物理学的建立与发展

物理学的建立与发展
物理学的建立与发展

经典物理学与近代物理学

学生姓名:

学号:

班级:

指导教师:

日期:

目录

第1章、引言 (1)

第2章、从日心说到万有引力定律 (1)

第3章、从蒸汽机到能量的转换与守恒定律 (2)

第4章、从指南针到统一的电磁场理论 (3)

第5章、经典物理学与近代物理学 (3)

第6章、结论 (4)

经典物理学与近代物理学

【摘要】随着经济社会的发展和科学技术水平的不断进步,物理学领域发生了重大进展,基于传统物理学的基础上,人们开始不断探索自然的未被开发的规律以及应用潜能。我国的物理学从诞生到现在经历了三个发展阶段,分别是古代物理学时期、经典物理学时期和近代物理学时期。在发展的过程中,实验手段更新,规模不断加大,且对物理学的整体研究对象已经从宏观、低速、低效率向微观、高速、高效率方向发展,新发现、新实验不断出现。并渗透到人们的日常生活中。本文针对经典物理学的发展进行研究和分析,并为人类文明进程的加快和经济社会的进一步发展提供借鉴。

【关键词】经典物理学;近代物理学;发展;人类文明进程

人们最早对物理学说做出细致的分析和科学的解释是根据物体的机械运动。通过机械运动对动物或其他物体的机体运动获得了较为全面的认识。从17世纪到19世纪,机械运动学说成为一套完备的理论,并成为物理学研究的主体。然而随着人们视野的开阔并为了不断满足日益发展的现代化社会。人们在机械运动的基础上又相继了解了热运动、磁场运动、电场运动以及万有引力带动的相关宇宙内行星的运动等纵观经典物理学的发展。大致经历了三次有代表性的运动,可以说每一次运动都是人们对未知世界追求的一种表达,并带动了文明的发展和物质水平的提升。

一、从日心说到万有引力定律

1543年,欧洲物理学家哥白尼发表《天体运行论》,提出了日心说,标志着欧洲物理学说自然观的范围性扩展,在宗教势力的笼罩下突破了神学的束缚,并在封建教会内部形成了“上帝创造了宇宙内万物的中心。那就是太阳”这一理论,并很好地为宗教进行服务。哥白尼日心说提出的真正意义就在于它是对封建落后的神学说的一次抨击,推翻了传统意义上的“地球是万物之本。是世界的中心”这一地球中心学说,为人类精神文明的传播与进步做出了突出贡献。随着哥白尼“日心说”的提出,很多学者对物理学进行了更深层次的研究,对新的宇宙观的建立提出了更多的观点。如意大利哲学家布鲁诺。他提出“日心说”这一太阳核心观并不能成立。宇宙内并不是所有星体都围绕着太阳转动。其实每个恒星都是中心,只不过离地球距离的远近不同而巳。这一观点的提出引发热议。人们开始对“日心说”提出质疑。而布鲁诺更是为宣扬自己的主张到处发表演讲。教会因此感受到了压迫,为稳定权利和地位,将布鲁诺捕获并囚禁7年。在狱中,布鲁诺不服管制,最终被判处火刑。布鲁诺这一事件对后来著名物理学家开普勒的天文观测产生了重要影响。他通过他的老师弟谷以及自身的不断实际观测总结出了开普勒行星运动三定律。并对后世的物理学以及航空领域产生了深远的影响。首先,开普勒第一定律确立了太阳在宇宙中的中心地

位。这也是对“日心说”通过科学理论进行的解释。所有的行星都是通过一个特定的轨道围绕太阳进行圆周运动:开普勒第二定律进一步论述了行星的运动。这一运动并不是完全的圆周运动,即它们的运行轨道并非圆形,而是以一个特定周期进行等面积运动。开普勒三定律的提出引起了众多科学家的探讨。尽管这一定律明确了行星的运动规律。但是却无法解释为何会发生这些运动。比如为什么地球会绕太阳公转而不是绕月球进行转动。1687年。英国物理学家牛顿根据一系列实验总结出了力学的运行规律,并提出了运动三定律和万有引力定律。其中运动三定律是对力学的科学解释。总体来说就是物体在受力以及受哪种力的情况下会做出怎样的运动,且这种运动趋势在外力的作用下会做出怎样的改变。万有引力定律通过重力的引用,不仅解释了星体的运行规律和运行原理,还揭示了自然界的一种基本规律——物体之间的相互作用。大到宇宙中的天体。小到尘埃甚至是看不到的微观粒子,它们之间都存在相互作用力。这是物质之间发生关系的基本原理从El心说的提出到牛顿的万有引力定律。经典物理学完成了人类物理学史上的第一次科学与价值的较量,也暗示着物理学革命的积极作用。从牛顿的万有引力定律萌生出的启蒙运动以及西方先进的思想文化,无论是对物理学还是自然界整体,无疑都产生了不可替代的重要影响。

