气敏(酒精)传感器实验卡

气敏(酒精)传感器实验卡
气敏(酒精)传感器实验卡

酒泉职业技术学院实验实训项目卡

系(部)负责人:杜忠佩填表人:朱良学2014 年9 月 5 日

酒泉职业技术学院实验实训项目卡

系(部)负责人:杜忠佩填表人:朱良学2014年9月 5 日

酒泉职业技术学院实验实训项目卡

系(部):机电工程系实验实训室:传感器实训室指导教师:朱良学№.:1

系(部)负责人:杜忠佩填表人:朱良学2014年9 月5日

酒泉职业技术学院实验实训项目卡

系(部)负责人:杜忠佩填表人:朱良学2014年9 月 5 日

传感器简答题

1:简述金属电阻应变片的工作原理,主要测量电路种类及其应用情况 应变式传感器是利用金属的电阻应变效应,将测量物体变形转换成电阻变化的传感器。被广泛应用于工程测量和科学实验中。 一工作原理 (一)金属的电阻应变效应当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。如图2-1所示 设有一根长度为l、截面积为S、电阻率为ρ的金属丝,在未受力时,原始电阻为 (2-1) 当金属电阻丝受到轴向拉力F作用时,将伸长Δl,横截面积相应减小ΔS,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR。对式(2-1)全微分,并用相对变化量来表示,则有: (2-2) 式中的Δl/l为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×10-6mm/mm)。若径向应变为Δr/r,电阻丝的纵向伸长和横向收缩的关系用 泊松比μ表示为,因为ΔS/S=2(Δr/r),则(2-2)式可以写成 (2-3) 式(2-3)为“应变效应”的表达式。k0称金属电阻的灵敏系数,从式(2-3)可见,k0受两个因素影响,一个是(1+2μ),它是材料的几何尺寸变化引起的,另一个是Δρ/(ρε),是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则k0≈1+2μ,对半导体,k0 值主要是由电阻率相对变化所决定。实验也表明,在金属电阻丝拉伸比例极限内,电阻相对变化与轴向应变成正比。通常金属丝的灵敏系数k0=2左右。 (二)应变片的基本结构及测量原理 各种电阻应变片的结构大体相同,以图2-2所示丝绕式应变片为例,它以直径为0.025mm左右的合金电阻丝2绕成形如栅栏的敏感栅,敏感栅粘贴在绝缘的基底1上,电阻丝的两端焊接引出线4,敏感栅上面粘贴有保护用的覆盖层3。l称为应变片的基长,b称为基宽,l×b称为应变片的使用面积。应变片的规格以使用面积和电阻值表示,例如3×10mm2,120Ω。 用应变片测量受力应变时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据式(2-3),可以得到被测对象的应变值ε,而根据引力应变关系 б=Eε(2-4) 式中б——测试的应力;

气体传感器Word版

实验八气体传感器实验 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC 机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验要求】 1. 编程要求:编写气体传感器的驱动程序; 2. 实现功能:检测室内的有害气体并输出标志位; 3. 实验现象:将检测到的数据通过串口调试助手显示。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。 半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。原理如下图所示:

根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02 等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6 灵敏度特性 符号参数名称技术参数备注 Rs敏感体电 阻10KΩ-60KΩ探测范围: 100-1000ppm 检测目标:LPG、 丁烷、丙烷、LNG α (1000ppm/4000PPMLNG) 浓度斜率≤0.6 标准工作条件温度:20℃±2℃ Vc:5.0V ±0.1V 相对湿度:65﹪±5﹪ Vh: 5.0V±0.1V 预热时间不少于24 小时 【电路连接】 电路连接如图所示。

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

气体传感器实验

气体传感器实验 学院:计信专业:自动化 姜木北 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。如图 1.112所示: 根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6灵敏度特性灵敏度特性如下图:1.16所示。

气敏传感器及其工作原理

气敏传感器及其工作原理 指导老师:雷家珩 汇报者:周华 汇报时间:2011.11.2

目录 ?气敏传感器定义 ?气敏传感器分类 ?气敏传感器工作原理 ?气敏传感器的应用 ?气敏传感器研究现状与发展趋势 ?参考文献

1 气敏传感器定义 气敏传感器是一种将检测到的气体成份和浓度转换为电信号的传感器。它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。

2 气敏传感器分类半导体式气敏传感器 气敏传感器 绝缘体气敏传感器 电化学气敏传感器 光干涉式气敏传感器 热传导式气敏传感器 红外线吸收散式气敏传感 器电阻型 非电阻型接触燃烧式型电容式恒电位电解式伽伐尼电池式

