 6.10 氢氧化钾(KOH) 6.11 二氯化汞(HgCl2) 6.12 纳氏试剂 ?碘化汞–碘化钾–氢氧化钠(HgI2-KI-NaOH)溶液: (6.8) 氢氧化? 6.13 6.14 6.15 6.16 。6.17 硫酸锌(ZnSO4·7H2O) 6.18 硫酸锌溶液,ρ=100g/L,称取10.0g硫酸锌(6.17)溶于水中,稀释至100mL。 6.19 氢氧化钠溶液,ρ=250g/L。称取25g氢氧化钠(6.6)溶于水中,稀释至100mL。 6.20 氢氧化钠溶液,c(NaOH)=1mol/L。称取4g氢氧化钠(6.6)溶于水中,稀释至100mL。 6.21 盐酸溶液,c(HCl)=1mol/L。用吸量管吸取8.5mL盐酸(6.2)于100mL容量瓶中,用水稀释 至标线。 6.22 硼酸(H3BO3)

黄酮含量的测定方法

黄酮含量的测定方法 1、对照法 1) ①对照品制备:精密称取芦丁对照品20.8mg,置于100ml容量瓶中,加70%乙 醇使溶解并稀释至刻度,摇匀。 ②样品溶液制备 精密称取样品0.50g,精密加入70%乙醇50ml,称定重量,超声处理30分钟,称定重量,用70%乙醇补足减失重量,即得。 ③标准曲线的制备 精密称取对照品溶液0.0、1.0、2.0、3.0、4.0、5.0ml,分别置于25ml比色管中,加70%乙醇10ml,加5%亚硝酸钠溶液1ml,摇匀,放置6分钟,加1mol/L 氢氧化钠溶液10ml,加70%乙醇置刻度,摇匀,放置15分钟。各取10ml 置于50ml容量瓶中,用70%乙醇稀释至刻度。在510nm的波长下测定吸光度。 2) ①样品溶液的制备: 分别精确称取80℃恒温干燥的样品用50%甲醇回流提取,料液比1:15,提取两次,每次30min,将两次提取液合并浓缩至一定体积,用30%甲醇定容至50ml 容量瓶中。从其中取出12ml溶液放入100ml容量瓶中,稀释至刻度,再从100ml 容量瓶中取出1.5ml溶液,放至10ml容量瓶中,定容,为待测样品液Ⅰa和Ⅱa。 ②最大吸收波长的选择:分别作样品液Ⅰa、Ⅱa及芦丁标准品的吸收曲线,均在350 nm 处有一强吸收,因此选择350 nm为测定波长。 ③标准曲线的制定: 精密称取芦丁对照品10.3mg,用少量30%乙醇溶解后,转移至50ml容量瓶,用蒸馏水定容至刻度。分别精密量取2ml、3ml、4ml、5ml、6ml芦丁溶液置于100ml 容量瓶中,于350 nm 波长处测定吸光值,以芦丁空白为参比,以芦丁浓度为横坐标,以吸光度为纵坐标绘制标准曲线,提示在4.12~12.36mg/103ml浓度之间,吸光度值与浓度呈现良好的线性关系。 ④含量测定结果: 分别吸取2.2.1中Ⅰa和Ⅱa待测样品液各适量于石英比色池中,按标准芦丁一吸光度测定法,以样液空白参比,于350nm 波长下测定吸光值,计算各提取液中总黄酮含量。 计算公式为:样品总黄酮含量(%)=0.03692(A+0.1644)/W。 注:上式为通过回归方程转化而来,式中A为测得样品液的吸光度值,W为称样量。

清热解毒片中黄芩苷的含量测定

清热解毒片中黄芩苷的含量测定 目的采用高效液相色谱法测定清热解毒片中黄芩苷的含量。方法用十八烷基硅烷键合硅胶作为填充剂,用甲醇-0.2%磷酸溶液(48:52)为流动相,流速1.0 ml·min-1,检测波长280nm。结果该试验的结果为清热解毒片中黄芩苷进样量在0.13~0.95μg范围中线性关系良好(该区间中r=0.9996),精密度试验RSD 为1.11%,重复性试验RSD为1.16%,平均回收率为100.13%,RSD为1.30%(n=6 )。结论本方法操作比较简便,精密度好,结果准确可靠,适用于清热解毒片中黄芩含量的测定。 标签:高效液相色谱法;黄芩苷;清热解毒片 清热解毒片收载于《卫生部药品标准》中药成方制剂第二十册。该药的功效主要为清热解毒,临床中流感,上感及各种发热性质的疾病首选该药。这种药物的主要成分是金银花、生石膏、黄芩、龙胆、玄参、地黄、金银花等12味中药组成。原标准中未对黄芩进行含量检测,在本实验中应用的较为先进的高效液相色谱法,通过该种方法测定黄芩在该成药中的含量,该法由于仪器可靠,方法和操作较为简单,因此结果相对的准确可靠。 1 资料与方法 1.1一般资料LC2010A型高效液相色谱仪,黄芩苷对照品,自中国食品药品检定研究院购得(含量测定用,批号:110715-201117);样品来源于陕西盘龙制药集团有限公司,水为重蒸馏水,甲醇在色谱中是色谱纯,乙醇、磷酸在色谱中是分析纯。 1.2方法 1.2.1色谱的条件该试验的填充剂是用的十八烷基硅烷键合硅胶,试验中的色谱柱是VP-ODSC18柱(4.6mm×250mm,5μm);用甲醇-0.2%的磷酸溶液(48︰52)做流动相;该实验中设置的流速为10ml/min;检测的波长为280nm;温度检测设置为35℃;理论塔板数以黄芩苷计算,不能低于3000。 1.2.2制备对照品溶液用精密的方法称取60℃下已经减压干燥时间为4h的黄芩苷对照品适量,加入甲醇溶解该制剂,制成的溶液为每1ml含60μg的黄芩苷做对照品,即能够得到。 1.2.3制备供试品溶液从该成品中随机取10片,除去包裹着的糖衣,通过精密工具称重,然后研磨成粉末状。取出大约0.5g左右,放入带有塞子的锥形瓶里,加入甲醇(浓度为60%)25ml,称得重量之后,通过超声振荡20min(功率250W,频率35kHz),冷却之后,再测取其重量,减少的重量用甲醇补足(浓度为60%),然后摇匀,后滤过,测出滤出的液体5ml,放入25ml的量瓶中,用甲醇(浓度为60%)补至刻度,充分混匀,通过大小为0.22μm微孔滤膜,获取

水质分析中氨氮测定的标准方法

水质分析中氨氮测定的标准方法 氨氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 测定方法一:纳氏试剂光度法(GB7479--87) 1.方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2.干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025molL(光度法),测定上限为2mgL。采用目视比色法,最低检出浓度为0.02mgL。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪器 (1)分光光度计:UV-2800(UNICO) (2)pH计。

试剂 配制试剂用水应为无氨水。 1.纳氏试剂 可选择下列一种方法制备。 (1)称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O6·4H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4.铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg 氨氮。 步骤 1.校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。

相关文档
最新文档