连续型随机变量

连续型随机变量
连续型随机变量

§3 连续型随机变量

除了离散型随机变量之外,还有非离散型的随机变量,这些随机变量的取值已不再是有限个或可列个。在这类非离散型随机变量中,有一类常见而重要的类型,即所谓连续型随机变量。粗略地说,连续型随机变量可以在某特定区间内任何一点取值。例如某种树的高度;测量的误差;计算机的使用寿命等等都是连续型随机变量。对于连续型随机变量,不能一一列出它可能取值,因此不能像对离散型随机变量那样用它取各个可能值的概率来描述它的概率分布,而是要考虑该随机变量在某个区间上取值的概率,我们是用概率密度函数来研究连续型随机变量的。

一. 概率密度和连续型随机变量定义: 对于随机变量X ,如果存在非负可积函数

()()f x x -∞<<+∞,使得对于任意实数, ,()a b a b <都有

{}()b

a

P a X b f x dx <<=

?

则称X 为连续型随机变量;称()f x 为X 的概率密度函数,简称概率密度或密度. 由定义可知,分布密度()f x 具有如下基本性质: (1).()0()f x x ≥-∞<<+∞;

(2).

()()1f x dx P X +∞

-∞

=-∞<<+∞=?

这两条性质的几何意义是:概率分布密度曲线不在x 轴下方,且该曲线与x 轴所围的图形面积为1。性质(1)、(2)可以作为判定一个函数是否可以作为一个连续型随机变量的分布密度的条件。

对于连续型随机变量X 可以证明,它在某一点a 处取值的概率为零,即

对于任意实数a ,有()0P X a ==.

即研究X 在某一点处取值的概率是没有什么实际意义的。从而可知,研究X 在某区间上取值的概率时,该区间含不含端点,不影响概率值。即 (3).对于任意实数, ,()a b a b <都有

{}{}{}{}()b a

P a X b P a X b P a X b P a X b f x dx

<<=≤<=<≤=≤≤=?

【例1】

设X 是连续型随机变量,已知X 的概率密度为

其中λ为正常数. 试 确定常数A .

解:由概率密度函数性质,知

二.几个常用的一维连续型随机变量:

1. 均匀分布:如果连续型随机变量X的概率密度为

记作[,]

X U a b.

因此上述定义中的概率密度可以改为

其中λ为一常数,利用概率密度的性质,易得

1

b a λ=

-

2.指数分布:

则称X服从指数分布(参数为λ),记为()

X Eλ

若X 服从参数为λ的指数分布,则对任意

0a b ≤<, 有

如灯泡、电子元件的寿命,电话的通话时间等都被认为是 服从指数分布的。

3. 正态分布:

(1) 定义:如果连续型随机变量X 的概率密度为

可以证明:

=1

(2) 标准正态分布:当参数μ=0 而2

1σ= 时,即(0,1)X

N ,

称X 服从标准正态分布,记 标准正态分布的概率密度为()x φ,则

212

()2x x e

φπ

-

=

正态分布是概率统计中最重要的一种分布。一方面,正态分布是实践中最常见的一种分布,例如测量的误差,人的身高、体重,农作物的收获量,大批学生的考试成绩等等,都近似服从正态分布。一般说来,若某一数量指标受到很多相互独立的随机因素的影响,而每个因素所起的作用都很微小,则这个数量指标近似服从正态分布。另一方面,正态分布具有许多良好的性质,许多分布在一定条件下可以用正态分布来近似,因此在概率数理统计的理论和实际应用中,正态分布都有着十分重要的地位。 (3) 性质:

(a) 在直角坐标系内()f x 的图形呈钟形;

(b) 在x μ=处得最大值

(c) 关于直线x μ=对称;在x μσ=±处有拐点;

(d) 如果σ固定,改变μ的值,则()f x 的图形沿x 轴平行移动,而不改变其形状,

可见()f x 形状完全由σ决定,而位置完全由μ来决定.当x →±∞时,曲线以x 轴为渐近线; 当σ大时,曲线平缓, 当σ小时,曲线陡峭.

(4)标准正态分布(0,1)N 的随机变量X 落在区间(,)a b 中的概率:

标准正态分布密度212

()2x x e

φπ

-

=

,记 ()()x

x t dt φ-∞

Φ=

?

,当0x ≥,

其函数值可查本书的附表1,

2

12

()2t b

a

P a X b e

dt

π

-

<<=

?