二、从蒸汽机到能量的转换与守恒定律

1765年,瓦特对蒸汽机的改良实现了蒸汽技术的生产生活化运用,实现了历史性的突破。他将蒸汽机的冷凝过程安排到设备外端,实现了蒸汽机的恒温转化,大大增强了蒸汽机的使用效率,降低了运作成本,为工业和农业以及机械化生产产生了重要影响。1807年。以蒸汽机作为动力的美国“克莱蒙特号”诞生。在航海领域取得了重大突破。1814年,史蒂芬孙制造出世界上第一台实用性蒸汽机,成为资产阶级生产领域的核心动力资源通过蒸汽机原理。很多科学家开始研发高效率的热机,希望通过效率的提升降低运行成本,并广泛推广到各种动力设备中。1842年迈尔医生首次提出了能量守恒定律。他认为在一定条件下热能能够与机械能实现完全转化,作为一种形式发挥热的能量作用。1847年,德国物理学家亥姆霍兹系统地解释了能量守恒定律。揭示了人类社会中潜在的能量转化规律。任何物理行为都可以用能量的观点来解释。无论是微观粒子还是宏观物质,能量守恒定律可以涵盖所有的热能、机械能、光能、电能、磁能以及诸多的物理化学反应。在多种能量共存的多合场中也成立,且能量只会通过不同形式而转化。它既不会凭空产生。也不会无故消失。能量守恒定律的提出,实现了物理学研究的空前发展,将物理学赋予能量的观点,推动了社会发展和人们生活水平的提升。更多的机械设备和电子设备产生,也在一定程度上丰富了人们的文化生活。

三、从指南针到统一的电磁场理论

指南针是我国四大发明之一,也是我国物理学史中的一次重大转折。宋代的《萍州可谈》中

就提到了广州的研究者用指南针进行航海并顺利返航。指南针通过电磁场作用共同推动,在诸多领域广泛使用并用于方向导航。在物理学史中,第一次对电磁场理论进行系统研究的是吉尔伯特发表的《论磁》,他不仅发现了磁场的一般规律。同时发现了物质摩擦起电的现象。

1785年库仑借助扭秤实验总结了静电力和磁极之间的作用机理。1820年奥斯特发现了电流的磁效应。将磁现象与电现象相结合进行研究,总结得出任何有电流的导线都可以在周围产生磁场。这被称为电流的磁效应。1831年英国物理学家法拉第发现了电磁感应现象,并制造出了第一台手摇发电机,为新能源的开发和使用打开了科学的大门。此后。电磁感应原理被广泛运用到人们的生产和生活领域中,这也是物理学史上实现的第二次重大突破。为了更好地解释电磁场现象。麦克斯韦提出了“位移电流”和“漩涡磁场”,并预言了电磁波的存在。这为后来电子产业的发展和互联网时代的到来奠定了重要基础,如现在的人造卫星、智能手机、电子计算机网络等通讯工具和信息传输工具都是通过电磁波进行连接和定位,都离不开电磁波的热传导,通过电磁场理论的建立,人们的视野迅速扩大。世界形成了一个整体,全球化经济进程加快。人类实现了认识自然和改变自然的又一次大跨越,在这一基础上,汽车、火车、轮船的产生以及信息化产业实现了大发展。不仅加强了人们对未知世界的认识,也推动了人类文明发展的不断进。

四、经典物理学与近代物理学

20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段。许多物理学家认为物理学已接近尽头。以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙 - 莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。

毫无疑问,近代物理学的产生是物理学史上号称在物理学晴朗的天空上“两朵小小的乌云”造成的,正是这“两朵小小的乌云”引发了物理学的一场大革命,这“两朵小小的乌云”即黑体辐射实验和迈克尔逊一莫雷实验。1900年,为了解释黑体辐射实验,普朗克提出了能量子的假设,导致了量子理论思想的萌芽,接着光电效应、康普顿效应以及在原子结构等一系列问题上,经典物理都遇到了无法克服的困难,通过引入量子化思想,这些问题又都迎刃而解,这就导致了描述微观世界的理论——量子力学的建立;而迈克尔逊一莫雷实验,否定了经典电磁理论的以太假说。1905年爱因斯坦在前人实验的基础上,大胆地抛弃“以太”假说,提出了相对论的两点基本假设,建立了描述高速(接近光速)运动的基本理论——相对论,确立了崭新的时空观。相对论和量子力

学是近代物理的两大支柱,也是《近代物理学》课程教学的最基本内容。前者解决高速问题,后者描述微观世界。在经典物理十分成熟、完善的情况下引入近代物理学,毫无疑问必须强调如下问题:①经典物理学的适用范围是宏观低速运动;②19世纪末20世纪初,物理学已经发展到研究微观现象和高速运动的新阶段;③新的研究范畴必须引入新的理论。这样,近代物理学的出现也就顺理成章了。

五、结论

经典物理学是在宏观和低速领域物理经验的基础上建立起来的物理概念和理论体系,其基础是牛顿力学和麦克斯韦电磁学。近代物理学则是在微观和高速领域物理经验的基础上建立起来的概念和理论体系,其基础是相对论和量子力学。必须指出,在相对论和量子力学建立以后的当代物理学研究中,虽然大量的是近代物理学问题,但也有不少属于经典物理学问题,因此不能说,有了近代物理学就可抛弃经典物理学。

物理学主要研究的是物质,在时空中物质的运动,和所有相关概念,包括能量和作用力。更广义地说,物理学是对于大自然的研究分析,目的是为了要明白宇宙的行为。物理学是最古老的学术之一,在过去的两千年里,物理学与哲学,化学等等经常被混淆在一起,相提并论。直到十六世纪科学革命之后,才单独成为一门现代科学。现在,物理学已成为自然科学中最基础的学科之一。物理学的影响深远,这是因为物理学的突破时常会造成新科技的出现,物理学的新点子很容易会引起其它学术领域产生共鸣。