3 气敏传感器工作原理 3.1 半导体气敏传感器工作原理 ●半导体气敏传感器(见图1,2)由气敏部分、加热丝及防爆网 等构成,它是在气敏部分的SnO 2、Fe 2 O 2 、ZnO 2 等金属氧化物中添 加Pt、Pd等敏化剂的传感器。 ●半导体气敏传感器是利用待测气体与半导体(主要是金属氧化物)表面接触时,产生的电导率等物性变化来检测气体。半导体气敏器件被加热到稳定状态下,当气体接触器件表面而被吸附时,吸附分子首先在表面自由地扩散(物理吸附) ,失去其运动能量,其间的一部分分子蒸发,残留分子产生热分解而固定在吸附处(化学吸附)。

这时,如果器件的功函数小于吸附分子的电子亲和力,则吸附分子将从器件夺取电子而变成负离子吸附。具有负离子吸附倾向 的气体有O 2和NO x ,称为氧化型气体或电子接收性气体。如果器件 的功函数大于吸附分子的离解能,吸附分子将向器件释放电子,而成为正离子吸附。具有这种正离子吸附倾向的气体有H 2 、CO、碳氢化合物和酒类等,称为还原型气体或电子供给性气体。 图1 半导体气敏传感器结构图图2 半导体气敏传感器的符号表示

传感器与检测技术试卷及答案

1.属于传感器动态特性指标的是(D ) A 重复性 B 线性度 C 灵敏度 D 固有频率 2 误差分类,下列不属于的是(B ) A 系统误差 B 绝对误差 C 随机误差 D粗大误差 3、非线性度是表示校准(B )的程度。 A、接近真值 B、偏离拟合直线 C、正反行程不重合 D、重复性 4、传感器的组成成分中,直接感受被侧物理量的是(B ) A、转换元件 B、敏感元件 C、转换电路 D、放大电路 5、传感器的灵敏度高,表示该传感器(C) A 工作频率宽 B 线性围宽 C 单位输入量引起的输出量大 D 允许输入量大 6 下列不属于按传感器的工作原理进行分类的传感器是(B) A 应变式传感器 B 化学型传感器 C 压电式传感器 D热电式传感器 7 传感器主要完成两个方面的功能:检测和(D) A 测量 B感知 C 信号调节 D 转换 8 回程误差表明的是在(C)期间输出输入特性曲线不重合的程度 A 多次测量 B 同次测量 C 正反行程 D 不同测量 9、仪表的精度等级是用仪表的(C)来表示的。 A 相对误差 B 绝对误差 C 引用误差 D粗大误差 二、判断 1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。(√) 2 系统误差可消除,那么随机误差也可消除。(×) 3 对于具体的测量,精密度高的准确度不一定高,准确度高的精密度不一定高,所以精确度高的准确度不一定高(×) 4 平均值就是真值。(×) 5 在n次等精度测量中,算术平均值的标准差为单次测量的1/n。(×) 6.线性度就是非线性误差.(×) 7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√) 8.传感器的被测量一定就是非电量(×) 9.测量不确定度是随机误差与系统误差的综合。(√) 10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√) 二、简答题:(50分) 1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性? 答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。静态特性是指当输入量为常量或变化极慢时传感器输入—输出特性。在时域条件下只研究静态特性就能够满足通常的需要,而在频域条件下一般要研究传感器的动态特性。 2、绘图并说明在使用传感器进行测量时,相对真值、测量值、测量误差、传感器输入、输出特性的概念以及它们之间的关系。 答:框图如下: 测量值是通过直接或间接通过仪表测量出来的数值。 测量误差是指测量结果的测量值与被测量的真实值之间的差值。