2

2

112

2

22t t b

a

e

dt e

dt π

π

-

-

-∞

-∞

=

-

??()()b a =Φ-Φ,

其中

(ⅰ)1

(0)(0)2

P X Φ=≤=

; ()1;Φ+∞= ()0Φ-∞=. (ⅱ),0a b >:可直接查本书的附表1,得

◆()()()P a X b b a <<=Φ-Φ

(ⅲ)0a >: ◆()()P X a a ≤=Φ;

◆()()()1()1()a

a

a P X a t dt t dt a ?φ--∞

-∞

Φ-=<-=

=-=-Φ?

?;

◆()1()1()P X a P X a a >=-≤=-Φ

◆()()()()(1())P a X b b a b a -<≤=Φ-Φ-=Φ--Φ

()()1b a =Φ+Φ-;

◆()()2()1P X a P a X a a ≤=-≤≤=Φ-. 【例2】设(0,1)X

N ,则

(12)(2)(1)0.97730.84130.1360P X <<=Φ-Φ=-=

(1)(11)2(1)120.841310.6826P X P X <=-<<=Φ-=?-=

( 1.96)1(1.96)10.9750.025P X ≤-=-Φ=-=

(12)(2)(1)10.97730.841310.8190P X -<≤=Φ+Φ-=+-=

(5)一般正态分布2

(,)N μσ的随机变量X 落在区间(,)a b 中的概率:

只要搞清楚一般正态分布与标准正态分布的关系,即可利用标准正态分布求得一般正态分布2

(,)N μσ的随机变量X 落在区间(,)a b 中的概率.具体地,

设 2(,)X

N μσ,则

2

2

1()2()x b

a

P a X b dx μσ

-

-<<=

?

令 ,x t μ

σ

-=

则有

212

()(

)(

)b t a b a P a X b dt μ

σ

μσ

μ

μ

σ

σ

-----<<=

=Φ-Φ?

转化为标准正态分布,查本书的附表1,就可得这概率.

特别地,

()(1)(1)2(1)10.6826P X μσμσ-<<+=Φ-Φ-=Φ-=; (22)(2)(2)2(2)10.954P X μσμσ-<<+=Φ-Φ-=Φ-=;

(33)(3)(3)2(3)10.9974P X μσμσ-<<+=Φ-Φ-=Φ-=, 由上面三式可见,服从正态分布2

(,)N μσ的随机变量X 之值基本上落在 区间[2,2]μσμσ-+内, 而几乎不在区间[3,3]μσμσ-+外取值. 【例3】2(2,0.3)X N , 求( 2.4)P X >

解: 2,

0.3,μσ==

2.42

( 2.4)1( 2.4)1(

)1(1.33)0.09180.3

P X P X ->=-≤=-Φ=-Φ= 三.例题:

【例4】 对以下各题随机变量所对应的概率分布,试确定常数a.

【例5】

【例6】设随机变量X的概率密度为

【例设连续型随机变量X的分布面数为

【例7】则

四.习题:

P.68―――1,2,4,5,15

连续型随机变量

§3 连续型随机变量 除了离散型随机变量之外,还有非离散型的随机变量,这些随机变量的取值已不再是有限个或可列个。在这类非离散型随机变量中,有一类常见而重要的类型,即所谓连续型随机变量。粗略地说,连续型随机变量可以在某特定区间内任何一点取值。例如某种树的高度;测量的误差;计算机的使用寿命等等都是连续型随机变量。对于连续型随机变量,不能一一列出它可能取值,因此不能像对离散型随机变量那样用它取各个可能值的概率来描述它的概率分布,而是要考虑该随机变量在某个区间上取值的概率,我们是用概率密度函数来研究连续型随机变量的。 一. 概率密度和连续型随机变量定义: 对于随机变量X ,如果存在非负可积函数 ()()f x x -∞<<+∞,使得对于任意实数, ,()a b a b <都有 {}()b a P a X b f x dx <<= ? , 则称X 为连续型随机变量;称()f x 为X 的概率密度函数,简称概率密度或密度. 由定义可知,分布密度()f x 具有如下基本性质: (1).()0()f x x ≥-∞<<+∞; (2). ()()1f x dx P X +∞ -∞ =-∞<<+∞=? . 这两条性质的几何意义是:概率分布密度曲线不在x 轴下方,且该曲线与x 轴所围的图形面积为1。性质(1)、(2)可以作为判定一个函数是否可以作为一个连续型随机变量的分布密度的条件。 对于连续型随机变量X 可以证明,它在某一点a 处取值的概率为零,即 对于任意实数a ,有()0P X a ==. 即研究X 在某一点处取值的概率是没有什么实际意义的。从而可知,研究X 在某区间上取值的概率时,该区间含不含端点,不影响概率值。即 (3).对于任意实数, ,()a b a b <都有 {}{}{}{}()b a P a X b P a X b P a X b P a X b f x dx <<=≤<=<≤=≤≤=? 【例1】 设X 是连续型随机变量,已知X 的概率密度为 其中λ为正常数. 试 确定常数A .