物理学的进步对社会发展的贡献

物理学的进步对社会发展的贡献 早在1000多年前,马克思就把科学首先看成是历史的有力的杠杆,看成是最高意义上的革命力量。其中,物理学研究提高了我们对自然界的基本认识,产生了对人类有深远意义的知识。它所孕育出的新技术扎根于我们的文化中。因此,物理学的每一次革命都会推动人类社会的巨大进步。 一、日心说的建立——科学战胜神学 古希腊曾创造过灿烂的科学文化。从公元5世纪起,西方进入了黑暗的中世纪。此后,“科学只是教会恭顺的婢女”。地心说的思想博大精深并计算精确,基督教将它与神学融为一体,形成了封建神权的思想基础。由于神学的桎梏,在此后1000多年的历史长河中西方科学停滞不前。中世纪末,先进的思想家们发起了文艺复兴运动,同时宗教界也兴起了改革。这二者的结合,为科学和文艺的复兴鸣锣开道。科学,从此开始了艰难的革命。 1543年,哥白尼提出了日心说。日心说与地心说比较,最大的区别就是把宇宙的中心由地球换成了太阳。也将宇宙的中心放在一个“象征性的太阳”上在计算精度方面,哥白尼的星表“并不远比那些被它们所代替的表好”。另外,日心说还存在两个无法解答的问题:如果地球在运动,第一,为什么看不到恒星的视差?第二,竖直上抛的物体为什么会落回原处所以直到临终前,哥白尼才出版了《天体运行论》。但日心说在客观上产生了向宗教神学挑战的效果。

对地心说进行脱胎换骨的改造的是开普勒。他从弟谷·布拉赫大量的精确有天文观测资料中,总结出了行星运动三定律。其第一定律指出:行星绕太阳运动的轨道是一个椭圆,太阳处在椭圆的一个焦点上,从而确立了太阳在宇宙中真正的中心地位这样一来,开普勒引起了教会的极度不满。他虽然被任命为“皇家数学家”,但长期领不到薪俸,只能靠为皇室贵族算命维持生计。开普勒说:“如果‘占星术’女儿不争来两份面包,那么‘天文学’母亲就准会饿死。”1630年11月,开普勒因贫病交加而死。 伽利略为捍卫、发展和传播哥白尼学说作出了特殊的贡献。 首先,伽利略用自制的望远镜进行天文观测,有力地证实了地球在宇宙中并不比其他星球特殊。1610年,他发行了《星界信使》,公开了自己的观测成果。1632年,他又出版了《关于托勒密和哥白尼两大世界体系的对话》,对亚里士多德进行了批判,在书中,他为日心说的两大困难做了辩护:指出没发现恒星视差是因为恒星离地球太远;他用惯性原理对上抛物体落回原处作出了解释。由于该书是用意大利语写成,又是以对话的形式出现,通俗易懂,使哥白尼学说广为传播。 在1615年,伽利略受到过教会的警告。《对话》发表后的第二年,教会传讯了他并对他刑讯逼供最后伽利略被判为监禁终身,《对话》也列为禁书。相传伽利略被迫公开认错之后,还自语道:“可是,地球是在运动。”在监禁之中,他又完成了《两门新科学的对话》——这是近代自然科学诞生的标志性著作。 日心说与地心说进行了残酷的较量,直到1687年,牛顿的《自然哲学的数学原理》出版,才取得了历史性的胜利。《原理》建立了经典力学的理论体系提出了运动三定律和万有引力定律,揭示了行星绕太阳运动的根本原因,完成了物理学发展史上的第一次