气敏传感器

2.3 气敏、湿敏电阻传感器 2.3.1气敏电阻 在现代社会的生产和生活中,人们往往会接触到各种各样的气体,需要对它们进行检测 和控制。比如化工生产中气体成分的检测与控制;煤矿瓦斯浓度的检测与报警;环境污染情 况的监测;煤气泄漏:火灾报警;燃烧情况的检测与控制等等。气敏电阻传感器就是一种将 检测到的气体的成分和浓度转换为电信号的传感器。 1.气敏电阻的工作原理及其特性 气敏电阻是一种半导体敏感器件,它是利用气体的吸附而使半导体本身的电导率发生变 化这一机理来进行检测的。人们发现某些氧化物半导体材料如SnO2、ZnO、Fe2O3、MgO、NiO、BaTiO3等都具有气敏效应。 以SnO2气敏元件为例,它是由0.1~10μm的晶体集合而成,这种晶体是作为N型半导 体而工作的。在正常情况下,是处于氧离子缺位的状态。当遇到离解能较小且易于失去电子 的可燃性气体分子时,电子从气体分子向半导体迁移,半导体的载流子浓度增加,因此电导 率增加。而对于P型半导体来说,它的晶格是阳离子缺位 状态,当遇到可燃性气体时其电导率则减小。 气敏电阻的温度特性如图2.26所示,图中纵坐标为 灵敏度,即由于电导率的变化所引起在负载上所得到的值 号电压。由曲线可以看出,SnO2在室温下虽能吸附气体, 但其电导率变化不大。但当温度增加后,电导率就发生较 大的变化,因此气敏元件在使用时需要加温。此外,在气 敏元件的材料中加入微量的铅、铂、金、银等元素以及一 些金属盐类催化剂可以获得低温时的灵敏度,也可增强对 图2.26 气敏电阻灵敏度与温度的关系气体种类的选择性。 2.常用的气敏电阻 气敏电阻根据加热的方式可分为直热式和旁热式两种,直热式消耗功率大,稳定性较差,故应用逐渐减少。旁热式性能稳定,消耗功率小,其结构上往往加有封压双层的不锈钢丝网 防爆,因此安全可靠,其应用面较广。 (1)氧化锌系气敏电阻 ZnO是属于N型金属氧化物半导体,也是一种应用较广泛的气敏器件。通过掺杂而获 得不同气体的选择性,如掺铂可对异丁烷、丙烷、乙烷等气体有较高的灵敏度,而掺钯则对氢、一氧化碳、甲烷,烟雾等有较高的灵敏度。ZnO气敏电阻的结构如图2.27所示。这种 气敏元件的结构特点是:在圆形基板上涂敷ZnO主体成分,当中加以隔膜层与催化剂分成 两层而制成。例如生活环境中的一氧化碳浓度达0.8~1.15 ml/L时,就会出现呼吸急促, 脉搏加快,甚至晕厥等状态,达1.84ml/L时则有在几分钟内死亡的危险,因此对一氧化碳 检测必须快而准。利用SnO2金属氧化物半导体气敏材料,通过对颗粒超微细化和掺杂工艺 制备SnO2纳米颗粒,并以此为基体掺杂一定催化剂,经适当烧结工艺进行表面修饰,制成 旁热式烧结型CO敏感元件,能够探测0.005%~0.5%范围的CO气体。

PT100温度传感器测量电路

PT100温度传感器测量电路 温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的围.本电路选择其工作在 -19℃ 至500℃ 围。 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

传感器工作原理及故障判断方法

传感器工作原理及故障判断方法 概述 综合录井技术是在钻井过程中应用电子技术、计算机技术及分析技术,借助分析仪器进行各种石油地质、钻井工程及其它随钻信息的采集(收集)、分析处理,进而达到发现油气层、评价油气层和实时钻井监控目的的一项随钻石油勘探技术。应用综合录井技术可以为石油天然气勘探开发提供齐全、准确的第一性资料,是油气勘探开发技术系列的重要组成部分。 综合录井技术主要作用为随钻录井、实时钻井监控、随钻地质评价及随钻录井信息的处理和应用。 综合录井技术的特点有:录取参数多、采集精度高、资料连续性强、资料处理速度快、应用灵活、服务范围广等。 目前国际国内先进的综合录井仪参数的检测精度上有了大幅度的提高,也扩展了计算机系统功能,形成了随钻计算机实时监控和数据综合处理网络,部分综合录井仪还配套了随钻随测(MWD)系统,增加了远程传输等功能,实现了数据资源的共享。其原理框图见图1。 图1:综合录井仪基本结构图