几种常用连续型随机变量

几种常用的连续型随机变量 给出一个新概念:广义概率密度函数。 设连续型随机变量ξ的概率密度函数为φ(x ), 那么任何与之成正比的函数f (x )∝φ(x ), 都叫做ξ的广义概率密度函数, 或者说, 一个函数f (x )是ξ的广义概率密度函数, 说明存在着一实数a , 使得 φ(x )=af (x ) (1) 而知道了广义概率密度函数, ξ的概率密度函数就可以根据性质1)(=?+∞ ∞ -dx x ?, 求出 将(1)式代入得: 1)()(??+∞ ∞ -+∞ ∞ -==dx x af dx x ? 则?∞+∞ -= dx x f a )(1 因此, 知道了广义概率密度函数就等于知道了一般的概率密度函数, 我们只需关心函数的形状就可以了解概率密度的性质了. 因此也不必关于那个常数是什么. 4.4 指数分布 指数分布的概率密度函数为 ?? ?>=-其它 )(x e x x λλ? 它的图形如下图所示: 它的期望和方差如下计算: () λ λ λ?ξλλλλλ1 1 )(0 =- =+-=-= = = ∞ +-∞+-∞ +-+∞ -+∞ -+∞ ∞ -????x x x x x e dx e xe e xd dx e x dx x x E

() 2 20 202 2 2 2 2 2)(|λξλ λ?ξλλλλ= = +-=-= = = ????∞+-∞+-+∞ -+∞ -+∞∞ -E dx xe e x e d x dx e x dx x x E x x x x 2 2 2 221 1 2 )(λ λ λ ξξξ= - = -=E E D 指数分布常用来作为各种"寿命"分布的近似. 4.5 Γ-分布 如果一个随机变量ξ只取正值, 且在正半轴的广义概率密度函数的形式是x 的某次方x k 乘上指数函数e -λx , 即 ?? ?>->>=-其它 ) 0,1(0)(λλk x e x x f x k 那么就称ξ服从Γ-分布了. 上式中之所以要求k >-1, λ>0, 是因为广义积分 ?? +∞ -+∞ ∞ -= )(dx e x dx x f x k λ 只有在这种条件下才收敛. 此外, 传统上为了方便起见, 用另一个常数r =k +1, 因此广义概率密度函数写为 ?? ?>>>=--其它 ) 0,0(0)(1λλr x e x x f x r 而真实的概率密度函数φ(x )=af (x ), 可以给出常数a 由下式计算: ?∞ +--= 11 dx e x a x r λ 这样, 计算的关键就是要计算广义积分 ?+∞ --0 1dx e x x r λ, 作代换t =λx , 则x =t /λ, dx =dt /λ, 则???+∞ --+∞ --+∞ --= ? ?? ? ?=0 101 011 1 dt e t dt e t dx e x t r r t r x r λ λ λλ, 问题就转成怎样计算广义积分? +∞ --0 1dt e t t r , 这个积分有一个参数r >0, 在r 为一些特定 的参数时, 如当r =1时, 上面的广义积分还是可以计算的, 但是当r 为任意的正实数时, 此广 义积分就没有一般的公式, 一般的原函数表达式. 在这种情况下数学家常用的办法就是定义一个新的函数. 比如说, 在中学学的三角函数就无法用一个加减乘除的公式表示, 因此就发明了sin , cos 这样的记号来代表三角函数. 同样, 上面的广义积分的取值只依赖于参数r , 每给定一个r 值就有一个积分值与之对应, 因此也可以定义一个函数, 叫Γ-函数, 定义为

连续型随机变量

江苏科技大学 毕业论文(设计) 题目:连续型随机变量在实际生活中的应用 姓名:顾苗 学号:1140503102 教学院:数理学院 专业班级:11级统计一班 指导教师:王康康 完成时间:2015年06月10日 二零一伍年六月

连续型随机变量在实际生活中的应用Continuous random variables applied in real life

江苏科技大学毕业设计(论文) 江苏科技大学 毕业设计(论文)任务书 学院名称:数理学院专业:统计学 学生姓名:顾苗学号:1140503102 指导教师:王康康职称:讲师