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

漫谈物理化学的发展及学科特点

漫谈物理化学的发展及学科特点 2007化教一班222007316011045 王祖龙 摘要:经历漫长而艰难的发展,物理化学终以一门新的学科出现。它具有自身独特的特点,并在化学中占有极重要位置。随着人们不断的深入认识,越来越多地为人们服 务。 关键词:物理化学形成发展学科特点前景 世界的变化日新月异,尤其在当今,新兴学科层出不穷,但统而观之,它们有一个重要特点,即很多都是边缘学科(亦称交叉学科,1926年美国首次出现)——横跨两种或两种以上基础学科。边缘学科的产生,是随着人们对物质运动形式及固有次序的逐步揭示,是当基础学科发展到一定阶段时的必然结果,是人们知识的深化。 化学,在其漫长的发展历程中,形成了自己独有的特色,并且一直以来对于人类文明的发展起到了很大的推动作用。与此同时,一系列化学的分支学科也不断形成,大大的丰富了化学知识,拓展了人们的眼界。在所有化学分支学科中,当属物理化学最为重要。 而物理化学,作为最早形成的第一门边缘学科,被称为交叉学科的典范,是现代化学的核心内容和理论基础,在基础化学课程体系中起着龙头作用。它的形成与发展经历了较漫长而艰难的时期。 一、物理化学的形成与发展 “物理化学”这个术语曾在十八世纪首先被罗蒙诺索夫创用,但是它的主要研究方向和基本内容却是在十九世纪下半叶才被确定下来。至今其研究内容也都是在当时的基础上不断深入发展的。对于物理化学的形成,不得不提到一个人——杰出的俄国一德国物理化学家奥斯特瓦尔德(Ostwald,W.F.,1853一1932),他为物理化学作出了最伟大的贡献,在1887年创办了第一份名副其实的专业性期刊:德文的《物理化学杂志》(Zeitschrift physikalische Chemie)121,标志着物理化学的形成.。奥斯特瓦尔德因此被称为“物理化学之父”,也曾被列宁誉为“伟大的化学家和渺小的哲学家”。 在十九世纪下半叶以前的近代化学初期,化学家往往又是物理学家,他们研究的问题常常相互有关,相互渗透和相互补充。例如,1807年法国化学家盖吕萨克观测到气体向真空膨胀后温度没有变化,于是物理学家便据此作出“气体膨胀至真空没有作功”这种结论。又如道尔顿,他起初是一位物理学家,后来才研究化学。他从长期观测气象着手,研究空气组成并得出气体的“微粒说”;再经过对碳的两种氧化物以及多种氢化物的组成的化学分析实验,在1804年正式提出倍比定律,后来将物理原子论(即哲学“微粒说”)发展成为“化学原子论”,成为了近代化学诞生的标志。 到了十九世纪下半世纪,随着工业生产力的发展,以及此前大量拥现的化学和物理学成就的逐步积累,近代化学迅速向专业化分工,化学家在研究方向及方法上和物理学家终于分道扬镰。物理化学正是在这个时期开始独立形成的。在这一时期,主要是以李比希和杜马等为代表的有机化学家。有机化学取得了重大的成就,使得从类型理论向结构理论的发展逐步系统化。同时在这一时期,有少数化学家(有的本来也就是物理学家和数学家)关心物理学的理论和发现,这就使得化学和物理学相结合起来,例如拉乌尔(Raoutt,F.M,1830一1901,法国)、瓦格(Waage,P.1933一1990,娜威)、范霍夫(Van't Hoff,J.H.,1852一1911) 以及能斯特(Nernst,H.W.,1864一1941,德国)等。他们都为物理化学最终成为现代化学的一个独立分支做出了开创性的工作,是初期物理化学的共同奠基人。 从道尔顿提出原子论以来,近代化学前期到奥斯特瓦尔德创办《物理化学杂志》之间,有着许多与物理化学形成有关的十分重要的史实: 1、关于原子一分子学说

分析化学发展史

分析化学发展史 摘要]分析化学始于一些分析检验的实践活动。商品生产和交换的发展,促进了分析检验工作。 16世纪,化学反应广泛地应用于湿法分析。18世纪中叶,重量分析法使分析化学由单纯的定性分析迈 入了定量分析的时代。到了19世纪,定性分析趋于完善,定量分析的各种方法也相继出现并不断发展。 分析化学真正成为一门独立的学科是在20世纪初,被称之为经典分析化学。20世纪以来,在经典化学 不断充实、完善的同时,仪器分析也迅猛发展,并且在分析化学中占据越来越重要的地位。[关键词]化学分析;仪器分析 在化学还没有成为一门独立学科的中世纪,甚至古代,人们已开始从事分析检验的实践活动。这一实践活动来源于生产和生活的需要。如为了冶炼各种金属,需要鉴别有关的矿石;采取天然矿物做药物治病,需要识别它们。这些鉴别是一个由表及里的过程,古人首先注意和掌握的当然是它们的外部特征。如水银又名“流珠”,“其状如水似银”,硫化汞名为“朱砂”、“丹砂”等都是抓住它们的外部特征。人们初步对不同物质进行概念上的区别,用感官对各种客观实体的现象和本质加以鉴别,就是原始的分析化学。 在制陶、冶炼和制药、炼丹的实践活动中,人们对矿物的认识便逐步深化,于是便能进一 步通过它们的一些其他物理特性和化学变化作为鉴别的依据。如中国曾利用“丹砂烧之成水银”来鉴定硫汞矿石。随着商品生产和交换的发展,很自然地就会产生控制、检验产品的质量和纯度的需求,于是产生了早期的商品检验工作。在古代主要是用简单的比重法来确定一些溶液的浓度,可用比重法衡量酒、醋、牛奶、蜂蜜和食油的质量。 到了6世纪已经有了和我们现在所用的基本相同的比重计了。商品交换的发展又促进了货币的流通,高值的货币是贵金属的制品,于是出现了货币的检验,也就是金属的检验。古代的金属检验,最重要的是试金技术。在我国古代,关于金的成色就有“七青八黄九紫十赤”的谚语。在古罗马帝国则利用试金石,根据黄金在其上划痕颜色和深度来判断金的成色。 16世纪初,在欧洲又有检验黄金的所谓“金针系列试验法”,这是简易的划痕试验法的进一步发展。16世纪,化学的发展进入所谓的“医药化学时期”。关于各地各类矿泉水药理性能的研究是当时医药化学的一项重要任务,这种研究促进了水溶液分析的兴起和发展。1685年,英国著名物理学家兼化学家R·波义耳(Boyle,1627-1691)编写了一本关于矿泉水的专著《矿泉的博物学考察》,相当全面地概括总结了当时已知的关于水溶液的各种检验方法和检定反应。波义耳在定性分析中的一项重要贡献是用多种动、植物浸液来检验水的酸碱性。波义耳还提出了“定性检出极限”这一重要概念。这一时期分析检验法的多样性、可靠性和灵敏性,并为近代分析化学的产生做了准备。 18世纪以后,由于冶金、机械工业的巨大发展,要求提供数量更大、品种更多的矿石,促进了分析化学的发展。这一时期,分析化学的研究对象主要以矿物、岩石和金属为主,而且这种研究从定性检验逐步发展到较高级的定量分析。其中干法的吹管分析法曾起过重要作用。此法是把要化验的金属矿样放在一块木炭的小孔中,然后以吹管将火焰吹到它上面,一些金属氧化物便熔化并会被还原为金属单质。但这种方法能够还原出的金属种类并不多。到了18世纪中