1、传感器 亦称一次仪表,是将一种物理量转换为另一种物理量的设备。其输入信号为待测物理量,如温度、密度、压力、电阻率、距离等,输出信号为可以被二次仪表或计算机接收的物理量,如电流、电压、电阻等。传感器是综合录井仪的最基础部分,其工作性能的好坏直接影响着录井质量。 2、气体检测仪 气体检测仪主要包括烃类检测仪、非烃组分检测仪(或二氧化碳检测仪)等气体检测设备,以及脱气器、氢气发生器、空气压缩机等辅助设备。烃类检测仪主要是利用FID技术测量钻井液中的烃类气体含量;非烃组分检测仪是利用热导池鉴定器测量钻井液中CO2、H2等其它气体的含量。 3、计算机系统 随着计算机技术的发展及应用,目前综合录井仪的计算机系统不仅担负着参数的采集、处理、存储和输出的任务。其存储的资料还可以按照用户的要求,应用其它专用软件进行进一步处理,以完成地质勘探、钻井监控及其它录井目的。同时其联机系统已形成多用户的网络化计算机系统,实现多用户、网络化数据管理,具有携带近程或远程工作站的功能,以便于大型应用软件的使用和数据资源的共享。 4、输出设备 综合录井仪输出设备主要有显示器、记录仪、打印机、绘图仪等等。其用途是将计算机采集、处理的信息通过直观的方式呈现给用户以进行进一步的应用。

霍尔传感器测量电路

霍尔传感器测量电路 咨尔元件的基本电路如图1所示。控制电流颠电源f供给,RE,为调节电阻, 调节控制电流的大小。程尔输出端接负载RF,RR可以是一般电阻,也可以是放大器 的 输入电阻或指示器内阻。在磁场与控制电流的作用下,负裁上就有电压输出。在实际 使用时,J或B或两者同时作为信号输入,而输出信号则正比于J或B或两者的乘积。 内于建立霍尔效应所需的时间很短(10 很高(几千兆赫>。 =、温度误差及其补偿 因此,拧制电流为交流时 (一)温度误差 档尔死件测量的关镀是霍尔效府,而霍尔元件是内半导体制成的,固半导体对温度 很敏 感,霍尔元件的载流于迁移率、屯阻率和霍尔系数都陨温度而变化,因而使霍尔元件 的特性参 数(如霍尔电势和输入、输出电阻等)成为温度的函数,导致霍尔传感器产生温度误差。 [二)温度误差的补偿 为了减小霍尔元件的温度误差,需要对基本测量电路进行温度补偿的改进,可以来 用的补 偿方法柯许多种,常用的合以下方艾博希电子法:采用恒流源提供控制电流,选择合 理的负载电阻进行补

偿,利用霍尔元件回路的串联或并联电阻进行补偿,也可以在输入凹路或输出回路中加入热敏 电阻进行温度误差的补偿。 采用温度补偿元件是一种最常见的补偿方法。图2所示为采用热敏电阻进行补偿 的几种补偿方法。图2(n)所示为输入回路补偿电路,锑化钥元件的霍d;输出随温度 升高 而减小的出素,被控制屯流的增加(热敏电阻的阻位随温度升高旧减小)所补偿。图2(b) 所示为输出回路补偿电路成载上得到的霍尔电势随温度J1高而减小的因素,被热敏电阻阻佰 减小所补偿。图2(c)所示为用正温度系数的热敏电阻进行补偿的电路。 在使用时,温度补偿元件最好和霍尔元件封在一起或靠证,使它们温度变化一致。 随着微电子技术的发展,日前霍尔元件多已集成化。集成霍尔九件有许多优点 小、灵敏度高、输出幅度大、NXP代理商温漂小且对电流稳定性要求低等。 集成霍尔元件可分为线性型和开关则两大类。前者是将霍尔冗件和恒流源、线性放大器 等做公‘个芯片卜,输出电压较高,使用非常方便,日前已得到广泛的应蝴,较典型的线性霍尔 元件有UGN35N等。八关型是将霍尔元件、稳压电路、放大器、施密特触发器、(xj门等电路 做在同一个心片上。当外加磁场强度超过规定的工作点时,()川1由高电阻状态变为 导通状

传感器实验

实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =?/ 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /?=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压U O14/εEK =。 三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表(主控台上电压表)、±15V 电源、±4V 电源、万用表(自备)。 四、实验步骤: 1、检查应变传感器的安装 根据图1-1应变式传感器已装于应变传感器模块上。传感器中各应变片已接入模块的左上方的R 1、R 2、R 3、R 4。加热丝也接于模块上,可用万用表进行测量判别,各应变片初始阻值R 1= R 2= R 3= R 4=350Ω,加热丝初始阻值为50Ω左右。 2、差动放大器的调零 首先将实验模块调节增益电位器Rw 3顺时针到底(即此时放大器增益最大。然后将差动放大器的正、负输入端相连并与地短接,输出端与主控台上的电压表输入端Vi 相连。检查无误后从主控台上接入模块电源±15V 以及地线。合上主控台电源开关,调节实验模块上的调零电位器Rw 4,使电压表显示为零(电压表的切换开关打到2V 档)。关闭主控箱电源。(注意: Rw 4的位置一旦确定,就不能改变,一直到做完实验为止) 3、电桥调零 适当调小增益Rw 3(顺时针旋转3-4圈,电位器最大可顺时针旋转5圈),将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好,其中模块上虚线电阻符号为示意符号,没有实际的电阻存在),按图1-2完成接线,接上桥路电源±4V (从主控箱引入),同时,将模块左上方拨段开关拨至左边“直流”档(直流档和交流档调零电阻阻值不同)。检查接线无误后,合上主控箱电源开关。调节电桥调零电位器Rw 1,使数显表显示为零。 应变片 引出线 固定垫圈 固定螺丝 限程螺丝 模块 弹性体 托盘 加热丝 应变片 图1-1 应变式传感器安装示意图