江苏科技大学毕业设计(论文) 毕业设计(论文)题目: 连续型随机变量在实际生活中的应用 一、毕业设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应做的实验等) 连续型随机变量在现实生活中有广泛的应用,许多物理过程和社会现象均可以由各种常见的随机过程来刻画。如泊松过程、正态过程、马氏过程等等,其应用非常广泛。在实际运用时,我们考虑它们在各种经济模型中的应用和计算,它们种类繁多,形式各异。具有很强的现实意义。 1、给出连续型随机变量的基本概念。 2、给出几种常见的连续型随机变量的理论意义。 3、给出几种常见的连续型随机变量在各种经济模型中的应用。 二、完成后应交的作业(包括各种说明书、图纸等) 1、至少6000字以上的论文 2、教师指定阅读的外文文献原文 3、指定外文文献的译文6000字以上

三、完成日期及进度 2015.2.25~2015.3.16 文献检索与资料收集; 2015.3.16~2015.4.12 文献阅读及撰写开题报告; 2015.4.12~2015.5.8 论文构思与内容; 2015.5.8~2015.5.24 撰写论文; 2015.5.24~2015.6.9 论文评阅及答辩。

讲连续型随机变量分布及随机变量的函数的分布

第七讲 连续型随机变量(续)及 随机变量的函数的分布 3. 三种重要的连续型随机变量 (1)均匀分布 设连续型随机变量X 具有概率密度 )5.4(,, 0,,1 )(??? ??<<-=其它b x a a b x f 则称X 在区间(a,b)上服从均匀分布, 记为X~U(a,b). X 的分布函数为 )6.4(. , 1,, ,,0)(???? ???≥<≤--<=b x b x a a b a x a x x F (2)指数分布 设连续型随机变量X 的概率密度为 )7.4(, , 0,0,e 1)(/?????>=-其它x x f x θ θ 其中θ>0为常数, 则称X 服从参数为θ的指数分布. 容易得到X 的分布函数为 )8.4(. , 0,0,1)(/?? ?>-=-其它x e x F x θ 如X 服从指数分布, 则任给s,t>0, 有 第二章 随机变量及其分布 §4 连续型随机变量 及其概率密度 1 =2

P{X>s+t | X > s}=P{X > t} (4.9) 事实上 }. {e e e )(1)(1}{}{} {)} (){(}|{//)(t X P s F t s F s X P t s X P s X P s X t s X P s X t s X P t s t s >===-+-=>+>= >>?+>=>+>--+-θ θθ 性质(4.9)称为无记忆性. 指数分布在可靠性理论和排队论中有广泛的运用. (3)正态分布 设连续型随机变量X 的概率密度为 ) 10.4(,,e 21)(2 22)(∞<<-∞= -- x x f x σμσ π其中μ,σ(σ>0)为常数, 则称X 服从参数 为μ,σ的正态分布或高斯(Gauss)分布, 记为X~N(μ,2σ). 显然f(x)≥0, 下面来证明 1d )(=? +∞ ∞ -x x f 令t x =-σμ/)(, 得到 dx e dx e t x 2 2)(22 22121- ∞ +∞ --- ∞ +∞ -? ? = π σ πσμ . 1d 21d 21 ) 11.4(π 2d d e ,, d d ,d e 2 2)(20 2 22 /)(2 2 /2 2 22 222== ====? ??? ? ? ?∞ ∞ -- ∞ ∞ ---∞ - +∞∞-+∞ ∞ -+-∞∞ --x e x e r r I u t e I t I t x r u t t π σ πθσ μπ 于是 得转换为极坐标则有记f(x)具有的性质: f (x )的图形: 1.5 0.5

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X的分布函数F(X),若存在非负函数f(x),使 对于任意的实数x,有F(W(M,则称X为连续性随机变量,f(x)称 为X的概率密度函数,简称概率密度。 注:尺劝表示曲线下x左边的面积,曲线下的整个面积为 lo 2 .密度函数f(x)的性质:注:不是概率。 1)??f(x)M0?? 2)? j f(x)dx = \ 3)P{x, < X < x2} = ~f(x)(/x =F(x2) -F(Xj) 特别地,连续型随机变量在某一点的概率为零,即 P{X = x} = 0.(但{脸力并不一定是不可能事件) 因此PQWXWb)二P(a

注:iv)与离散型随机变量不同,

易知 ; (3) P(|X|<. 解⑴ P(XW 二①二 (2) P(X> =1- P(XW =1-①= (3) P(|X|< =P0有 P///-h/2/r s