物理学对人类社会的贡献

物理学对人类社会的贡献 物理学是一门探究一切物质的组成及运动规律揭示它们之间的联系和各种运动之间的关系的广博而丰富的学问。作为自然科学的一门重要基础科学,物理学历来是人类物质文明发展的基础和动力。同时作为人类追求真理、探索未知世界奥秘的有力工具,物理学又是一种哲学观和方法论。在人类文明漫长的岁月中,这种古老而又生机勃勃的学科为我们造就了一个又一个光辉的里程碑。 物理学的进展密切联系着工业,农业等的发展,也同人类社会的进步息息相关。从电话的发明到当代互联网络实现的实时通信;从蒸汽机车的制造成功到磁悬浮列车的投入运行;从晶体管的发明到高速计算机技术的成熟等等。这些无不体现着物理学对社会进步与人类文明的贡献。当今时代,物理学前沿领域的重大成就又将会引领着人类文明进入一片新天地。 物理学对科学技术和生产力的发展起着最直接地推动作用,几次工业革命便是最好的验证。其都是由于物理学深刻地揭示了自然规律,构成了认识自然、改造自然的巨大力量,为科技发展提供了方法和技能。近一个世纪以来,物理学又有了崭新的进展,带来相应的新技术革命。 蒸汽机的发明和牛顿力学的建立,导致了第一次工业革命。17世纪,牛顿完成了划时代的伟大巨著《自然哲学之数学原理》,其奠定了整个经典物理学的基础,并对其他自然科学的发展起了极大的推动作用。牛顿力学的建立,是自然科学从自然哲学中分化出来的第一

重大事件,实现了自然科学的第一次大综合,使人类对自然界的认识跨进了划时代的一大步。经典物理学的思想方法、定量规律及实验基础,使科学技术的发展摆脱了当时多少还带有经验式的、工匠式的、思辨色彩的落后状态,加快了科学技术的发展步伐,为第一次工业革命大规模发明和使用机械打下了基础。 蒸汽技术革命引起了社会的全面变革,带来了社会生产力的极大飞跃,使产业结构发生了巨大变化,机械制造业和加工业取代了农牧业而成为产业结构中核心支柱产业。 电磁理论的发现和建立, 使人类进入了电气化时代。第二次工业革命发生在十九世纪下半叶,它以电磁理论的建立和发展,电气技术开发和应用为基础,极大促进了社会生产力的发展,引起了社会经济结构和生产结构的巨大变革。同时,电磁场理论的发展拓展了科学研究领域,带动了一些新兴学科和相关交叉学科的发展。 在电力革命的过程中,电磁场理论规定着革命的方向,指导着电力系统技术体系的建立。事实再一次证实了科学包括物理学对生产力发展的先导作用。 电子和信息技术具有物理基础。信息革命始于20世纪40年代,以计算机问世为标志,目前方兴未艾。从1904年发明二极管起,到1946年世界上第一台电子管计算机研制成功止,是信息技术史上的“电子管时期”。1947年随着半导体晶体管问世,信息技术史进入了“晶体管时期”。此后,集成电路的发明,打破了电路与元件分离的传统观念,使电子设备微形化。经过大规模集成电路阶段后,超大规

物理学的发展对人类社会的影响

物理学的发展对人类社会的影响 中国民间有句俗话称“时势造英雄”,这虽然过份夸大了客观因素的作用,而忽视了个人的智慧和创造力,但也从另一侧面提示了客观历史背景对事物发展的积极推进作用。 一、物理学发展的一些历史背景 在古代,人类自身因为生存的需要而不得不有效地利用畜力、风力、水力和人力,因此发明了许多机械,促进了物理知识的不断积累。经典力学的诞生,也是当时人们在先人已积累的知识体系中遇到了矛盾,为解决矛盾而对实践进行充分的检验,从此促进物理学新体系的形成:首先是伽利略对亚里士多德运动理论的检验和批判为起点,对阿基米德静力学理论进行了继承和发展,以1632年出版的《关于两大世界体系的对话》和1638年出版的《关于力学和局部运动两门新科学的谈话和数学证明》两本书为标志;其次是牛顿的的经典力学,他概括了伽利略、笛卡儿、开普勒、惠更斯、胡克等人的研究成果以及他自己的创造,在1687年著名的《自然哲学的数学原理》中,首次创立了一个地面力学和天体力学统一的严密体系,成为经典力学的基础,实现了物理学史上的第一次大综合。二次大战中核武器的应用,加速了人们对核物理世界的认识,使人们对物质的认识越来越细微和深入。同样,为解决物理学晴朗的天空中漂浮着的两朵令