气敏电阻实验报告

实验报告 气敏电阻实验 一、实验目的 了解气敏电阻(传感器)的原理与应用。 二、实验仪器 直流恒压电源、差动放大器、电桥模块、万用表、气敏电阻(传感器)和九孔板接口平台。 三、实验原理 气敏电阻传感器是一种将检测到的气体的成分和浓度转换为电信号的传感器。气敏电阻是一种半导体敏感器件,它利用了气体的吸附而使半导体本身的电导率发生变化这一机理进行检测。这使得气敏电阻可以把某种气体的成分、浓度等参数转化为电阻变化量,再转换为电流、电压信号。 常用的主要有接触式气体传感器、电化学气敏传感器和半导体气敏传感器等。 接触式气体传感器的检测元件一般为铂金属丝,使用时对铂丝通电流,保持300~400℃高温。此时若与可燃性气体接触,可燃性气体就会在金属催化层上燃烧,因此铂丝温度上升,电阻值也上升。通过测量铂丝的电阻值变化大小就可以知道可燃性气体的浓度。 电化学气敏传感器一般利用液体等电解质,其输出形式可以是气体氧化还原时产生的电流,也可以是离子作用于离子电极产生的电动势。 直热式气敏元件:加热丝和测量电极一同烧结在金属氧化物半导体管芯内,消耗功率大,稳定性较差。 旁热式气敏元件:以陶瓷管为基底,管内穿加热丝,管外侧有两个测量极,测量极之间为金属氧化物气敏材料,经高温烧结而成。它性能稳定,消耗功率小,结构上往往加有封压双层的不锈钢丝网防爆,安全可靠。 四、实验内容及步骤 设备旋钮初始位置:直流恒压源(正负)4V档、万用表置20V档、差动放大器增益拧至最小。 (1)差动放大器调零:将放大器两个输入端接地,接直流电源,用万用表测量输出电压,调节调零电位器使得输出电压为0。 (2)按图9-3-1接线。 (3)打开直流恒压源,预热5~15min后,用浸有酒精的棉球靠近传感器,并轻轻吹气使酒精挥发并进入传感器金属网内,同时观察万用表数值的变化,此时电压 读数______。它反映了传感器AB两端间的电阻随着_______发生了变化。说明 MQ3监测到了酒精气体的存在与否,如果万用表变化不够明显,可适当调大差 动放大器增益。 五、数据记录 实验次数电压表读数

气敏和湿敏传感器

实验五气敏传感器实验 实验目的:了解气敏传感器的原理与应用。 所需单元:直流稳压电源、差动放大器、电桥、F/V表、MQ3气敏传感器、主、副电源。 旋钮初始位置:直流稳压电源±4V档、F/V表置2V档、差动放大器增益置最小、电桥单元中的W1逆时针旋到底、主、副电源关闭。 实验步骤:1.仔细阅读后面附上的“使用说明”,差动放大器的输入端(+)、(-) 与地短接,开启主、副电源,将差动放大器输出调零。 2.关闭主、副电源,按图4接线。 图 4 3.开启主、副电源,预热约5分钟,用浸有酒精的棉球靠近传感器,并轻轻吹气使酒精挥发并进入传感器金属网内,同时观察电压表的数值变化,此时电压读数。 它反映了传感器AB两端间的电阻随着发生了变化。说明MQ3检测到了 酒精气体的存在与否,如果电压表变化不够明显,可适当调大“差动放大器”增益。 思考题:如果需做成一个酒精气体报警器,你认为还需采取哪些手段? 提示:1.需进行浓度标定; 2.在电路上还需增加……。