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于 任意的实数 x,有F ( x)x f(x) 称为 X f (t)dt ,则称X为连续性随机变量, 的概率密度函数,简称概率密度。 注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。 2 .密度函数f(x) 的性质:注: f( x)不是概率。 1) f( x)≥ 0 + f ( x) dx = 1 2) ò-x 2 3)P{x 1 < X ? x 2 }òx1 f (x) dx = F (x 2 ) - F (x 1 ) 特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0. (但 { X=x} 并不一定是不可能事件) 因此P(a≤X ≤ b)= P(a< X

连续型随机变量及其分布(精)

连续型随机变量及其分布 知识要点 1.分布函数 随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率 ()P X x ≤称为随机变量X 的分布函数,记作()F x , 即 ()(),F x P X x x =≤-∞<<∞. 2.分布函数()F x 的性质 (1) 0()1;F x ≤≤ (2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤; (3) ()0,()1lim lim x x F x F x →-∞ →+∞ ==; (4) ()F x 是右连续函数,即0()()lim x a F x F a →+=. 由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 ()()();P a X b F b F a <≤=- 也可以求得 ()()(0)P X a F a F a ==--. 3.联合分布函数 二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即 (,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤; (2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数; (3) (,)0,(,)0 lim lim x y F x y F x y →-∞ →-∞ ==, (,)0,(,)1 lim lim x x y y F x y F x y →-∞ →+∞→-∞ →+∞ ==; (4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数; (5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.连续型随机变量及其概率密度 设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有 ()()x F x f x dx -∞ =? 成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2) ()1 f x dx +∞ -∞ =? ;

连续型随机变量2-3

连续型随机变量2-3

作者: 日期: 2

§ 3连续型随机变量 除了离散型随机变量之外,还有非离散型的随机变量,这些随机变量的取值已不再是 有限个或可列个。在这类非离散型随机变量中,有一类常见而重要的类型,即所谓连续型 随机变量。粗略地说,连续型随机变量可以在某特定区间内任何一点取值。例如某种树的 高度;测量的误差;计算机的使用寿命等等都是连续型随机变量。对于连续型随机变量, 不能一一列出它可能取值,因此不能像对离散型随机变量那样用它取各个可能值的概率来 描述它的概率分布,而是要考虑该随机变量在某个区间上取值的概率,我们是用概率密度 函数来研究连续型随机变量的。 一. 概率密度和连续型随机变量定义: 对于随机变量 X ,如果存在非负可积函数 f(x) ( x ),使得对于任意实数, a,b(a b)都有 b P a X b f (x) dx , a 则称X 为连续型随机变量;称 f (x)为X 的概率密度函数,简称概率密度或密度. 由定义可知,分布密度 f (x)具有如下基本性质 (1) . f (x) 0 ( x ); (2) . f(x)dx P( X ) 这两条性质的几何意义是:概率分布密度曲线不在 x 轴下方,且该曲线与 x 轴所围的 图形面积为1。性质(1)、(2)可以作为判定一个函数是否可以作为一个连续型随机变量 的分布密度的条件。 对于连续型随机变量 X 可以证明,它在某一点 a 处取值的概率为零,即 对于任意实数a ,有P(X a) 0. 即研究X 在某一点处取值的概率是没有什么实际意义的。从而可知,研究 X 在某 区间上取值的概率时,该区间含不含端点,不影响概率值。即 其中为正常数.试确定常数A . 【例1】 (3 ) ?对于任意实数, a, b (a b)都有 P a X b P a X b P a P a X b b a f (x) dx 设X 是连续型随机变量,已知 X 的概率密度为 u

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者无 穷可列个,则称X 为离散型随机变量。其相应的概率 ()i i P X x p ==(12)i =、……称为X 的概率分布 [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。 [2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=?

?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即: {}{} {}{} ()() ()b a P a X b P a X b P a X b P a X b F b F a f x dx <<=≤≤=<≤=≤<=-=? 即:{}{}()P X b P X b F x <=≤= (4) 常用的离散型随机变量的分布函数: [1] 0-1分布: 如果离散型随机变量X 1{}k k P X k p q -== ( K=0、1) ()01p ≤≤ 称X 服从参数为p 的0-1分布。 [2] 二项分布: 如果离散型随机变量X 的概率分布为: {}k k n k n P X k C p q -== ()01k n =、 …… ()01p ≤≤ ()1q p =-

相关文档
最新文档