人不安的“乌云”,狭义相对论和量子力学便因运而生,为当代物理学的发展叩开了大门。在物理学发展的历史上,诸如此类的突破不胜枚举,充分说明人类在探索自然过程中,一方面是自身知识积累的必然——从量变到质变;另一面,客观的历史背景给予我们足够的推动力。换言之,物理学发展的背后蕴涵着人类社会进步的历史动力。 二、物理学的发展对人类社会的价值 一部人类发展的历史就是一部改造自然的历史,每一次大的技术变革乃至社会变革都有其物理方面的成因,物理在其中扮演着举足轻重的角色。物理学作为一门最基本的自然哲学,是一个充满活力的带头学科,其具有的价值也是多方面的。 1、美学价值 物理学研究的是物质世界最基本最普遍的规律,回答的是人类对于物质世界中原始而又最深刻的问题,面对的是客体世界对人类的主观世界平台上的投影——物理模型世界。物质世界在最原始的层面上是按美学原理构筑的,所以庄子说:“判天地之美,析万物之理。” 在西方古代,毕达哥拉斯学派把对自然奥秘的探索与对自然美的追求统一起来,自那时起,寻求自然界的和谐成为推动天文学发展的基本路标。20世纪以来,以相对论和量子力学为代表的现代物理学革命的兴起在更大的程度上推动

物理化学发展史

物理化学发展史——早期溶液理论和今日中学化学 很荣幸今天能为大家介绍物理化学发展史,物理化学博大精深,很有内涵,所以我耍个机灵,取了早期溶液理论的发展这一节,同时谈一谈今日中学化学对溶液理论的研究和教学实践。首先我想谈一谈物理化学,既然叫物理化学,那他一定和物理有点关联,例如空气湿度多大时我们能够观察到雾的现象?早晨的露珠为什么呈现球形?天上云层很厚实,为什么不下雨?人工降雨的原理到底是什么?等等这些物理现象,其实都属于物质的性质,而物理化学其实是研究物质性质和化学反应原理的学科。 自1887年奥斯特沃尔德和范霍夫合办了德文《物理化学杂志》,这门学科获得了快速的发展,今天物理化学的发展程度当然已经超乎人们的想象,具体包括化学热力学、化学动力学,电化学,光化学,表面化学,胶体化学,结构化学,量子化学,催化理论等等分支。应该说,物理化学以热力学、动力学和量子力学为基础。日本化学史家山岗望提出,物理化学学发端于拉瓦锡时代,本生进一步将物理学的实验方法应用到化学研究上,把物理学原理用来解释化学现象则是从范霍夫开始的。这段时间大致与两次工业革命的兴起重叠,也就是说,物理化学建立在产业革命兴起的大背景下,期间涌现了无数大牛,更有麦克斯韦,玻尔兹曼,普朗克这三尊神。例如麦克斯韦,以电磁理论闻名于世的物理大神,为化学做出的贡献在我看来要更加惊人。请看这两个数,一个热力学K,一个是动力学K,这两个K为什么长这么像?类似的还有克劳修斯克拉博隆方程,如果我把ΔG和ΔEa都用能量E表示,你会发现形式上和麦克斯韦能量分布积分式惊人的相似。这三位确定了热运动的本质,确定了热力学第二定律的适用范围,明确地给出了熵与微观状态数的数学关系。有意思的是文科里面更喜欢谈熵,伟大的科幻小说家阿西莫夫以熵增定律为主题写了科幻史上我认为是最好的一篇——最后的问题。 好言归正传,关于溶液理论,就必须提物理化学三剑客:阿伦尼乌斯,范霍夫和奥斯特沃尔德,三人之间的性格可以说迥异,又来自三个不同国家但对稀溶液的研究将他们的命运深深的绑定,三人友谊可以说是科学史上一段佳话。 故事要从溶液的依数性说起。首先是关于溶液渗透压的发现。最早观察到渗透现象的是法国物理学家诺勒。1748年他为了改进酒的制作时曾作过一个实验:把酒精装满一个玻璃圆筒,用猪膀胱膜封住,然后把圆筒全部浸进水中。他发现膀胱膜向外膨胀,即发现水通过膜渗透进了圆筒,最后膀胱膜竟被撑破。但他并未意识到这就是渗透压造成的。最早对渗透压进行半定量研究的则是法国生理学家杜特罗夏在1830年左右进行的。他用一个钟罩形的玻璃容器,下面用羊皮纸封住,从上面插进一支长玻璃管,容器中分别放入各种不同浓度、不同物质的溶液,然后把它浸入水槽中。于是观察到玻璃管内液面上升,浓度越大,水柱越高,两者成正比。这时候他意识到:这个压力是由于外面的水通过羊皮纸向溶液方向迁移而产生的。他给这种现象命名为“渗透”,该术语来源于希腊文“wσμos”,意思是“推进”。1848年,德国化学家K.维洛尔特(Karl Vierordt)证实了他的这一结论。但由于动物膜既可让溶剂分子也可让溶质分子渗透,只是速度不同,所以测得的渗透压力只是暂时的,不稳定的,而且与溶剂、溶质的渗透相对速度有关,因此测得的渗透压也只是粗略的,而且由于这类半透膜不够坚固,经受不住浓溶液的很大的渗透压。 1867年,德国生理化学家特劳贝让亚铁氰化铜或丹宁-明胶沉积在多孔陶瓷上,制出了真正只让水分子透过的膜,范霍夫称它为半透膜。这种膜非常牢固,能够经受几百个大气压的渗透压。1884年德国植物学家普菲弗便利用这种半透膜研究植物的枯萎状况,对蔗糖溶液的渗透压进行了广泛的定研究,得到了准确的数据。 这些实验结果激起了范霍夫对渗透压进行理论探讨的热情。他从浦菲弗的数据得知,含有一克蔗糖中加水,水加的越多,渗透压越小,但一定是一个常数,与波义耳定律对气体的