附:MQ系列气敏元件使用说明 一、特点 1.具有很高的灵敏度和良好的选择性。 2.具有长期的使用寿命和可靠的稳定性。 二、结构、外形、元件符合 1.MQ系列气敏元件的结构和外形如图4A所示,由微型AL203陶瓷管、SN02敏感层、测量电 极和加热器构成的敏感元件固定在塑料或不锈钢网的腔体内,加热器为气敏元件的工作提供了 必要的工作条件。 2.好的气敏元件有6只针状管脚,其中4个脚用于信号取出,2个脚用于提供加热电流。 图4A 三、性能 1.标准回路:如图4B所示,MQ气敏元件的标准测试问路由两部分组成。其一为加热回路。其二为信号输出回路,它可以准确反映传感器表面电阻的变化。 图4B 2.传感器的表面电阻Rs的变化,是通过与其串联的负载电阻RL上的有效电压信号Vrl输出而获得的。二者之间的关系表述为RS/RL=(VC-VRL)/VRL3。

6电容式传感器习题及解答

第6章电容式传感器 一、单项选择题 1、如将变面积型电容式传感器接成差动形式,则其灵敏度将()。 A. 保持不变 B.增大一倍 C. 减小一倍 D.增大两倍 2、差动电容传感器采用脉冲调宽电路作测量电路时,其输出电压正比于()。 A.C1-C2 B. C1-C2/C1+C2 C. C1+C2/C1-C2 D. ΔC1/C1+ΔC2/C2 3、当变隙式电容传感器的两极板极间的初始距离d0增加时,将引起传感器的() A.灵敏度K0增加B.灵敏度K0不变 C.非线性误差增加D.非线性误差减小 4、当变间隙式电容传感器两极板间的初始距离d增加时,将引起传感器的()。 A.灵敏度会增加B.灵敏度会减小 C.非线性误差增加D.非线性误差不变 5、用电容式传感器测量固体或液体物位时,应该选用()。 A.变间隙式B.变面积式 C.变介电常数式D.空气介质变间隙式 6、电容式传感器通常用来测量()。 A.交流电流B.电场强度C.重量D.位移 7、电容式传感器可以测量()。 A.压力B.加速度C.电场强度D.交流电压 8、电容式传感器等效电路不包括()。 A. 串联电阻 B. 谐振回路 C. 并联损耗电阻 D. 不等位电阻 9、关于差动脉冲宽度调制电路的说法正确的是()。 A. 适用于变极板距离和变介质型差动电容传感器 B. 适用于变极板距离差动电容传感器且为线性特性 C. 适用于变极板距离差动电容传感器且为非线性特性 D. 适用于变面积型差动电容传感器且为线性特性 10、下列不属于电容式传感器测量电路的是() A.调频测量电路B.运算放大器电路 C.脉冲宽度调制电路D.相敏检波电路 11、在二极管双T型交流电桥中输出的电压U的大小与()相关 A.仅电源电压的幅值和频率

电容式传感器习题及解答(终审稿)

电容式传感器习题及解 答 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第6章 电容式传感器 一、单项选择题 1、如将变面积型电容式传感器接成差动形式,则其灵敏度将( )。 A. 保持不变 B.增大一倍 C. 减小一倍 D.增大两倍 2、差动电容传感器采用脉冲调宽电路作测量电路时,其输出电压正比于( )。 A .C 1-C 2 B. C 1-C 2/C 1+C 2 C. C 1+C 2/C 1-C 2 D. ΔC 1/C 1+ΔC 2/C 2 3、当变隙式电容传感器的两极板极间的初始距离d0增加时,将引起传感器的( ) A .灵敏度K 0增加 B .灵敏度K 0不变 C .非线性误差增加 D .非线性误差减小 4、当变间隙式电容传感器两极板间的初始距离d 增加时,将引起传感器的( )。 A .灵敏度会增加 B .灵敏度会减小 C .非线性误差增加 D .非线性误差不变 5、用电容式传感器测量固体或液体物位时,应该选用( )。

A.变间隙式 B.变面积式 C.变介电常数式 D.空气介质变间隙式 6、电容式传感器通常用来测量()。 A.交流电流 B.电场强度 C.重量 D.位移 7、电容式传感器可以测量()。 A.压力 B.加速度 C.电场强度 D.交流电压 8、电容式传感器等效电路不包括()。 A. 串联电阻 B. 谐振回路 C. 并联损耗电阻 D. 不等位电阻 9、关于差动脉冲宽度调制电路的说法正确的是()。 A. 适用于变极板距离和变介质型差动电容传感器 B. 适用于变极板距离差动电容传感器且为线性特性 C. 适用于变极板距离差动电容传感器且为非线性特性 D. 适用于变面积型差动电容传感器且为线性特性 10、下列不属于电容式传感器测量电路的是() A.调频测量电路 B.运算放大器电路 C.脉冲宽度调制电路 D.相敏检波电路 11、在二极管双T型交流电桥中输出的电压U的大小与()相关 A.仅电源电压的幅值和频率 B.电源电压幅值、频率及T型网络电容C1和C2大小 C.仅T型网络电容C1和C2大小 D.电源电压幅值和频率及T型网络电容C1大小

传感器技术实验指导书(高联)

CSY-3000系列传感器与检测技术实验台 说明书 一、实验台的组成 CSY-3000系列传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验台桌等组成。 1、主机箱:提供高稳定的±15V、±5V、+5V、±2V-±10V(步进可调)、+2V-+24V(连续可调)直流稳压电源;直流恒流源0.6mA-20mA可调;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0-20KPa(可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。 2、振动源:振动台振动频率1Hz-30Hz可调(谐振频率9Hz左右)。 转动源:手动控制0-2400转/分;自动控制300-2400转/分。 温度源:常温-150℃。 3、传感器:有电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式位移传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器(光电断续器)、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器、光照度探头、纯白高亮发光二极管、红外发光二极管、光敏电阻、光敏二极管、光敏三极管、硅光电池、反射式光电开关共二十六个(其中二个光源)。 4、实验模板:有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/低通滤波模板、光电器件(一)、光开关共十二块模板。 二、使用方法 1、开机前将电压表显示选择旋钮打到2V档;电流表显示选择旋钮打到200mA档;步进可调直流稳压电源旋钮打到±2V档;其余旋钮都打到中间位置。 2、将AC220V电源线插头插入市电插座中,合上电源开关,数显表显示0000,表示实验台已接通电源。 3、做每个实验前应先阅读实验指南,每个实验均应在断开电源的状态下按实验线路接好连接线(实验中用到可调直流电源时,应在该电源调到实验值后再接到实验线路中),检查无误后方可接通电源。 4、合上调节仪(温度开关)电源开关,调节仪的PV显示测量值;SV显示设定值。 5、合上气源开关,气泵有声响,说明气泵工作正常。 四、仪器维护及故障排除 1、维护

64电感式传感器的测量电路

§6—4 电感式传感器的测量电路 一、自感式传感器的测量电路 1、脉冲调宽式测量电路 变气隙差动电感传感器与电容传感器脉冲宽度调制电路相似。 111ln r L U T R U U =- 222ln r L U T R U U =- 121122121122(/)(/)(/)(/)T T L R L R U U U T T L R L R --= ?=?++ ∵ 121212ln(-r L L U T T U U R R -=-)() 令R 1=R 2,并将 20102()N S L l l μ=+? 20202() N S L l l μ=-? 代入上式 l U U l ?=? 平均电压正比于输入非电量l ?。 如直接用10L L L =+?,20L L L =-?,则:0 L U U L ?= ?。 2、交流电桥测量电路 111Z r j L ω=+ 222Z r j L ω=+ 设120r r r ==,10200L L L ==,34Z Z R ==,112E i Z Z = +,22E i R =

则:111211012()()2()2 E E U i r j L i R r j L r j L L ωωω?=+-=?+-++ 12012()22() j L L E r j L L ωω-=?++ 当0wL r 时,12122L L E U L L -?≈ ?+ 当有l ?位移时,20102()N s L l l μ=-?,20202() N s L l l μ=+?,∴ 02E l U l ??=±? 采用相敏捡波电路捡出位移量方向。 系统灵敏度:0 2U E K l l ?==? 二、差动变压器式传感器测量电路 1、精密二极管捡波测量电路 初始12e e =,A B U U =-,00B A U U U =+= 衔铁向上位移12e e >,||||A B U U >,00B A U U U =+< 衔铁向下位移12e e <,||||A B U U <,00B A U U U =+> 2、差动变压器相敏捡波测量电路