物理学的发展对人类社会的影响上课讲义

精品文档 物理学的发展对人类社会的影响 中国民间有句俗话称“时势造英雄”,这虽然过份夸大了客观因素的作用,而忽视了个人的智慧和创造力,但也从另一侧面提示了客观历史背景对事物发展的积极推进作用。 一、物理学发展的一些历史背景 在古代,人类自身因为生存的需要而不得不有效地利用畜力、风力、水力和人力,因此发明了许多机械,促进了物理知识的不断积累。经典力学的诞生,也是当时人们在先人已积累的知识体系中遇到了矛盾,为解决矛盾而对实践进行充分的检验,从此促进物理学新体系的形成:首先是伽利略对亚里士多德运动理论的检验和批判为起点,对阿基米德静力学理论进行了继承和发展,以1632年出版的《关于两大世界体系的对话》和1638年出版的《关于力学和局部运动两门新科学的谈话和数学证明》两本书为标志;其次是牛顿的的经典力学,他概括了伽利略、笛卡儿、开普勒、惠更斯、胡克等人的研究成果以及他自己的创造,在1687年著名的《自然哲学的数学原理》中,首次创立了一个地面力学和天体力学统一的严密体系,成为经典力学的基础,实现了物理学史上的第一次大综合。二次大战中核武器的应用,加速了人们对核物理世界的认识,使人们对物质的认识越来越细微

和深入。同样,为解决物理学晴朗的天空中漂浮着的两朵令精品文档. 精品文档 人不安的“乌云”,狭义相对论和量子力学便因运而生,为 当代物理学的发展叩开了大门。在物理学发展的历史上,诸如此类的突破不胜枚举,充分说明人类在探索自然过程中,一方面是自身知识积累的必然——从量变到质变;另一面,客观的历史背景给予我们足够的推动力。换言之,物理学发展的背后蕴涵着人类社会进步的历史动力。 二、物理学的发展对人类社会的价值 一部人类发展的历史就是一部改造自然的历史,每一次大的技术变革乃至社会变革都有其物理方面的成因,物理在其中扮演着举足轻重的角色。物理学作为一门最基本的自然哲学,是一个充满活力的带头学科,其具有的价值也是多方面的。 1、美学价值 物理学研究的是物质世界最基本最普遍的规律,回答的是人类对于物质世界中原始而又最深刻的问题,面对的是客体世界对人类的主观世界平台上的投影——物理模型世界。物质世界在最原始的层面上是按美学原理构筑的,所以庄子说:“判天地之美,析万物之理。” 在西方古代,毕达哥拉斯学派把对自然奥秘的探索与对自然美的追求统一起来,自那时起,寻求自然界的和谐成为推

物理学发展史

我所认知的物理学发展史 经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠百科全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。 化工二班 许尚志 12071240073

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

物理化学-化学前沿与进展

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

物理学发展史

物理学发展史 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开 普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥 特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解 释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得 静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过 直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研 究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质 说的重要依据。

物理学发展史上的里程碑式的人

物理学发展史上的里程碑式的人

物理无处不在。它在遥远的宇宙边缘,它在星系中央的超大质量黑洞,它在构成万物的基本粒子,它甚至存在于看起来是空的空间内。物理学家的目的就是要去研究在这个物质世界中所发生的一切:掉落的苹果,行星和恒星的运动,以及微观世界中亚原子粒子的行为等等。 我们对我们所身处的这个宇宙已经有了越来越多的了解。而这一切都离不开下面这些物理学家的深刻洞察力,他们的理论、想法及发现彻底地改变了我们对宇宙的认知。 △伽利略(Galileo Galilei, 1564 - 1642)在物理学上最著名的贡献之一是他对物体运动的研究。在1630年代,他证明了所有在做自由落体运动的物体都有相同的加速度。换句话说,在没有空气阻力的情况下,羽毛和铅球将同时落地。霍金说:“自然科学的诞生要归功于伽利略。 △基于伽利略在物体运动的研究,牛顿(Isaac Newton, 1643 - 1727)在1687年发表了《自然哲学的数学原理》,阐述了三大运动定律和万有引力。他通过论证开普勒定律与他的引力理论间的一致性,证明了地球上的物体与天体的运动都遵循着相同的物理定律。

△对电和磁的研究是法拉第(Michael Faraday, 1791 - 1867)最著名的工作。在1831年,他发现了电磁感应现象;1839年,他提出了电学和磁学之间存在着基本关系。 △1864年,麦克斯韦(James Clerk Maxwell, 1831 - 1879)发表了他的电磁学理论,他提出了将电、磁和光统归为电磁场中的现象。麦克斯韦指出电场和磁场以波的形式在空间中以光速传播,同时从理论上预测了电磁波的存在。