传感器原理与应用实验指导书

传感器原理与应用 实 验 指 导 书 自动化工程学院

目录 实验一应变片单臂电桥性能实验 实验二应变片半桥性能实验 实验三应变片全桥性能实验 实验四压阻式压力传感器测量压力特性实验 实验五差动变压器的性能实验 实验六差动变压器测位移特性实验 实验七电容式传感器测位移特性实验 实验八线性霍尔传感器测位移特性实验 实验九开关式霍尔传感器测转速实验 实验十磁电式转速传感器测转速实验 实验十一光电传感器测量转速实验 实验十二电涡流传感器测量位移特性实验 实验十三被测体材质对电涡流传感器特性影响实验实验十四被测体面积对电涡流传感器特性影响实验* 实验十五气敏传感器实验 实验十六湿度传感器实验

CSY-2000型传感器与检测技术实验台 说明书 一、实验台的组成 CSY-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。 1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关数显表。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载保护功能,在排除接线错误后重新开机恢复正常工作。主机箱右侧面装有供电电源插板及漏电保护开关。 2、振动源(动态应变振动梁与振动台):振动频率3Hz~30Hz可调(谐振频率9Hz~12 Hz左右); 3、转动源:手动控制0转/分~2400转/分、自动控制300~2200转/分。 4、温度源:常温~200℃。 5、气压源:0~20Kpa(连续可调)。 6、传感器:基本型有箔式应变片(350Ω)传感器(秤重200g)、扩散硅压力传感器(20Kpa)、差动变压器(±4mm)、电容式位移传感器(±2.5mm)、霍尔式位移传感器(±1mm)、霍尔式转速传感器(2400转/分)、磁电转速传感器(250转/分~2400转/分)、压电式传感器、电涡流传感器(1mm)、光纤位移传感器(1mm)、光电转速传感器(2400转/分)、集成温度(AD590)传感器(室温~120℃)、K热电偶(室温~150℃)、E热电偶(室温~150℃)、Pt100铂电阻(室温~150℃)、Cu50铜电阻(室温~100℃)、湿敏传感器(10~95%RH)、气敏传感器(50~2000ppm)等。 7、调理电路(实验模板):基本型有电桥及调平衡网络、差动放大器、电压放大器、电荷放大器、电容变换器、电涡流变换器、光电变换器、温度变换器、移相器、相敏检波器、低通滤波器。增强型增加相应的配套实验模板。

气体传感器的工作原理及其分类

气体传感器不完全分类原理及应用 所谓气体传感器是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的仪表。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。在电力工业等生产制造领域,也常用气体传感器定量测量烟气中各组分的浓度,以判断燃烧情况和有害气体的排放量等。在大气环境监测领域,采用气体传感器判定环境污染状况,更是十分普遍。 气体传感器的分类,从检测气体种类上,常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器;从仪表使用方法上,分为便携式和固定式;从获得气体样品的方式上,分为扩散式(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式(是指通过使用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等);从分析气体组分上,分为单一式(仅对特定气体进行检测)和复合式(对多种气体成分进行同时检测);按传感器检测原理,分为热学式、电化学式、磁学式、光学式、半导体式、气相色谱式等。 热学式气体传感器 热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的,其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛(如H2、CO2、SO2、NH3、Ar等)。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸气、酒精乙醚蒸气等。 电化学式气体传感器 电化学式气体传感器是利用被测气体的电化学活性,将其电化学氧化或还原,从而分辨气体成分,检测气体浓度的。较常见的电化学传感器类型有原电池型(其工作原理类似于燃料电池)、恒定电位电解池型(在电流强制作用下工作,属库仑分析类传感器)等。目前,电化学传感器是检测有毒、有害气体最常见和最成熟的传感器。其特点是体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。不足是易受干扰,灵敏度受温度变化影响较大。霍尼韦尔旗下的英国城市技术公司所生产的用于检测H2S的3HH电化学传感器,其测量范围0~50ppm,最大允许500ppm,分辨率为0.1ppm,外形尺寸约为外径42mmX高18mm,其主要交叉干扰源有CO、SO2、NO、NO2、H2等。氧化锆氧量传感器是电化学式成分分析传感器中发展比较晚的一种,开始出现于20世纪60年代,其工作基理是根据浓差电池原理,通过测量待分析气体和参比气体因氧气浓度差异而导致的浓差电动势,来测量待分析气体中的含氧量。由于它具有结构简单、工作可靠、灵敏度高、稳定性好、响应速度快、安装使用方便等优点,因此发展较快。常应用于硫酸、空气分离、锅炉燃烧等多组分气体的氧量分析以及熔融金属的含氧测定等。(英国阿尔法) 磁学式气体分析传感器 在磁学式气体分析传感器中,最常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,其氧量的测量范围最宽,是一种十分有效的氧量测量仪表。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。其典型应用场合有化肥生产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。

相关文档
最新文档