化学热力学的发展简史

化学热力学的发展简史 姓名:xx 学号:xx 1 引言 化学热力学是物理化学中最早发展起来的一个分支学科,主要应用热力学原理研究物质系统在各种物理和化学变化中所伴随的能量变化、化学现象和规律,依据系统的宏观可测性质和热力学函数关系判断系统的稳定性、变化的方向和限度。化学热力学的基本特点是其原理具有高度的普适性和可靠性.对于任何体系,化学热力学性质是判断其稳定性和变化方向及程度的依据。也就是说,相平衡、化学平衡、热平衡、分子构象的稳定性、分子间的聚集与解离平衡等许多重要问题都需要用化学热力学的原理和方法进行判断和解决。化学热力学的研究范畴决定了它与化学乃至化学学科以外的其他学科具有很强的交叉渗透性。化学热力学在化学学科的发展中发挥着不可替代的重要作用,与其他学科的发展相互促进。热力学的历史始于热力学第一定律,100多年来,化学热力学有了很大的发展和广阔的应用。 2 化学热力学的筑基 化学热力学的主要理论基础是经典热力学。19世纪上半叶,作为物理学的巨大成果,“能”的概念出现了; 人们逐渐认识到热只是能的多种可互相转换的形式之一,科学家意识到了统治科学界百年之久的“热质说”是错误的,于是热力学应运而生。19世纪中叶,人们在研究热和功转换的基础上,总结出热力学第一定律和热力学第二定律,解决了热能和机械能转换中在量上的守恒和质上的差异。1873-1878年,吉布斯进一步总结出描述物质系统平衡的热力学函数间的关系,并提出了相律。20世纪初,能斯特提出了热定理,使“绝对熵”的测定成为可能。为了运用热力学函数处理实际非理想系统,1907 年,路易斯提出了逸度和活度的概念%至此,经典热力学建立起完整的体系。 2.1 Hess定律 俄国的赫斯很早就从化学研究中领悟了一些能量守恒的思想。1836年,赫斯向彼得堡科学院报告: “经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被

论物理学与社会科学的关系

论物理学与社会科学的关系 (广西师范学院物电学院物理课程与教学论邓小雄) 【摘要】:本文介绍了物理学与社会科学的区别和联系。重点论述了社会科学对物理学的促进作用以及物理学的统计力学、耗散结构论和相对论对社会科学的促进作用。自然科学应该和社会科学结合起来以解决各种复杂的问题。 【关键词】:物理学;社会科学;关系 引言 随着社会的发展,出现了许多综合性问题。对于研究综合性社会问题而言,需要“各种有关的专家”或“各方面的专家”以及“各种学科的科学理论”。而这些专家就包括了自然科学家和社会科学家;“各种学科的科学理论”包括自然科学中有关学科的科学理论和社会科学中有关学科的科学理论。本文就自然科学中的物理学与社会科学的区别和联系进行探讨。 1 物理学与社会科学的区别 物理学是一门自然科学,它研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转换的规律。社会科学是关于社会事物的本质及其规律的系统性科学。社会科学是科学的研究人类社会现象的模型科学。广义的“社会科学”是人文学科和社会科学的统称。社会科学是以社会现象为研究对象的科学。它的任务是研究与阐述各种社会现象及其发展规律。社会科学所涵盖的学科包括:经济学、政治学、法学、伦理学、历史学、社会学、心理学、教育学、管理学、人类学、民俗学、新闻学、传播学等。世界是由人和物两大方面组成,物理研究的对象是物质,是客观世界;而社会科学研究的对象是人,是主观世界。物理回答“是什么”, 其成果具有世界性,没有民族性和地域性;社会科学回答“应该怎样”,因而具有价值导向,其成果具有民族性和本土性。“是什么”具有

惟一性, 因而物理是逻辑的、实证的、一元的;“应当怎样”不具惟一性, 因而社会科学往往是非逻辑的、非实证、非一元的[1]。 2 物理学与社会科学的联系 人类社会是大自然进化的产物,亦是大自然发展的高级阶段。一部社会发展史,同时也是一部自然发展史。人类社会有其社会性质,这就是社会系统在长期进化过程中所呈现出来的新质。研究这种新质的科学,叫做社会科学。人类社会亦有其自然本质,这就是构成社会系统的诸要素的自然属性[2]。 近些年来,不仅在自然科学内部,而且在自然科学与社会科学之间,各种类型的交叉影响、交叉研究和交叉学科层出不穷。象城市科学、环境科学、管理科学、思维科学等等高度综合性的学科,都体现了自然科学与社会科学的综合。 从现代科学的研究对象看,除了纯自然现象和纯社会现象外,具有两者交叉性质的现象日益增多。事实上,随着社会生产的不断进步,人类制造出许许多多日趋复杂的人工产品,这些都是纯自然界或天然自然界所没有的,人们把它们称为第二自然或人工自然。这种人工的自然界正在日益扩大范围,因为科学技术的发展和人类创造能力的提高,使得天然自然或第一自然越来越多为人类所改造和利用而转化为人工自然。由于人类还通过自己的各种实践活动对所居住的地球施加着日益深广的影响,以致于天灾和人祸在某些情况下已无绝对分明的界限。有时看来是天灾,然而溯其根源,又往往包含有人祸,即包含有人类生产活动破坏了生态环境方面的原因。在人类改造社会的活动中也不能忽视来自自然条件和环境的影响。从现代科学的研究方法看,一方面,自然科学中一些常用的方法乃至一些概念和思路正越来越多地渗入社会科学;另一方面,社会科学中的一些思想方法以及价值、伦理概念也日益浸入自然科学的许多部门[3]。 2.1 社会科学对物理学的促进作用 (1)社会科学促使自然科学的诞生 “文艺复兴”运动的主要思潮是人文主义,它的宗旨是反对中世纪的宗教观,

相关文档
最新文档